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Abstract

We consider a variation of Cops and Robber where vertices visited by a
robber are considered damaged and a single cop aims to minimize the
number of distinct vertices damaged by a robber. Motivated by the in-
teresting relationships that often emerge between input graphs and their
Cartesian product, we study the damage number of the Cartesian product
of graphs. We provide a general upper bound and consider the damage
number of the product of two trees or cycles. We also consider graphs
with small damage number.

1 Introduction

Cops and Robber is a pursuit-evasion game played on a graph with two players: a
set of cops and a single robber. Initially, each cop chooses a vertex to occupy and
then the robber chooses a vertex to occupy. The game is played over a sequence of
discrete time-steps, or rounds, and in each round, the cops move and then the robber
moves, with the initial choice of positions considered to be round zero. For the cops’
move, each of the cops either moves to an adjacent vertex or remains at the vertex
currently occupied (referred to as a pass). The robber’s move is defined similarly.
The cops win, if after some finite number of rounds, a cop occupies the same vertex
as the robber: the cops have captured the robber. If the robber can avoid capture
indefinitely, the robber wins.

Until recently, Cops and Robber has mostly been studied in the context of de-
termining the minimum number of cops required to capture the robber (see [1]). A
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characterization of graphs for which one cop can capture the robber has long been
known and many advances have been made towards a full characterization of graphs
for which k > 1 cops are required to capture the robber. For graphs in which one
cop can capture the robber, recent questions have included: “how long until capture
occurs?” and “how many distinct vertices can the robber visit?”. The former relates
to the capture time of a graph and the latter to the damage number of a graph. In this
paper, we focus on the damage number of a graph. This can be cast as a variation of
the classic game of Cops and Robber, where the robber damages each distinct vertex
that they visit. The goal of the robber is no longer to avoid capture, but to damage
as many distinct vertices as possible (capture may or may not occur). Naturally, the
cop player aims to minimize the damage to the graph. The robber damages a vertex
by passing or moving to a neighbouring vertex. The damage number of a graph
G, denoted dmg(G), was introduced by Cox and Sanaei [5] in 2019; the motivation
being scenarios where either the damage done by an intruder is costly or where there
are insufficient cops to capture the robber. In these situations, minimizing damage
becomes the cops’ priority since capture may be slow or not possible. More recent
results on the damage number appear in [2, 3, 6].

Interesting relationships are often found between input graphs and their Carte-
sian product, and this motivates most of our work. In Section 2, we consider the
damage number of the Cartesian product of graphs. We provide an upper bound on
dmg(G�H) for the case where at least one of G,H have universal vertices before
providing an upper bound for when G,H are arbitrary input graphs. In Sections 2.2
and 2.3, we determine the damage number exactly for the product of two finite
trees and the product of two finite cycles, respectively. In Section 3, we completely
characterize graphs with damage number 1 and 2.

The remainder of this section is devoted to introducing concepts and definitions
that will be used throughout the paper. We assume all graphs are finite, non-empty,
undirected, and connected. A vertex v is damaged by the robber if the robber
occupies v in round i ≥ 0 and either passes or moves to a neighbouring vertex in
the next round. We note that in some Cops and Robber literature, including [5],
graphs are assumed to be reflexive (i.e. every vertex contains a loop) and in such
graphs, a pass equates to traversing the loop. In other Cops and Robber literature,
any subset of the cops and the robber are permitted to pass in any round and that
is our assumption in this paper. The damage number of a graph is the minimum
number of distinct vertices that can be damaged by the robber. To minimize the
damage, a cop must immediately move to capture a robber on a complete graph;
thus, there are some graphs for which capture is necessary to minimize damage. In
other graphs, such as trees, whether capture occurs is unimportant: it is easy to see
that the damage is minimized when the cop initially occupies a center and then moves
along the shortest path towards the robber. However, once the robber occupies a leaf
and the cop occupies the neighbouring stem vertex, the damage remains unchanged
regardless of whether the cop moves to capture the robber or passes indefinitely. In
contrast, for some graphs, capture is impossible. In both C4 and C5, an optimal
strategy for the cop is simply to pass at every round. For C4, this strategy forces the
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robber to pass at every round (or be captured immediately). For C5, the robber will
be able to damage two vertices regardless of the cops’ strategy; the cop can guard
the remaining three vertices by passing unless the robber moves adjacent to the cop.
As a more interesting example, consider the cycle C6, labeled according to Figure 1.
Suppose the cop, C, initially occupies v1 and the robber, R, occupies v5 and consider
the following cop-strategy: the cop initially passes; if the robber moves to v4, the
cop moves to v2 (preventing the robber from moving to v3); and if the robber moves
to v5, the cop moves to v1 (preventing the robber from moving to v6). Using this
cop-strategy, which we call the oscillation strategy, the damage is restricted to two
vertices on C6.

Figure 1: An example of initial positions on C6.

In the game of Cops and Robber, a graph is referred to as a copwin graph if
one cop suffices to capture the robber. For a copwin graph, the length of the game
is t if the robber is captured in the t-th round and a cop-strategy is optimal if its
length is the minimum over all possible cop-strategies, assuming the robber is trying
to avoid capture as long as possible. The invariant is denoted capt(G) and is called
the capture time of G. Observe that dmg(G) ≤ capt(G)− 1 [5]. Note that the upper
bound is meaningless for any graph G that is not copwin.

Recall that for some graphs, capture does not occur when the cop aims to min-
imize the damage. In the case where the robber is eventually restricted to a single
vertex, the cop must, at that point, be adjacent to all neighbours of the robber.
Graph theoretically, this is described in the next definition as the robber being forced
to occupy an o-dominated vertex.

Definition 1.1 ([4]). A vertex u of a graph G is o-dominated if there exists a vertex
v ∈ V (G) such that N(u) ⊆ N(v). A vertex u of a graph G is c-dominated if there
exists a vertex v ∈ V (G) such that N [u] ⊆ N [v].

A simple example is C4: the vertex occupied by the robber is o-dominated by the
vertex occupied by the cop. Note that c-dominated is synonymous with the term
corner, which is often used in Cops and Robber literature. For ease of reading we use
the term c-dominated because the distinction between c-dominated and o-dominated
vertices will come up often.

If a graph G contains no c-dominated vertices, then whenever the cop moves to a
vertex adjacent to the robber, there is a (possibly already damaged) vertex to which
the robber can move, that is not adjacent to the cop. Consequently, the robber can
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avoid capture, yet damage dmg(G) vertices. We formally state this result as it will
be used later.

Observation 1.2. Let G be a graph with no c-dominated vertices. There exists a
strategy for the robber to damage dmg(G) vertices and avoid capture.

