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Abstract

A subset D of V (G) is a dominating set of a graph G if every vertex of
V (G) − D has at least one neighbour in D; let the domination number
γ(G) be the minimum cardinality among all dominating sets in G. We
say that a graph G is γ-q-critical if subdividing any q edges results in
a graph with domination number greater than γ(G) and there exists a
set of q − 1 edges such that subdividing these edges results in a graph
with domination number γ(G). In this paper we consider mainly γ-q-
critical trees and give some general properties of γ-q-critical graphs; in
particular, we characterize those trees T that are γ-(n(T ) − 1)-critical.
We also characterize γ-2-critical trees T with sd(T ) = 2 and γ-3-critical
trees T with sd(T ) = 3, where the domination subdivision number sd(G)
of a graph G is the minimum number of edges which must be subdivided
(where each edge can be subdivided at most once) to construct a graph
with domination number greater than γ(G).
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1 Introduction

Let G = (V,E) be a connected graph of order n(G) and size m(G).

The open neighbourhood NG(v) of a vertex v ∈ V is the set of all vertices adjacent
to v in G and let the closed neighbourhood be the set NG[v] = NG(v) ∪ {v}. The
degree of a vertex v is denoted by degG(v) = |NG(v)|. For a set X ⊆ V, the open
neighbourhood NG(X) is the set

⋃
v∈X NG(v) and the closed neighbourhood is the set

NG[X] = NG(X) ∪X. For a set S, let NS[x] = NG[x] ∩ S.

A vertex v is an end-vertex (or a leaf ) of G if v has exactly one neighbour in G.
The set of all end-vertices in G is denoted by Ω(G).

A vertex v is called a support if it is adjacent to an end-vertex. If v is adjacent
to only one end-vertex, it is called a weak support. Otherwise, v is called a strong
support. The set of all supports in a graph G is denoted by S(G).

The distance between two vertices u, v is the length of a shortest u− v path in a
graph G and is denoted by dG(u, v). A u− v path of length dG(u, v) is called a u− v
geodesic. We say that a set A ⊆ V is a 2-packing if dG(x, y) > 2 for all x, y ∈ A.

For a graph G, the subdivision of an edge e = uv with a new vertex w (called
the subdivision vertex ) is an operation which leads to a graph Ge with V (Ge) =
V (G)∪{w} and E(Ge) = (E(G)\{uv})∪{uw,wv}. Furthermore, the graph obtained
from G by subdividing all the edges in the set F ⊆ E(G) is denoted by GF .

A subset D of V is a dominating set of a graph G if every vertex of V \ D
has at least one neighbour in D. Let γ(G) be the minimum cardinality among all
dominating sets in G. A dominating set of cardinality γ(G) is called a γ-set of G or
γ(G)-set. For domination related concepts not defined here, consult [8].

The domination subdivision number, sd(G), of a graph G is the minimum number
of edges which must be subdivided (where each edge can be subdivided at most once)
in order to increase the domination number. Since the domination number of the
graph K2 does not increase when its only edge is subdivided, we therefore consider
only connected graphs of order at least 3. The domination subdivision number was
defined by Velammal in 1997 (see [10]) and since then it has been widely studied in
graph theory papers. This parameter was studied for trees in [1] and [2]. General
bounds and properties have been studied by, among others, [3], [4], [5], and [6].

In [9] Jafari Rad defined a graph to be γsd-critical if the domination number
increases with the subdivision of any single edge. We generalize this concept to
consider the case of the subdivision of any q edges. A graph G is γ-q-critical if
subdividing any q edges results in a graph with domination number greater than
γ(G) and there exists a set of q − 1 edges such that subdividing these edges results
in a graph with domination number γ(G). The case where q = 1 is equivalent to the
concept of γsd-critical graphs defined in [9]. Note that from the definition it follows
that sd(G) ≤ q for any γ-q-critical graph G.

In this paper we consider mainly γ-q-critical trees and give some general prop-
erties of γ-q-critical graphs; in particular, we characterize those trees T that are



M. DETTLAFF ET AL. / AUSTRALAS. J. COMBIN. 89 (3) (2024), 400–412 402

γ-(n(T ) − 1)-critical. We also characterize γ-2-critical trees T with sd(T ) = 2 and
γ-3-critical trees T with sd(T ) = 3.

2 Preliminary results

Note that the domination number of a graph cannot be decreased with the subdivi-
sion of an edge and can increase by at most one.