To conclude this section, we state a useful lower bound. If a graph G has radius 1,
then the robber is immediately captured, no vertices are damaged, and the result
holds. For a graph with radius at least 2, suppose the cop initially occupies some
vertex x. Let z be a vertex distance rad(G) from x and let P be the shortest xz-path.
If the robber initially occupies a vertex y on P that is distance two from x, then the
robber can damage at least rad(G)− 1 vertices by moving along P towards z.

Theorem 1.3 ([2]). For any graph G, dmg(G) ≥ rad(G)− 1.

2 The damage number of products

Products are powerful tools in graph theory. Interesting relationships often emerge
between the value of a graph parameter of the input graphs versus their product and
for this reason, we consider the damage number of the Cartesian product of graphs.
The Cartesian product of graphs G and H, written G�H, is the graph with vertex
set V (G) × V (H) specified by putting (u, v) adjacent to (u′, v′) if and only if (1)
u = u′ and v is adjacent to v′ in H or (2) v = v′ and u is adjacent to u′ in G.

We begin with a simple observation that implies G�H is not copwin, regardless
of the properties of G and H, and then conclude that there is always a strategy for
the robber to damage dmg(G�H) many vertices on G�H and avoid capture.

Proposition 2.1. If G and H are graphs, then G�H contains no c-dominated ver-
tices.

Proof. For a contradiction, suppose (x, y) is a c-dominated vertex in G�H. Then
there exists some vertex (u, v) ∈ V (G�H) such that N [(x, y)] ⊆ N [(u, v)]. Without
loss of generality, suppose u is adjacent to x in G and y = v in H. Since H has no
isolated vertices, there exists z ∈ V (H)\{y} that is adjacent to y. Then vertex (x, z)
exists and is adjacent to (x, y) in G�H. But (u, y) is not adjacent to (x, z) in G�H
because y 6= z and u 6= x. Consequently, (x, z) ∈ N [(x, y)] but (x, z) 6∈ N [(u, v)] and
we have a contradiction.

Observe that Proposition 2.1 coupled with Observation 1.2 implies there exists
a strategy for the robber to damage dmg(G�H) vertices and avoid capture. We
assume throughout this section that the robber will be using such a strategy on
G�H.
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2.1 Products of general graphs

It is convenient to use cop strategies for games on G and H to create a cop strategy on
G�H. The difficulty is that any move by the cop on G�H corresponds to a cop move
on either G or H. If the cop’s first move is to change their first coordinate on G�H,
we observe this corresponds to the cop moving in the game played on G. Suppose the
robber’s first move is to change their second coordinate on G�H; this corresponds
to the robber moving in the game played on H. However, in terms of the subgame
on H, it corresponds to the situation on H where the cop has initially passed and
the robber moves first. As an example, from [5], we know dmg(Cm) = bm−1

2
c and

therefore dmg(C6) = 2. However, if the robber were allowed to move first, the robber
could initially occupy a vertex adjacent to the cop and damage dmg(C6) + 1 = 3
vertices. In contrast, if the robber were allowed to move first on C5, they would still
only be able to damage dmg(C5) = 2 vertices. We will explore cycles in depth in
Section 2.3, but this motivates the following question.

Question 2.2. For which graphs H can the cop pass during the first round and still
prevent the robber from damaging more than dmg(H) vertices?

Let dmg′(H) denote the minimum number of vertices damaged on graph H, when
the cop passes during the first round. We can easily see that

dmg′(H) ∈
{

dmg(H), dmg(H) + 1
}
.

Let H be a graph and x be a vertex such that if the cop initially occupies x, then
the cop can prevent the robber from damaging more than dmg(H) vertices. Suppose
the robber initially occupies some vertex y ∈ V (H) where y 6= x. The cop initially
passes and the robber damages y and moves to z (it is possible that y = z). From
the positions of x and z, the cop will move next and play proceeds as normal, leaving
the robber unable to damage more than dmg(H) vertices in addition to y. Thus,
dmg′(H) ≤ dmg(H) + 1. Certainly dmg′(H) ≥ dmg(H) because the robber could
adopt the same strategy and also initially pass on their first turn, then they damage
at least dmg(H) vertices.

Lemma 2.3. Let G and H be graphs. In G�H, suppose that during some round,
the cop and robber occupy vertices with the same first coordinate and it is the robber’s
turn to move. The robber can damage at most an additional dmg′(H)|V (G)| vertices
of G�H.

Proof. In G�H, suppose the cop and robber initially occupy vertices with the same
first coordinate and it is the robber’s turn to move. Let |V (G)| = m and observe
that graph G�H has m vertex-disjoint subgraphs, denoted H1, H2, . . . , Hm such that
Hi
∼= H and ∪mi=1V (Hi) = V (G�H). Then every vertex in Hi has the same first

coordinate and so the cop and robber initially both occupy vertices in Hi for some
i ∈ {1, . . . ,m}. We refer to H1, H2, . . . , Hm as copies of H.

The cop’s strategy is as follows: whenever the robber changes their first coor-
dinate, the cop changes their first coordinate to match. This will ensure that after
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the cop moves at each round, the cop and robber will occupy the same copy of H.
Whenever the robber changes their second coordinate, the cop changes their second
coordinate, following a cop strategy that minimizes the damage on H.

At worst, every time the robber changes their second coordinate (i.e. moves within
a copy of H), the robber could then change their first coordinate m times (and
damage |V (G)| many vertices) before changing the second coordinate again. This
results in at most (dmg′(H)) · (m) vertices damaged. We note that since the cop’s
strategy is to always change the same coordinate the robber previously changed, the
robber will be the first to change their second coordinate (i.e. move within a copy of
H) and thus, can damage dmg′(H), rather than dmg(H) many vertices in each copy
of H.

Naturally, it follows from Lemma 2.3 that if the cop and robber occupy vertices
with the same second coordinate and it’s the robber’s turn to move, then the robber
can damage at most dmg′(G)|V (H)| additional vertices of G�H. However, for both
this and later results in this subsection, we do not formally state the symmetric
result.

Theorem 2.4. Let G and H be graphs. If both G and H have universal vertices,
then

dmg(G�H) ≤ min{|V (G)|, |V (H)|}.

Proof. Suppose G and H have universal vertices u and v, respectively. The cop
initially occupies (u, v) in G�H. If the cop initially changes their first coordinate to
match that of the robber, then by Lemma 2.3, the robber can damage dmg′(H)|V (G)|
vertices. Note that dmg′(H) = 1 since H has a universal vertex. Thus, the robber
can damage at most |V (G)| vertices. By a similar argument, if the cop initially
changes their second coordinate to match that of the robber, the robber can then
damage at most |V (H)| vertices.