Proposition 2.1 [9] For any edge e in a graph G, γ(G) ≤ γ(Ge) ≤ γ(G) + 1.

We begin with some general remarks.

Observation 2.2 If there is a γ-set D in G such that V \D contains a vertex having
k neighbours in D, then G is not γ-q-critical for q ≤ k − 1.

Corollary 2.3 If G is γ-q-critical, then for any γ-set D of G and every v ∈ V \D
we have |ND(v)| ≤ q.

Since the subdivision of any k edges in the cycle Cn (the path Pn) leads to a
graph isomorphic to Cn+k (Pn+k), we obtain the following observation.

Observation 2.4 If a cycle Cn and a path Pn, n ≥ 3, is γ-q-critical, then

q = sd(Cn) = sd(Pn) =


1 if n ≡ 0 mod 3,

2 if n ≡ 2 mod 3,

3 if n ≡ 1 mod 3.

Observation 2.5 [9] If G contains a universal vertex, then G is γ-1-critical.

Observation 2.6 Let Ks,t be a complete bipartite graph with 2 ≤ s ≤ t. If s = 2,
then Ks,t is γ-(t+ 1)-critical. Otherwise Ks,t is γ-2-critical.

3 γ-q-critical graphs

We begin this section with some definitions.

The corona G �H of two graphs G and H is defined as the graph obtained by
taking n(G) copies of a graph H and for each i ≤ n adding edges between the ith
vertex of G and each vertex of the ith copy of H.

A spider St is a graph obtained from the star K1,t for t ≥ 1 by subdividing
each edge of the star. A d-wounded spider St,t−d is the graph formed by subdividing
t − d ≤ t − 1 edges of a star K1,t, t ≥ 1 (d is the number of edges that we do not
subdivide; t − 1 ≥ d ≥ 1). Note that St,0 = K1,t, the case where zero edges are
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subdivided. If t ≥ 2 and exactly t − 1 of the edges of a star are subdivided, i.e.
d = 1, then the resulting graph is called a slightly wounded spider.

An independent set is a set of vertices in a graph, no two of which are adjacent.
The maximum cardinality of an independent set of G is called the independence
number of G and denoted by α(G). An independent set of cardinality α(G) is called
an α-set of G.

In the next proposition we show that for every odd number q, there exists a
γ-q-critical tree.

Proposition 3.1 If T = St,t−k is a k-wounded spider, then T is γ-q-critical for
q = n(T )− k, where t− 1 ≥ k ≥ 2.

Proof. Note that γ(T ) = t − k + 1. Label the vertices of T as follows: label the
central vertex of K1,t with x and its leaves with {v1, . . . , vt}. Subdivide the edges
xvi with vertices ui for i = k + 1, . . . , t.

Let A = {xui, uivi | i = k+ 1, . . . , t} be a set of 2(t− k) = n(T )− k− 1 edges. If
the edges in A are subdivided, then the set D = {x, yk+1, . . . , yt} is a dominating set
of cardinality t−k+1, where yi is the subdivision vertex of the edge uivi. Therefore,
q ≥ 2(t− k) + 1 = n(T )− k.

Let A′ be a set of n(T ) − k = 2(t − k) + 1 edges. Then A′ necessarily contains
at least one of the edges xvi for i ≤ k. Since k ≥ 2, x is a strong support vertex and
therefore the subdivision of the edges in A′, producing TA′ , increases the number of
support vertices of T . Hence γ(TA′) ≥ |S(TA′)| > t − k + 1 = γ(T ). It follows that
T is γ-(n(T )− k)-critical. �

To show that this result also holds for even q, let Tk be the graph formed by
joining the internal vertex of a path P3 to the vertex of maximum degree of the
k-wounded spider St,t−k. We show that Tk is γ-(n(Tk)− k − 2)-critical if k ≥ 2.

Proposition 3.2 For any even number q, the graph Tk is γ-q-critical, where q =
n(T )− k − 2 and k ≥ 2.

Proof. Note that γ(Tk) = t − k + 2. In Tk let x be the vertex of maximum degree
and let y be its neighbour of degree 3. Then the subdivision of all edges except the
pendant edges incident to either x or y will not increase the domination number.
Therefore q ≥ 2(t− k) + 2 = n(Tk)− k − 2.

Let A′ be a set of n(Tk)−k−2 = 2(t−k)+1 edges. Then A′ necessarily contains
at least one of the pendant edges incident to x or y. The subdivision of the edges
in A′, producing (Tk)A′ , increases the number of support vertices of Tk and hence
γ((Tk)A′) ≥ |S((Tk)A′)| > t− k + 2 = γ(Tk). It follows that Tk is γ-(n(Tk)− k − 2)-
critical. �

Corollary 3.3 For each q ≥ 1 there exists a γ-q-critical tree.



M. DETTLAFF ET AL. / AUSTRALAS. J. COMBIN. 89 (3) (2024), 400–412 404

If a graph G has a strong support vertex, then sd(G) = 1 [7]. That means both
sd(St,t−k) = 1 and sd(Tk) = 1 if k ≥ 2.

Corollary 3.4 There exist γ-q-critical graphs G where the difference between q and
sd(G) is arbitrarily large.

Even if the graph is without leaves, we can obtain a similar result where q is odd.
Construct the graph Gk for k ≥ 1, as follows: take k 4-cycles Hi ' (xi, yi, zi, vi, xi)
for i = 1, . . . , k. Now indentify vertices vi with one another to obtain the vertex v.

Gk

v

zk

z2

y2z1

x1

y1

xk

x2

yk

Figure 1: The graph Gk.

Proposition 3.5 The graph Gk is γ-q-critical for q = n(Gk)− k, where k ≥ 1.

Proof. Note that γ(Gk) = k+1, any γ-set D of Gk contains v, and |D∩{xi, yi, zi}| =
1 for any i ∈ {1, . . . , k}. Also, n = n(Gk) = 3k + 1. Now let F = {vxi, vzi | i =
1, . . . , k} and consider (Gk)F . The set D′ = {v} ∪ {yi | i = 1, . . . , k} is a γ-set of
(Gk)F of cardinality k + 1 and therefore q ≥ |F |+ 1 = n− k.

On the other hand if we subdivide any set F ′ of n − k edges, then there exists
a j ≤ k such that |E(Hj) ∩ F ′| ≥ 3. This copy becomes a cycle of length at least
7 and we need at least three vertices to dominate it. Therefore γ((Gk)F ′) > γ(Gk)
and hence Gk is γ-(n− k)-critical. �

It is also possible for q to be larger than n. Let Ak be the graph obtained from
K3,k+5, for k ≥ 0, by adding a leaf to each of the vertices in the partite set V1,
where |V1| = 3. Let V1 = {v1, v2, v3}, V2 = {u1, . . . , uk+5} and label the leaves xi for
i = 1, 2, 3.

Proposition 3.6 The graph Ak is γ-q-critical for q = n(Ak) + k, where k ≥ 0.

Proof. Note that γ(Ak) = 3 and V1 is a γ-set of Ak. Also, n = n(Ak) = k + 11.
Now let F = {v1ui, v2ui | i = 1, . . . , k+ 5}. Then V1 is a γ-set of (Ak)F and therefore
q ≥ 2k + 11 = n+ k.

On the other hand consider any set F ′ of n + k edges. If there is at least one
ui incident to three edges of F ′, then γ((Ak)F ′) > γ(Ak). Otherwise, every ui is
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incident to at most two edges of F ′ and therefore at least one pendant edge, say
x1v1, belongs to F ′. If v1uj ∈ F ′ for some j ≤ k+ 5, then clearly γ((Ak)F ′) > γ(Ak).
If v1uj 6∈ F ′ for all j ≤ k+ 5, then F ′ contains at least 2k+ 8 edges of the form viuj
for j = 2, 3. It is easy to check that γ((Ak)F ′) > γ(Ak). It now follows that Ak is
γ-(n+ k)-critical. �

Proposition 3.7 Let G be a graph of order n(G) and size m(G) ≥ 1. Then H =
G�K1 is γ-(m(G) + 1 + α(G))-critical.

Proof. Of course, every minimum dominating set of H = G � K1 has cardinality
n(G). Let A be an α-set of G. Then D = V (G) \ A is a dominating set of G. Label
the vertices of G as v1, v2, . . . , vn, where v1, v2, . . . vα(G) ∈ A and label the copies of
K1 in H with ui, i ∈ {1, . . . , n}.

Let F = E(G) ∪ {viui | i = 1, . . . , α(G)} and consider HF . The set D ∪
{w1, . . . , wα(G)}, where wi is a subdivision vertex of viui, is a dominating set of
HF of cardinality n(G), showing that the subdivision of |F | = m(G) + α(G) edges
does not increase the domination number of H.