Theorem 2.5. Let Km and Kn be complete graphs on m and n vertices, respectively.
If n ≥ m ≥ 3 then dmg(Km�Kn) = m.

Proof. The upper bound follows from Theorem 2.4. For a lower bound, we suppose
that dmg(Km�Kn) = k, where k < m and obtain a contradiction. By Observa-
tion 1.2, we can assume the robber uses a strategy to damage k vertices and avoid
capture. By some round t, the robber has damaged k vertices and the robber cannot
move to an undamaged vertex without being captured. Suppose that during round
t, the cop occupies (x, y), the robber occupies (u, v) and it is the robber’s turn to
move. When the robber moves, (u, v) is damaged, so to obtain a contradiction, we
need only observe that (u, v) has at least k neighbours that are not also adjacent to
(x, y).

If x = u, observe∣∣∣N [(u, v)]\N [(u, y)]
∣∣∣ =

∣∣∣{(z, v) : z ∈ V (Km)}
∣∣∣ = m− 1 ≥ k.
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If x 6= u and y 6= v, observe∣∣∣N [(u, v)]\N [(x, y)]
∣∣∣ =

∣∣∣{(u, z) : z ∈ V (Kn)\{y}
}
∪
{

(z, v) : z ∈ V (Km)\{x}
}∣∣∣

= m + n− 3 ≥ k.

Thus, the robber can move to an undamaged vertex that is not adjacent to the cop
and, regardless of the cop’s next move, the robber will damage a (k+1)th vertex.

From Theorem 2.5, we see that the bound provided in Theorem 2.4 is exact
for some graphs. We note, however, that this is not always the case. If u, v
are universal vertices in K1,m, K1,n respectively, a cop can occupy vertex (u, v) in
K1,m�K1,n which o-dominates every vertex to which it is not adjacent. Consequently,
dmg(K1,m�K1,n) = 1. We next consider arbitrary graphs G and H.

Theorem 2.6. For any graphs G and H,

dmg(G�H) ≤ max
{

dmg(G)|V (H)|, dmg′(H)|V (G)|
}
.

Proof. Let G be a graph on m vertices, labeled u0, . . . , um−1. Without loss of gener-
ality, suppose that by occupying u0 and moving first, as usual, the cop can prevent
more than dmg(G) vertices from being damaged. Let H be a graph on n vertices, la-
beled v0, . . . , vn−1. Suppose that by occupying v0 and passing during the first round,
the cop can prevent more than dmg′(H) vertices from being damaged. In G�H, the
cop will initially occupy (u0, v0).

On G�H, the cop’s strategy will often be to mirror optimal cop moves of a game
played on G or H.

In G�H, suppose up and ux are the first coordinates of the cop and robber’s
positions, respectively during some round. On G, suppose the cop and robber occupy
up and ux (respectively) and an optimal strategy for the cop in G is to next move
to uα. In G�H, if the cop then changes first coordinate to uα, then we say the cop
changes their first coordinate according to an optimal cop-strategy for G.

Suppose the cop occupies (u0, v0), the robber occupies (ux, vy), and it is the cop’s
turn to move. During the first round (i.e. when t = 1), the cop changes the first
coordinate in G�H according to an optimal cop-strategy for G. If this results in the
cop matching the first coordinate of the robber, then by Lemma 2.3, the robber can
damage at most dmg′(H)|V (G)| vertices on G�H. Otherwise, for t > 1,

(1) If the cop can move during round t to match first or second coordinate to that
of the robber, then the cop will do so.

(2) Otherwise,

(a) if the robber changed their first coordinate during round t− 1, then during
round t, the cop changes their first coordinate according to an optimal
cop-strategy on G.
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(b) if the robber changed their second coordinate during round t − 1, then
during round t, the cop changes their second coordinate according to an
optimal cop-strategy on H.

(c) if the robber passed during round t− 1, the cop will pass during round t.

Let D(G) be a set of dmg(G) vertices that can be damaged by the robber on
graph G if the cop and robber initially occupy u0 and ux, respectively. Let D′(H)
be a set of dmg′(H) vertices that can be damaged by the robber on graph H if the
cop and robber initially occupy v0 and vy, respectively; and the cop initially passes.

Let
SG =

{
(ui, vj) : ui ∈ D(G), j ∈ {0, 1, . . . , n− 1}

}
and

S ′H =
{

(ui, vj) : i ∈ {0, 1, . . . ,m− 1}, vj ∈ D′(H)
}

and observe that (ux, vy) ∈ SG∩S ′H . Note that the strategy of (2) restrict the robber
to vertices in SG∪S ′H . If the robber only ever occupies vertices of SG∩S ′H , then the
result holds because∣∣SG ∩ S ′H

∣∣ ≤ max
{
|SG|, |S ′H |

}
≤ max

{
dmg(G)|V (H)|, dmg′(H)|V (G)|

}
.

Suppose that during some round, the robber moves to a vertex of SG\S ′H ; observe
that to do this, the robber changes their second coordinate. The cop is then able to
move to match the second coordinate of the robber. Observe that by (1) and (2), the
robber will be captured if the robber moves to a vertex outside SG. Thus, the robber
can damage at most |SG| = dmg(G)|V (H)| vertices and the result holds. Similarly,
if the robber instead moves from a vertex in SG ∩S ′H to a vertex in S ′H\SG, then the
cop will move to match the first coordinate of the robber. Then again, the robber will
be captured if the robber moves to a vertex outside S ′H . Consequently, the robber
can damage at most |S ′H | = dmg′(H)|V (G)| vertices and the result holds.

An illustration of sets SG and S ′H is given in Figure 2 for C10�C13. Finally, we
restate Theorem 2.6 in terms of the damage numbers of G and H.

Corollary 2.7. For any graphs G and H,

dmg(G�H) ≤ max
{

dmg(G)|V (H)|,
(
dmg(H) + 1

)
|V (G)|

}
.

2.2 Products of trees

We begin by determining the damage number of a tree and then introduce some
notation and terminology used to prove dmg(T�T ′) = rad(T�T ′)− 1 for any finite
trees T and T ′.

Corollary 2.8. For any tree T , dmg(T ) = rad(T )− 1.
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Figure 2: An example of the set D(C10) when p = 0 and x = 4 (rectangular region
in left graph); D′(C13) when q = 0 and y = 7 (grey region in top graph); and the
corresponding sets SC10 (rectangular region in C10�C13) and S ′C13

(grey region in
C10�C13).