Now consider a set B of m(G) + 1 + α(G) edges of H and let B′ = B ∩ {viui |
1 ≤ i ≤ n}. Then |B′| ≥ α(G) + c with c ≥ 1 and there exist edges vjuj, vkuk ∈ B
such that vjvk ∈ E(G), where j, k can be chosen in such a way that vjvk ∈ B.

Let us consider HB and let D′ be a γ-set of HB. Then D1 = D′∩{wi, ui} 6= ∅ for
each viui ∈ B′, where wi subdivides viui and D2 = D′ ∩ {vi, ui} 6= ∅ for viui 6∈ B′.
The set D1 ∪D2 however does not dominate the subdivision vertex of the edge vjvk
and since |D1 ∪ D2| ≥ n(G), we have |D′| > n = γ(H). This proves that H is
γ-(m(G) + 1 + α(G))-critical. �

Corollary 3.8 If G is a tree, then H = G�K1 is γ-(n(G) + α(G))-critical.

Since G = K1,r �K1 has 2r+ 2 vertices, n(K1,r) = r+ 1 and α(K1,r) = r, r ≥ 1,
it follows that K1,r �K1 is γ-(n(G)− 1)-critical.

Jafari Rad characterized the case where q = 1 as follows:

Theorem 3.9 [9] A graph G is γ-1-critical if and only if every γ-set of G is a
2-packing.

We show that K1,r �K1, r ≥ 1, is the only q = (n(T )− 1)-critical tree.

Theorem 3.10 For a γ-q-critical tree T , q = n(T )− 1 if and only if T = K1,r�K1

for some r ≥ 1 (i.e. T is a slightly wounded spider).

Proof. If T is a slightly wounded spider it follows from Corollary 3.8 that T is
γ-(n(T )− 1)-critical.
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Now assume that T is γ-(n(T ) − 1)-critical and let O = V (T ) \ (Ω(T ) ∪ S(T )).
To show that T is a corona graph we show that T = T ′ �K1 for some tree T ′ (i.e.
T has only weak supports and leaves and that O = ∅).

First assume that T has a strong support vertex x with at least two neighbours
x1, x2 ∈ Ω(T ). Since x belongs to any γ-set of T and x1, x2 to no γ(T )-set, it is
easy to see that subdividing the edge xxi results in a graph with domination number
greater than γ(T ), i.e. γ(Txxi) > γ(T ). Since any set of n− 2 edges contains xx1 or
xx2, γ(TF ) > γ(T ) for any set F of n−2 edges. It follows that T is not γ-(n(T )−1)-
critical, a contradiction. Thus every support of T is a weak support.

Now assume that O 6= ∅. Since T is connected there are at least two edges
between S(T ) and O. We consider two cases:

Case 1. If |O| ≤ 2, then S(T ) is a γ-set of T and there exist two edge-disjoint
paths Pi = (zi, xi, yi) where yi ∈ O, xi ∈ S(T ) and zi ∈ Ω(T ) for i = 1, 2. Note that
it is possible that y1 = y2.

Let Fi = {zixi, xiyi} for i = 1, 2 and consider the graph TFi
. Suppose that xiyi

are subdivided by wi. Then wi is not dominated by a support vertex of TFi
and

γ(TFi
) ≥ |S(TFi

)|+ 1 = |S(T )|+ 1 > γ(T ). Since any set of n− 2 edges contains F1

or F2, γ(TF ) > γ(T ) for any set F of n− 2 edges, a contradiction.

Case 2. If |O| > 2, there exist two non-adjacent vertices y1, y2 ∈ O adjacent to
two different vertices in S(T ), say x1 and x2, respectively. Let Fi = {zixi} ∪ {yiv |
v ∈ N(yi)}, i ∈ {1, 2}. Suppose that the edges zixi and xiyi are subdivided by fi,1
and fi,2, respectively, and that the remaining edges incident to yi are subdivided by
fi,j for j = 3, . . . , dT (yi) + 1.

Now consider TFi
. Let DFi

be a γ-set of TFi
with the minimum number of subdi-

vision vertices. Since {zi, fi,1} ∩DFi
6= ∅, we consider two subcases:

Subcase 2.1. Let fi,1 ∈ DFi
. If xi ∈ DFi

, then D = (DFi
− {fi,j | j ≥ 1}) ∪ {yi}

is a dominating set of T with |D| < |DFi
|. Hence assume that xi /∈ DFi

. By the
choice of DFi

(as a dominating set containing the smallest number of subdivision
vertices), yi ∈ DFi

to dominate fi,2 and {fi,j | j ≥ 2} ∩ DFi
= ∅. Hence, D =

(DFi
− {yi, fi,1}) ∪ {xi} is a dominating set of T with |D| < |DFi

|.
Otherwise, from the choice of DFi

(it has the smallest number of subdivision
vertices) yi ∈ DFi

and {fi,j | j ≥ 2} ∩DFi
= ∅. Hence, D = (DFi

− {yi, fi,1}) ∪ {xi}
is a dominating set of T with |D| < |DFi

|.
Subcase 2.2. Let zi ∈ DFi

; then fi,1 /∈ DFi
. First assume xi ∈ DFi

; then
fi2 /∈ DFi

. To dominate yi, either yi or some fi,j, j ≥ 3, belongs to DFi
. In this

case D = (DFi
− ({zi} ∪ {fi,j | j ≥ 2})) ∪ {yi} is a dominating set of T with

|D| < |DFi
|. Hence assume xi /∈ DFi

. To dominate fi,2, either yi or fi,2 is in DFi
.

Thus D = (DFi
−{fi,2, yi, zi})∪{xi} is a dominating set of T with |D| < |DFi

|. Since
F1 ∩ F2 = ∅, any set of n− 2 edges contains F1 or F2. Therefore γ(TF ) > γ(T ) for
any set F of n− 2 edges, a contradiction.
It follows that O = ∅ and hence T = T ′ �K1 for a tree T ′ and T is γ-q-critical for
q = n(T ) − 1. By Corollary 3.8, q = n(T ′) + α(T ′). Since n(T ) = 2n(T ′) it follows
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that α(T ′) = n(T ′)− 1 = m(T ′). Thus T ′ is a star and T = K1,r �K1 for r ≥ 1.

If zi ∈ DFi
, then obviously fi,1 6∈ DFi

. Assume xi ∈ DFi
. In this case D =

(DFi
− ({zi} ∪ {fi,j | j ≥ 2}))∪ {yi} is a dominating set of T with |D| < |DFi

|. Now
let xi 6∈ DFi

. If fi,2 ∈ DFi
, then from the choice of DFi

we have ({y} ∪ {fi,j | j ≥
3}) ∩ DFi

= ∅. Thus D = (DFi
− {fi,2, zi}) ∪ {xi} is a dominating set of T with

|D| < |DFi
|. Finally, if fi,2 6∈ DFi

, then yi ∈ DFi
and {fi,j | j ≥ 3} ∩DFi

= ∅ (from
the choice of DFi

). In this case D = (DFi
− {yi, zi}) ∪ {xi} is a dominating set of T

with |D| < |DFi
|.

Since F1 ∩ F2 = ∅, any set of n− 2 edges contains F1 or F2. Therefore γ(TF ) >
γ(T ) for any set F of n− 2 edges, a contradiction.

It follows that O = ∅ and hence T = T ′ �K1 for a tree T ′ and T is γ-q-critical
for q = n(T )−1. By Corollary 3.8, q = n(T ′)+α(T ′). Since n(T ) = 2n(T ′) it follows
that α(T ′) = n(T ′)− 1 = m(T ′). Thus T ′ is a star and T = K1,r �K1 for r ≥ 1. �

4 γ-q-critical trees with sd(T ) = q

As shown in [10], the subdivision number of any tree lies between 1 and 3. Combining
the characterization of γ-1-critical graphs in [9] and the characterization of trees
with sd(T ) = 1 in [2] shows which trees with sd(T ) = 1 are also γ-1-critical. We
now characterize γ-2-critical trees T with sd(T ) = 2 and γ-3-critical trees T with
sd(T ) = 3.

4.1 γ-2-critical trees

Theorem 4.1 A tree T is γ-2-critical if and only if

1. every γ-set D of T contains at most one pair of vertices x, y such that 1 ≤
dT (x, y) ≤ 2, and if such a pair x, y exists, then each of x and y has at least
two neighbours not in D, and

2. T has a γ-set containing exactly one such a pair of vertices x, y.

Proof. Suppose that there is no γ-set D in T with exactly one pair of vertices
x, y ∈ D such that dT (x, y) ∈ {1, 2}. Then every γ-set in T is a 2-packing or
contains more than one pair of vertices at distance at most 2. In the first case it
follows from Theorem 3.9 that T is γ-1-critical.