Proof. The lower bound follows from Theorem 1.3. For the upper bound, it suffices
to show that capt(T ) ≤ rad(T ) as Cox and Sanaei [5] pointed out that dmg(G) ≤
capt(G) − 1 for any copwin graph G. Suppose the cop initially occupies a center
c of tree T . If the robber initially occupies vertex u, the robber will be distance
at most rad(T ) away from the cop. The cop can then take the shortest path from
c to u to capture the robber, which will take rad(T ) or fewer rounds. Therefore
capt(T ) ≤ rad(T ).

Definition 2.9. Label the vertices of trees T and T ′ as V (T ) = {u0, u1, . . . , u|V (T )|−1}
and V (T ′) = {v0, v1, . . . , v|V (T ′)|−1}. If the cop occupies (up, vq) and the robber
occupies (ui, vj) then

(1) the cop-robber distance in the first and second coordinates is distT (up, ui) and
distT ′(vq, vj), respectively;

(2) the cop-robber distance is smaller in the first coordinate if distT (up, ui) <
distT ′(vq, vj);

(3) the cop-robber distance is smaller in the second coordinate if distT (up, ui) >
distT ′(vq, vj);

(4) the equidistant set of (up, vq) ∈ V (T�T ′) is the set of vertices{
(uk, v`) : distT (up, uk) = distT ′(vq, v`)

}
.
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If the cop occupies (up, vq) and the robber occupies a vertex in the equidistant set of
(up, vq), then the cop and robber are equidistant in T�T ′.

The capture time in T and T ′ respectively will be a helpful tool to prove a result
in T�T ′. Hence, we call these relative capture times for the input graphs of the
product. Formally, we have the following.

Definition 2.10. We denote by captT (up;ui), the relative capture time on T when
the cop initially occupies up and the robber initially occupies ui.

Theorem 2.11. For any finite trees T and T ′, dmg(T�T ′) = rad(T�T ′)− 1.

Proof. The lower bound follows from Theorem 1.3. Suppose the cop initially occupies
(u0, v0) where u0 and v0 are center vertices for T and T ′, respectively. We present a
strategy for the cop in which at most rad(T�T ′)− 1 vertices can be damaged.

Cop-strategy: Suppose the cop occupies (ua, vb), the robber occupies (ui, vj), and it
is the cop’s turn to move.

(1) If the cop and robber are equidistant, then the cop passes.

(2) Otherwise,

(i) if distT (ua, ui) > distT ′(vb, vj), the cop changes their first coordinate in accor-
dance with an optimal cop-strategy on T ;

(ii) if distT (ua, ui) < distT ′(vb, vj), the cop changes their second coordinate in
accordance with an optimal cop-strategy on T ′.

If the cop follows the above cop-strategy, at some round the cop and robber will
be equidistant since T and T ′ are finite. When the cop and robber are equidistant
for the first time, Phase 1 is complete. We next bound the number of rounds before
Phase 1 finishes, which bounds the number of vertices that have been damaged when
Phase 1 finishes.

Recall the cop is initially located at (u0, v0) and suppose the robber is initially
located at (ui, vj). If the cop and robber are initially equidistant, then Phase 1 is
complete before the cop moves (and no vertices are damaged in Phase 1). Otherwise,
without loss of generality, suppose distT (u0, ui) > distT ′(v0, vj); so the cop-robber
distance is smaller in the second coordinate. Note that after each move of the cop
(following (2)(i)) and after each move of the robber, either the cop and robber are
equidistant or the cop-robber distance remains smaller in the second coordinate.
Consequently, such a cop only ever changes first coordinate in Phase 1. Suppose the
cop and robber become equidistant during round t when the cop occupies (ua, v0) and
the robber occupies (uk, v`). Then t = distT (u0, ua) and distT (ua, uk) = distT ′(v0, v`).

Phase 2 begins immediately after the cop and robber become equidistant. Given
(1) of the cop-strategy, we can assume it is the robber’s turn to move. If the robber
passes, then the cop will continue to pass until the robber moves; thus, we need only
consider active moves by the robber:
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(a) Suppose the robber’s move increases the cop-robber distance in the first coor-
dinate or decreases the cop-robber distance in the second coordinate. Then the
cop-robber distance will be smaller in the second coordinate. Following (2)(i),
the cop’s move will decrease the cop-robber distance in the first coordinate and
leave the cop and robber equidistant.

(b) Suppose the robber’s move increases the cop-robber distance in the second co-
ordinate or decreases the cop-robber distance in the first coordinate. Then the
cop-robber distance will be smaller in the first coordinate. Following (2)(ii), the
cop’s move will decrease the cop-robber distance in the second coordinate and
leave the cop and robber equidistant.

In (a) and (b), each move by the cop leaves the cop and robber equidistant;
however, it is important to observe that the relative capture time of at least one of
T, T ′ decreases during each round in Phase 2. Recall that when Phase 2 begins, the
robber occupies (uk, v`). After at most(

captT ′(v0; v`)− 1
)

+
(
captT (ua;uk)− 1

)
rounds of Phase 2, the cop and robber are equidistant, the vertices corresponding
to the first and second coordinate of the cop and robber are stems and leaves in T
and T ′; i.e. the vertex occupied by the cop o-dominates the vertex occupied by the
robber in T , in T ′ and, as a consequence, in T�T ′. The robber can damage no new
vertices, apart from (uk, v`). By the proof of Corollary 2.8, captT ′(v0; v`) ≤ rad(T ′).
Note that distT (u0, ua) + captT (ua;uk) ≤ rad(T ). Thus, after at most(

captT (ua;uk)−1+distT (u0, ua)
)
+
(
captT (v0; v`)− 1

)
≤ rad(T )−1+rad(T ′)−1

≤ rad(T ) + rad(T ′)− 2

= rad(T�T ′)− 2

rounds, the cop occupies a vertex (um, vn) such that um and vn are stems in T and
T ′ respectively and the robber occupies (ux, vy) such that ux and vy are leaves in
T and T ′ respectively where ux ∈ NT (um) and vy ∈ NT ′(vn). Since the robber
can remain on (ux, vy) indefinitely, the robber also damages (ux, vy). Thus, at most
rad(T�T ′)− 2 + 1 = rad(T�T ′)− 1 vertices are damaged.

For both trees and the product of trees, the damage number is one less than the
radius of the graph. Consequently, we ask which other graphs have this property.

Question 2.12. For which graphs G is dmg(G) = rad(G)− 1? For which graphs G
and H is dmg(G�H) = rad(G�H)− 1?