So suppose that T has a γ-set D with at least two pairs of vertices {x1, y1}
and {x2, y2} such that dT (xi, yi) ≤ 2, for i ∈ {1, 2}; note that it is possible that
{x1, y1} ∩ {x2, y2} 6= ∅. On the xi − yi geodesic, let vi be the vertex adjacent to xi
(note that it is possible that vi = yi). If the edge xivi is subdivided with wi, then
xi dominates wi and yi dominates vi. Hence there exist two edges whose subdivision
does not increase the domination number of T and hence T is not γ-2-critical.

Thus there exists a γ(T )-set D with exactly one pair of vertices x, y ∈ D such
that dT (x, y) ∈ {1, 2}. We may assume that D ∩ Ω(T ) = ∅, otherwise we may
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exchange a leaf with its support vertex. If this exchange results in a dominating set
having two pairs of vertices x, y ∈ D such that dT (x, y) ∈ {1, 2}, then we obtain
the case considered in the paragraph above. Hence assume this is not the case and
suppose at least one of x or y, say x, has at most one neighbour not in D. Since D
is a γ-set of T, x and y has at least one neighbour in V (T ) \D. Hence, x has exactly
one neighbour x′ ∈ V (T ) \D. Since x is not a leaf, xy ∈ E(T ). Subdivide the edges
xx′ and xy with w1 and w2, respectively, to form T ′. Then (D − {x}) ∪ {w1} is a
dominating set of T ′ and therefore T is not γ-2-critical.

Conversely, assume that every γ-set of T has the desired property and to the
contrary suppose that T is not γ-2-critical. Hence there exists a set of two edges
F = {e1 = x1y1, e2 = x2y2} such that γ(TF ) = γ(T ). Let w1 and w2 be the
subdivision vertices of e1 and e2, respectively.

Let D′ be a γ-set of TF with the smallest number of subdivision vertices and
consider the following cases.

Case 1. Edges e1 and e2 are adjacent. Without loss of generality assume that
x = x1 = x2. If x ∈ D′, then there is a vertex zi ∈ N [yi] ∩ D′ for i = 1, 2. From
the choice of D′, it follows that w1, w2 6∈ D′. Therefore, D′ is a γ-set of T such that
dT (x, zi) ≤ 2 for i = 1, 2, a contradiction.

Now consider the case where x 6∈ D′. If w1, w2 6∈ D′, then y1, y2 ∈ D′ and there
exists a vertex x′ ∈ N(x) \ {w1, w2} such that x′ ∈ D′. Therefore, D′ is a γ-set of
T such that dT (x′, yi) ≤ 2 for i = 1, 2, a contradiction. Thus wi ∈ D′ for at least
one i and by the choice of D′ exactly one, say w1, belongs to D′. It is clear that
y2 ∈ D′. If degTF (x) > 2, then there exists x′ ∈ N(x) \ {w1, w2}. Since x 6∈ D′, there
exists x′′ ∈ N [x′] ∩ D′. But then D = (D′ \ {w1}) ∪ {x} is a γ-set of T such that
dT (x′′, x) ≤ 2 and dT (x, y2) = 1, a contradiction. On the other hand, if degTF (x) = 2,
then D = (D′ \ {w1}) ∪ {x} is a γ-set of T such that d(x, y2) = 1, but y1 is the only
neighbour of x outside of D, a contradiction.

Case 2. Edges e1 and e2 are not adjacent. We show that there exists a γ-set D
of T such that for each edge ei there exists a pair ui, vi ∈ D such that dT (ui, vi) ≤ 2.
If w1, w2 6∈ D′, then at least one of x1, y1, say x1, belongs to D′ and at least one of
x2, y2, say x2, belongs to D′. Then there exists zi ∈ N [yi] \ {wi} such that zi ∈ D′
for i = 1, 2. Therefore, D′ is a γ-set of T such that dT (xi, zi) ≤ 2 for i = 1, 2, a
contradiction. Thus wi ∈ D′ for at least one i.

Subcase 2.1. dT ({x1, y1}, {x2, y2}) = 1, say dT (x1, x2) = 1.

• Suppose w1, w2 ∈ D′. Then by the choice of D′, x1, x2, y1, y2 6∈ D′. Thus
D = (D′ \ {w1, w2}) ∪ {x1, x2} is a γ-set of T .
If degT (x1) > 2, then there exists a vertex x′′ ∈ D′ such that dT (x1, x

′′) ≤ 2.
Since dT (x1, x2) = 1, D is a γ-set of T containing two pairs of vertices at
distance at most 2, a contradiction.