2.3 Products of cycles

In this section, for every cycle Cm, we will assume the vertices are labeled as
u0, . . . , um−1 where ui ∼ ui+1 (mod m). Similarly, for every cycle Cn, the vertices
are labeled v0, . . . , vn−1 where vi ∼ vi+1 (mod n).
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Theorem 2.13. If m,n ≥ 4 then

dmg(Cm�Cn) ≥ max
{

dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|
}
.

Proof. We must show that the robber can damage

max
{

dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|
}

vertices regardless of the cop strategy. In order to discuss the location of the robber,
relative to the cop, consider the copy of Cm in which the cop initially places them-
selves as copy 0. The index for the second coordinate is v0 (on Cn). We give the
following robber strategy. The robber starts in the same copy of Cm as the cop, at
distance two away. Without loss of generality, suppose the cop started at (ui, v0),
then the robber starts at (ui+2, v0). The robber responds to each possible initial cop
move using the following strategy:

(1) If the cop passes, then the robber increases the index of their first coordinate
mod m (thus moves in their copy of Cm), maintaining a distance of at least two
from the cop.

(2) If the cop increases their distance to the robber in the first coordinate, then the
robber decreases their distance to the cop in the first coordinate.

(3) If the cop decreases their distance to the robber in the first coordinate, then the
robber increases their distance to the cop in the first coordinate.

(4) If the cop increases their distance in the second coordinate, then the robber plays
as though the cop is still occupying the same vertex in the robber’s copy of Cm,
and treats this as a pass move by the cop. The robber will damage a new vertex
as they move away from the cop in the first coordinate. This will be called the
shadow strategy.

More precisely, the shadow strategy for the robber is to pretend that the cop is
occupying a vertex of the robber’s copy of Cm by projecting the image of the cop
from the second coordinate, to its corresponding position in the robber’s copy of
Cm: the cop’s shadow. For example, if the robber is occupying the vertex labelled
(ui+2, vj), and the cop is occupying (ui, vj+1), the robber will play as though the cop
is occupying (ui, vj). The robber plays in this way to maintain a distance of at least
two from the cop in the robber’s copy of Cm. When the robber moves to a new copy
of Cm, this strategy prevents the robber from being immediately captured. If the
cop moves in the second coordinate, this works to the advantage of the robber as
long as the robber plays the shadow strategy.

The robber damages at least dmg(Cm) vertices in copy 0 as they can guarantee
this amount when the cop plays optimally. If the cop is elsewhere in the graph, but
the robber maintains distance at least two from the cop’s shadow, then the cop will
never be able to capture the robber, nor will they be able to prevent the robber from
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changing copies of Cm. If the cop returns to a previously visited vertex other than
their starting position or passes, then the robber moves to the closest undamaged
vertex that is at least distance two away from the cop in the same copy of Cm. If
such a vertex does not exist, it means the robber has damaged dmg(Cm) vertices in
copy 0. The robber instead increases their second coordinate in order to begin the
process again, but in a different copy of Cm. The robber applies this strategy until
all copies of Cm have been visited, and dmg(Cm) vertices have been damaged in each
copy.

In [5], the authors provide a strategy for the cop to restrict the damage on Cm
to at most b(m − 1)/2c vertices. Informally, the cop always moves in the opposite
direction to the robber’s last move. We next show that if the cop initially passes,
the damage number only increases if m is even. Lemma 2.14 will be then used to
prove an upper bound for dmg(Cm�Cn).

Lemma 2.14. For any m ≥ 4, dmg′(Cm) =

{
dmg(Cm) if m is odd;

dmg(Cm) + 1 if m is even.

Furthermore, in the case where m is even, if the robber begins on a vertex of Cm
that is not adjacent to the cop and the cop passes during the first round, the cop can
prevent the robber from damaging more than dmg(Cm) vertices.

Proof. Recall from Section 2.1 that dmg′(Cm) ∈ {dmg(Cm), dmg(Cm) + 1}, so it
remains to show that dmg′(Cm) ≥ dmg(Cm) + 1 when m is even and dmg′(Cm) ≤
dmg(Cm) when m is odd.

Suppose m is even. We provide a robber strategy which will always damage
dmg(Cm) + 1 many vertices, regardless of the cop strategy. Suppose the cop and
robber initially occupy vertices u0 and u1, respectively. The robber’s strategy is to
increase their index at each round, until they occupy um/2.

Since the cop initially passes, there is no cop strategy to prevent the robber from
moving to um/2 before the cop can move to um/2+1 or um/2−1. Thus, the robber will
be able to damage u1, u2, . . . , um/2 and damage at least dmg(Cm) + 1 vertices.

We next allow m to be either odd or even and provide a cop strategy to find an
upper bound for dmg′(Cm) while simultaneously proving the second statement in the
theorem. Suppose the cop and robber initially occupy u0 and ui (respectively) and
without loss of generality, 1 ≤ i ≤ m

2
. The cop initially passes and for t > 1, the cop

moves according to the following cycle-strategy, where indices are taken modulo m:

(1) If the robber increases (decreases) their index during round t − 1, then the cop
decreases (increases) their index during round t;

(2) If the robber passes during round t − 1, then the cop passes during round t,
unless the cop is adjacent to the robber. In this case, the cop moves to capture
the robber.
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Given (2), it suffices to consider only “active rounds” of the robber; that is,
rounds during which the robber does not pass. For the remainder of the proof, all
rounds will be considered to be active rounds.

First, we assume i > 1 and show that by following the cycle-strategy, the cop can
prevent the robber from damaging a vertex outside the set

Si =
{
uk, uk+1, uk+2, . . . , ubm+i−1

2
c
}

where k = d i+1
2
e. Suppose that during some round t > 1, the robber moves from

uk+1 to uk. We count the number of rounds that have passed since the robber first
occupied ui to when the robber moves to uk: for some non-negative integer x, during
a total of x-many rounds (not necessarily consecutive), the robber increased their
index (mod m) and during (x+b i−1

2
c)-many rounds, the robber decreased their index

(mod m). Thus, after 2x+ b i−1
2
c rounds, the robber occupies uk; i.e. the vertex with

subscript

i + x−
(
x +

⌊i− 1

2

⌋)
=
⌈i + 1

2

⌉
= k.

Since the cop follows the cycle-strategy, after 2x+b i−1
2
c+1 rounds (where the robber

has not yet moved in round 2x + b i−1
2
c), the cop occupies the vertex with subscript

0− x + (x + b i−1
2
c) = b i−1

2
c. Observe that⌊i− 1

2

⌋
=

{
k − 1 if i is odd

k − 2 if i is even.

At this point, the robber occupies uk, the cop occupies uk−1 or uk−2 and it the
robber’s turn to move during round 2x + b i−1

2
c. If i is odd, the cop and robber are

adjacent and if i is even, the cop and robber are distance two apart. In either case,
the robber cannot move to uk−1. By a similar argument, the robber cannot move
to a higher indexed vertex than ubm+i−1

2
c without being captured. Thus, if i > 1, at

most |Si| = bm−12
c = dmg(Cm) vertices are damaged.

Second, we assume i = 1 and show that by following the cycle-strategy, the cop
can prevent the robber from damaging a vertex outside the set S1 = {u1, u2, . . . ,
ubm/2c}. Suppose that during some round t > 1, the robber moves from ubm/2c−1
to ubm/2c. Then during a total of x-many rounds (not necessarily consecutive), the
robber decreased their index and during (x + bm

2
c − 1)-many rounds, the robber

increased their index, leaving the robber at ubm/2c. After the cop has moved during
round 2x + bm

2
c, the robber occupies ubm/2c, the cop occupies um−(bm

2
c−1) and it is

the robber’s turn to move. But as the cop and robber are either adjacent (if m is
even) or distance 2 apart (if m is odd), the robber cannot move to ubm/2c+1. By a
similar argument, the robber cannot move to a lower indexed vertex than u1. Thus,
if i = 1, the number of vertices damaged is at most

|S1| =
⌊m

2

⌋
≤

{
dmg(Cm) if m is odd

dmg(Cm) + 1 if m is even.



M.A. HUGGAN ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 362–384 376

The next result follows from Theorem 2.6, Theorem 2.13, and Lemma 2.14.

Corollary 2.15. For m,n ≥ 4 where at least one of m,n is odd,

dmg(Cm�Cn) = max
{

dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|
}
.

Corollary 2.15 provides a family of graphs for which the upper bound of Theo-
rem 2.6 is exact. Unfortunately, the bound of Theorem 2.6 is not exact when both
m and n are even.

Lemma 2.16. If m,n ≥ 4 with m and n both even, then

dmg(Cm�Cn) ≤ 1 + max
{

dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|
}
.

Proof. Suppose the cop initially occupies (u0, v0). Let

S = {(u1, v1), (u1, vn−1), (um−1, v1), (um−1, vn−1)}.

We consider two cases for the initial position of the robber, either the robber begins
at a vertex in S or a vertex in V (Cm�Cn)\S.

Case 1. Suppose the robber initially occupies a vertex in V (Cm�Cn)\S. Consid-
ering the corresponding positions of the cop and robber in Cm and Cn, note that the
cop is not adjacent to the robber in at least one of Cm or Cn. Using Lemma 2.14 and
the cop-strategy given in the proof of Theorem 2.6, the cop can limit the damage to
at most max{dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|} vertices.

Case 2. Suppose the robber initially occupies a vertex in S and without loss of
generality, suppose the robber occupies (u1, v1). The cop initially passes, the robber
damages (u1, v1), then the robber moves to (u2, v1) or (u1, v2). (If the robber moves
to a different neighbour of (u1, v1), the cop will next capture the robber and if the
robber passes, the cop will continue to pass until the robber moves to a new vertex.)
Without loss of generality, suppose the robber moved to (u2, v1).

Consider an instance of the game where the cop begins at (u0, v0), the rob-
ber begins at (u2, v1), and the cop moves first. We know from Case 1. that the
cop can limit the damage to at most max{dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|} ver-
tices. Thus, if the cop begins at (u0, v0), the robber begins at (u1, v1) and the
cop initially passes, the cop can prevent the robber from damaging more than
1 + max{dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|} vertices.

Theorem 2.17. If m,n ≥ 4 and with m and n both even then

dmg(Cm�Cn) = 1 + max
{

dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|
}
.

Proof. The upper bound follows from Lemma 2.16. For the lower bound, without
loss of generality, suppose the cop initially occupies (u0, v0) on Cm�Cn. We will
show that if the robber initially occupies (u1, v1), they can damage at least

1 + max
{

dmg(Cm)|V (Cn)|, dmg(Cn)|V (Cm)|
}



M.A. HUGGAN ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 362–384 377

vertices, regardless of the cop’s strategy. For i ∈ {0, 1, . . . , n − 1}, the subgraph
induced by the vertex set {(uj, vi) : 0 ≤ j ≤ m− 1} is called copy i of Cm.

Phase 1: We first assume the cop’s initial move is to change their second coor-
dinate to occupy (u0, vn−1) or (u0, v1). The robber will play a shadow strategy on
copy 1 of Cm. To do this, the robber projects the image of the cop from the sec-
ond coordinate, to its corresponding position in the robber’s copy of Cm: the cop’s
shadow.

Initially, the cop occupies (u0, v0), so the cop’s shadow on copy 1 of Cm is at
(u0, v1). The robber aims to move within copy 1 of Cm and damage dmg(Cm) + 1
vertices while maintaining a distance of at least two from the cop’s shadow after
each move of the robber. Consequently, the robber will initially move from (u1, v1)
to (u2, v1). Regardless of the cop’s subsequent moves, the robber will, at each round,
increase their first coordinate until the robber moves to (um/2, v1) during round
m/2 − 1. After the cop moves during round m/2, the cop’s shadow is either at
(um/2−1, v1) or is distance at least two from the robber. Note that the actual cop
either occupies (um/2−1, v1) or a vertex at least distance two from the robber. With
the robber’s move during round m/2, vertex (um/2, v1) is damaged. As a result, at
least m/2 = dmg(Cm) + 1 vertices are damaged in copy 1 of Cm.

Phase 2: Without loss of generality, suppose the robber next moves to copy 2 of
Cm. Note that this results in the robber being at least distance two from the cop and
at least distance one from the cop’s shadow in copy 2 of Cm. At the end of round
m/2 either:

(1) the cop’s shadow is at least distance two from the robber in copy 2 of Cm; or

(2) the cop occupies (um/2−1, v1) and the cop’s shadow is distance one from the
robber in copy 2 of Cm.

Suppose (1) occurs. Then the cop’s shadow is at least distance two from the
robber in copy 1 of Cm and so after the robber moves to copy 2 of Cm, the cop’s
shadow remains at least distance two from the robber in copy 2 of Cm. The robber
can follow the shadow strategy and damage at least dmg(Cm) vertices in copy 2
such that at the end of each round, the robber is at least distance two from the
cop’s shadow. Once this occurs, the robber moves to another copy of Cm and we
are essentially beginning Phase 2 again, but for a new copy of Cm. Continuing in
a similar fashion, in the remaining copies of Cm, the robber can damage at least
dmg(Cm) vertices, yielding a total of at least 1+dmg(Cm)|V (Cn)| damaged vertices.