On the other hand, if degT (x1) = 2, then dT (x1, x2) = 1 and y1 is the only
neighbour of x1 outside of D, also a contradiction.

• Assume now only one of w1 or w2 belongs to D′, say w1. Thus by the choice of
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D′, x1, y1 6∈ D′. Also, x2 6∈ D′, otherwise D′ \ {w1})∪ {y1} would be a γ-set of
TF contradicting our choice of D′. Since D′ is dominating, y2 ∈ D′ and there
exists x′ ∈ N(x2) \ {x1, w2} such that x′ ∈ D′. Then D = (D′ \ {w1}) ∪ {x1}
is a γ-set of T and dT (x1, x

′) = dT (x′, y2) = 2, a contradiction.

Subcase 2.2. dT ({x1, y1}, {x2, y2}) > 1. At least one of w1, w2, say w1, belongs to
D′. Then x1, y1 6∈ D′ and since T is connected at least one of x1 or y1, say x1, has
degree greater than 1. Therefore there exists a vertex x′′ such that dT (x1, x

′′) = 2
and x′′ ∈ D′.

• If w2 ∈ D′, there similarly exists y′′ ∈ D′ such that dT (x2, y
′′) = 2.

• If w2 6∈ D′, then without loss of generality x2 ∈ D′ and there exists a vertex
z ∈ N [y2] \ {w2} such that z ∈ D′.

In both cases D = (D′ \ {wi}) ∪ {xi} is a γ-set of T containing two pairs of vertices
at distance at most 2, a contradiction.

Hence T is γ-2-critical. �

From Observation 2.4 we know that the paths P3k+2, for k ≥ 1, are γ-2-critical.
Double stars of order more than 4, that is, trees obtained by joining the central
vertices of two disjoint stars, are also γ-2-critical.

Let N (G) consists of those vertices which are not contained in any γ(G)-set. Be-
necke and Mynhardt [2] characterized all trees with domination subdivision number
equal to 1 as follows:

Theorem 4.2 [2] For a tree T of order n ≥ 3, sd(T ) = 1 if and only if T has

i) a leaf u ∈ N (T ) or

ii) an edge xy with x, y ∈ N (T ).

Note that if a tree T has a strong support vertex, the leaves adjacent to the strong
support vertex belong to N (T ) and therefore sd(T ) = 1.
We use Theorem 4.2 to characterize γ-2-critical trees T with subdivision number
equal to 2.

Theorem 4.3 The only γ-2-critical trees T with sd(T ) = 2 are the paths T = P3k+2

for k ≥ 1.

Proof. Let T be a γ-2-critical tree such that sd(T ) = 2. Then T 6= P4. By
Theorem 4.2, T has no strong support vertices. Let D be a γ(T )-set and L =
Ω(T ) ∩ D. Then D′ = (D \ L) ∪ N(L) is also a γ-set of T . If |L| > 1, then D′

would contain more than one pair of vertices at distance at most 2, contradicting
Theorem 4.1. Thus, |L| ≤ 1 for any γ(T )-set D.
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Claim 4.3.1 If T has a γ-set D such that |L| = 1, then D is a 2-packing.

Proof of claim: Let D be a γ(T )-set such that |L| = 1 and assume D is not a 2-
packing. Then either we could find more than one pair of vertices at distance at
most 2 in D′ or x ∈ L would be at distance at most 2 from another vertex in D and
x would have only one neighbour in V (T )−D, contradicting the assumption that T
is γ-2-critical.

It is easy to observe that in this case if D contains one leaf x of T, then any γ-set
of T −N [x] is 2-packing, so D is the unique γ-set of T such that L = {x} and D is
2-packing. �

To show that T is a path, assume to the contrary that there exists a vertex v such
that degT (v) ≥ 3. Root T at v and label the subtree rooted at vi, where vi ∈ N(v),
with Ti for 1 ≤ i ≤ degT (v).
Since T is γ-2-critical, v is not a strong support vertex and at most one of these
subtrees is the trivial graph. Assume Tj is trivial for some 1 ≤ j ≤ degT (v) and
let V (Tj) = {u}. Since sd(T ) = 2 it follows from Theorem 4.2 that there exists a
γ(T )-set Dj such that u ∈ Dj. Since Dj is dominating, Dj ∩ N [vi] 6= ∅ for each
i 6= j. But then D′j = (Dj −{u})∪ {v} is a γ(T )-set with at least two vertices in D′j
at distance at most 2 from v, contradicting that T is γ-2-critical. Therefore v is not
a support vertex.
Now, for each 1 ≤ i ≤ degT (v), let ui ∈ Ω(T ) ∩ V (Ti) and let si ∈ N(ui). Since
sd(T ) = 2 it follows from Theorem 4.2 that there exists a γ(T )-set Di such that
ui ∈ Di.