Suppose (2) occurs. If the cop passes or moves to (um/2−1, v2) or (um/2−1, v0),
then we are essentially beginning Phase 1 again, but for copy 2 of Cm. In this case,
the robber will damage dmg(Cm) + 1 vertices in copy 2 of Cm. Otherwise, suppose
the cop moves to (um/2, v1) during round m/2 + 1. Then immediately after the cop
has moved (but before the robber has moved), the cop’s shadow in copy 2 of Cm
coincides with the robber’s position in copy 2 of Cm (i.e. they have the same first
coordinate). If the cop chooses to maintain the same first coordinate as the robber
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forever (i.e. whenever the robber changes first coordinate, the cop then changes first
coordinate to match), the robber will be able to damage m vertices in copy 2 of Cm,
m vertices in copy 3 of Cm, and so on, to m vertices in copy n/2 of Cm. This yields
m(n/2) > dmg(Cm)|V (Cn)| damaged vertices. Otherwise, the cop may match the
first coordinate as the robber for some rounds, but not others. During the rounds
where the latter occurs, we next show that the robber continues to damage at least
dmg(Cm) many vertices in copies of Cm.

Finally, if (2) occurs and the cop moves to (um/2−2, v1) during round m/2 + 1,
then the cop’s shadow is at least distance two from the robber in copy 2 of Cm and
the robber proceeds as in (1) above.

Recall that the above argument assumed the cop’s first move was to change their
second coordinate. If the cop initially passes, the robber can damage (u1, v1) and
move to (u2, v1) and following the above argument, damage at least
1 + dmg(Cm)|V (Cn)| vertices. By a symmetric argument, if the cop’s first move
is to change their first coordinate, the robber first plays a shadow strategy on copy
1 of Cn and can damage at least 1 + dmg(Cn)|V (Cm)| vertices.

3 Graphs with small damage number

The characterization of graphs with damage number 0 was first observed by Cox and
Sanaei [5].

Observation 3.1. For a graph G, dmg(G) = 0 if and only if G contains a universal
vertex.

Suppose G and H are graphs with universal vertices and |V (G)| = m ≤ n =
|V (H)|. To avoid trivial products, we assume both G and H contain at least one
edge and recall that all graphs are assumed to be connected. Then by Theorem 1.3
and Theorem 2.4, dmg(G�H) ∈ {1, 2, . . . ,m}. A natural question is the following.

Question 3.2. For each integer m ≥ 3, do there exist graphs G and H with universal
vertices where |V (G)| = m ≤ n = |V (H)| such that dmg(G�H) = k for each
k ∈ {1, 2, . . . ,m}?

By Theorem 2.11, a damage number of 1 can be achieved by considering
K1,n�K1,m. By Theorem 2.5, a damage number of m can be achieved by considering
the product of cliques of size m and n where m ≤ n.

We next consider graphs with damage number 1. The following observation
simplifies later results by allowing us to assume without loss of generality, that for
graphs with damage number 1, the robber remains on their starting vertex for the
entirety of the game. Suppose dmg(G) = 1 for graph G. Then the robber either
passes at every step; or at some step moves to a new vertex and is captured when
the cop next moves.
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Observation 3.3. Let G be a graph. If dmg(G) = 1, there is no benefit for the
robber to move during the game.

Lemma 3.4. For a graph G, if dmg(G) = 1, then rad(G) = 2.

Proof. Suppose dmg(G) = 1 for graph G. By Theorem 1.3, rad(G) ∈ {0, 1, 2}.
If rad(G) ∈ {0, 1}, then G is an isolated vertex or has a universal vertex and
dmg(G) = 0.

Note that the converse of Lemma 3.4 is not true: rad(C5)=2 but dmg(C5) 6=1.
Using Observation 3.3 and Lemma 3.4, we characterize graphs with damage num-
ber 1.

Theorem 3.5. For a graph G, dmg(G) = 1 if and only if rad(G) = 2 and a center
of the graph c ∈ V (G) is such that for all w ∈ V (G) \N [c] there exists s ∈ N [c] such
that s o-dominates w.

Proof. For the forward direction, consider the contrapositive. Assume G is a graph
where either rad(G) 6= 2 or for all c ∈ V (G), there exists w ∈ V (G) \N [c] such that
for each s ∈ N [c], N(w) 6⊆ N(s). We will show that dmg(G) 6= 1.

If rad(G) = 0, then G is an isolated vertex and trivially dmg(G) = 0. If
rad(G) = 1 or rad(G) > 2, then dmg(G) 6= 1 by the contrapositive of Lemma
3.4. Consequently, we assume rad(G) = 2 and show that no matter the strategy of
the cop, the robber can damage more than one vertex in G. Since rad(G) = 2, no
matter where the cop places themselves in G, there always is a vertex at least dis-
tance two away. Suppose the cop initially occupies some vertex v ∈ V (G). If there
is a vertex at distance 3 away from the cop, the robber can damage at least two
vertices. Otherwise, the cop must be located on a center since the graph has radius
2. Given the properties of G, there exists w ∈ V (G) \N [v] such that N(w) 6⊆ N(v)
and for all s ∈ N(v), N(w) 6⊆ N(s). We next show that if the robber starts on such
a vertex w, they can damage at least two vertices.

In the first round, the cop has a choice to either stay on vertex v or move to some
vertex si ∈ N(v) where i ∈ {1, 2, . . . , k} and |N(v)| = k.

Since N(w) 6⊆ N(v), there exists some vertex t ∈ N(w) where t 6∈ N(v). If the
cop stays on vertex v in the first round, then the robber can damage w and move to
vertex t. Since t 6∈ N(v), during the second round, the cop is still at least a distance
of two away from the robber. No matter where the cop moves in the second round,
the robber can damage vertex t by remaining on it for the second round. Thus, the
robber damages at least two vertices.

Suppose instead that the cop moves to vertex si during the first round. Given the
properties of G, we know there is some vertex r ∈ N(w) where r 6∈ N [si]. Note that
r is not necessarily distinct from the vertex t where t ∈ N(w) but t 6∈ N(v). During
the first round, the robber can damage w and move to vertex r. At this point, since
r 6∈ N [si], the robber is still at least distance of two away from the cop. No matter
where the cop moves in the second round, the robber can damage r by remaining on
it for the second round. Thus, the robber damages at least two vertices.
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For the reverse implication, assume that G is a graph with radius 2 and the
conditions of the theorem hold. We will show that if the cop initially occupies a
center vertex c, they have a strategy to protect |V (G)| − 1 vertices and the robber
has a strategy to damage one vertex. Since rad(G) = 2, we know dmg(G) ≥ 1 by
Theorem 1.3.