Obviously, D′i = (Di − {ui}) ∪ {si} is a γ(T )-set and it follows from the proof of
Claim 4.3.1 that D′i−{si} is a unique 2-packing with S(T )−{si} ⊆ D′i. This implies
that Di ∩ V (Tj) = D′i ∩ V (Tj) = D′k ∩ V (Tj) = Dk ∩ V (Tj) for every i 6= j 6= k ∈
{1, . . . , degT (v)} (for example D′1∩V (T2) = D′3∩V (T2) and D′1∩V (T3) = D′2∩V (T3)
and D′2∩V (T1) = D′3∩V (T1)). It follows that either v ∈ Di for each 1 ≤ i ≤ degT (v)
or v 6∈ Di for each 1 ≤ i ≤ degT (v).

If v ∈ Di for each 1 ≤ i ≤ degT (v), then D∗ = (D1 − V (T2)) ∪ (V (T2) ∩ D2)
is a γ(T )-set with more than one leaf, a contradiction. Otherwise, v 6∈ Di and
v is dominated by vj for some 1 ≤ j ≤ degT (v). Since D′i already has a pair of
vertices at distance at most two, it follows that {vi | i 6= j} ∩ D = ∅. Then
D∗ = (Dj − V (T`)) ∪ (V (T`) ∩ D`), where ` 6= j, is a γ(T )-set with more than one
leaf, a contradiction.

It follows that T is a path and from Observation 2.4, T = P3k+2 for k ≥ 1. �

4.2 γ-3-critical trees

The following constructive characterization of the family F of labeled trees T with
sd(T ) = 3 was given by Aram, Sheikholeslami and Favaron [1].

Let F be the family of labelled trees such that F
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• contains P4 where the two leaves have status A and the two support vertices
have status B; and

• is closed under the two operations T1 and T2, which extend the tree T by
attaching a path to a vertex v ∈ V (T ).

Operation T1. Assume sta(v) = A. Then add a path (x, y, z) and the edge vx. Let
sta(x) = sta(y) = B and sta(z) = A.

Operation T2. Assume sta(v) = B. Then add a path (x, y) and the edge vx. Let
sta(x) = B and sta(y) = A.

If T ∈ F , we let A(T ) and B(T ) be the set of vertices of status A and B,
respectively, in T . It was shown in [1] that A(T ) is a γ(T )-set and contains all leaves
of T .

Theorem 4.4 [1] For a tree T of order n ≥ 3,

sd(T ) = 3 if and only if T ∈ F .

We use this result to show that that paths of order 3k + 1, for k ≥ 1, are the only
γ-3-critical trees with sd(T ) = 3.

Theorem 4.5 The only γ-3-critical trees T with sd(T ) = 3 are the paths T = P3k+1

for k ≥ 1.

Proof. Let T be a tree with sd(T ) = 3. By Theorem 4.4, T ∈ F and there exists
a γ(T )-set D containing all the leaves. Let Ω(T ) = {v1, . . . , v`} and let ui be the
neighbour of vi. Now, let F = {uivi | i = 1, . . . , `} and consider the graph TF where
the subdivision vertices are denoted by wi, respectively. Then (D \Ω(T ))∪{wi | i =
1, . . . , `} is a γ-set of TF . It therefore follows that if T is γ-q-critical, then q > |Ω(T )|.
Hence if T is γ-3-critical, |Ω(T )| = 2 and T is a path. By Observation 2.4 T = P3k+1

for k ≥ 1. �

5 Open problems

We conclude by mentioning a number of open problems.

Problem 1 Determine which trees T with sd(T ) = 1 are γ-2-critical or γ-3-critical.

Problem 2 Characterise γ-q-critical trees T for 2 ≤ q ≤ n(T )− 2.

Problem 3 Characterise graphs G with sd(G) = q which are also γ-q-critical.

In Theorem 3.10, γ-q-critical trees T for q = n(T )− 1 were characterised and it
was shown that q is odd. Hence, if n(T )−1 is even, there are no γ−(n(T )−1)-critical
trees.

Problem 4 For which values of k do there exist γ− (n(T )− k)-critical trees, and if
they exist, do they exist for all values of n(T )?
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