If the cop initially occupies a center c, then the cop is protecting N [c] from
damage in the first round. Therefore the robber will initially occupy some vertex
w ∈ V (G) \N [c].

By the way we have defined G, we know there is a vertex s ∈ N [c] that o-
dominates w. If s = c the cop can protect |V (G)|−1 by passing in all rounds, unless
the robber moves to a neighbour of c. Otherwise, the cop initially moves from c to
s such that s o-dominates w. The cop protects |V (G)| − 1 vertices by passing in all
subsequent rounds, unless the robber moves to a neighbour of s.

Note that by the characterization of damage number 1 graphs, for any vertex
w not adjacent to center c either: c o-dominates w or there exists s ∈ N(c) such
that s o-dominates w. So to bound dmg(G�H) for graphs G and H with damage
number 1, we consider two situations: at least one of the coordinates of the robber’s
initial position satisfies the former, or both coordinates of the robber’s initial position
satisfy the latter. For the first situation, we can easily bound the damage.

Proposition 3.6. Let G and H be graphs for which dmg(G) = dmg(H) = 1. Let u
and v be centers in G and H, respectively, as described in Theorem 3.5. If,

(1) for all w /∈ NG(u), u o-dominates w in G, or

(2) for all w /∈ NH(v), v o-dominates w in H;

then dmg(G�H) ≤ max{|V (G)|, |V (H)|}.

Proof. Suppose the cop initially occupies (u, v) where u and v are as described in
the theorem statement; and the robber initially occupies some vertex (x, y). Assume
u o-dominates x in G and for now, assume y 6∈ NH(v). If v o-dominates y in H,
then the cop in G�H initially passes. Otherwise, there exists s ∈ NH(v) such that s
o-dominates y in H and the cop in G�H moves to (u, s). Observe that the cop’s first
and second coordinates now o-dominate the robber’s first and second coordinates,
in their respective input graphs. The robber must pass indefinitely (and damage
only one vertex) or during some round, change a coordinate. Whenever the robber
changes first (second) coordinate, the cop changes first (second) coordinate to match.
Without loss of generality, suppose the robber changes second coordinate. Then the
cop changes second coordinate to match that of the robber. If the robber now changes
first coordinate, the cop will move and capture the robber. Thus, to maximize the
number of damaged vertices, the robber can only ever change second coordinate and
at most |V (H)| vertices are damaged.

If y ∈ NH(v), the cop in G�H initially moves to (u, y) to match the second
coordinate of the robber. As above, if the robber changes first coordinate, the cop
will capture the robber.
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By Corollary 2.7, if dmg(G) = 1 = dmg(H) and |V (G)| ≤ |V (H)| then

dmg(G�H) ≤

{
|V (H)| if |V (H)| ≥ 2|V (G)|

2|V (G)| if |V (H)| < 2|V (G)|.

We leave as a question, whether the bounds can be improved for the latter case.

Question 3.7. Let G and H be graphs for which dmg(G) = dmg(H) = 1 and
suppose |V (G)| ≤ |V (H)| < 2|V (G)|. We further suppose that neither condition (1)
nor (2) of Proposition 3.6 holds. Can the upper bound of dmg(G�H) ≤ 2|V (G)| be
improved?

Observe that any graph with damage number 2 must have radius 2 or radius 3.
We next characterize graphs with damage number 2.

Lemma 3.8. Let G be a graph. If dmg(G) = 2, then the radius of G must be 2 or 3.

Proof. Let G be a graph for which dmg(G) = 2. By Theorem 1.3, rad(G) ∈
{0, 1, 2, 3}. If rad(G) = 0, then the graph has a single vertex and no vertices can
be damaged. Similarly, if rad(G) = 1, then there exists a universal vertex and the
damage number of G is 0. Thus, rad(G) ∈ {2, 3}.

Note that the converse is false for both radius 2 and radius 3. Cycles C4 and C7

are counterexamples to all radius 2 and radius 3 graphs (respectively) having damage
number 2.

Theorem 3.9. Let G be a graph with rad(G) = 2 or rad(G) = 3. Then dmg(G) = 2
if and only if there exist vertices z, y ∈ V (G) and sy ∈ N [z] such that

(1) distG(z, y) ∈ {2, 3}, and

(2) no vertex in N [z] o-dominates y, and

(3) ∀ x ∈ N(y)\N [sy], ∃ sx ∈ N [sy] and v ∈ N [sx] such that

N(x)\{y} ⊆ N [sx] and N(y)\{x} ⊆ N [v];

and for all w ∈ V (G)\{y} such that distG(z, w) ∈ {2, 3}, the above three conditions
apply; or the conditions for dmg(G) = 1 apply.

Proof. Let G be a graph with radius 2 or radius 3 and damage number of G is 2. We
next show that the theorem conditions hold. The cop initially occupies some vertex
z ∈ V (G).

If rad(G) = 2, the eccentricity of z is at most 4. If the eccentricity of z equals 4,
then there is a shortest path P = (z, v1, v2, v3, v4). The robber can initially occupy v2
and damage v2, v3, v4, which contradicts dmg(G) = 2. If rad(G) = 3, the eccentricity
of z is at most 6. If the eccentricity of z is 4, 5, or 6, then as in the rad(G) = 2 case,
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the robber can damage at least three vertices, a contradiction. Thus, a necessary
condition on z is that every vertex is within distance three of z.

The robber must start on a vertex at distance two or three from z, since otherwise
the robber would be captured in the first round. Label this vertex y, so distG(z, y) ∈
{2, 3}. Since dmg(G) = 2, no vertex in N [z] o-dominates y. Thus, regardless of
where the cop moves on the first round, say sy, there must exist a safe vertex to
which the robber can move. So, there is at least one vertex x ∈ N(y)\N [sy].

The cop first moves to some vertex sy ∈ N [z]: the closed neighbourhood allows
for the possibility that the cop passes and sy = z. Then the robber moves to some
vertex x ∈ N(y)\N [sy]. Since the damage number is 2, the robber is not captured by
the next move of the cop; the cop’s next move is to some vertex sx ∈ N [sy] (allowing
the possibility that the cop passes and sx = sy). Since the damage number is 2, there
can be no neighbour of x, apart from possibly y, that is not adjacent to sx. Thus,
N(x)\{y} ⊆ N [sx]. If sx 6∼ y, the robber can move back to y and so there must be a
vertex v ∈ N [sx] to which the cop can move such that N(y)\{x} ⊆ N [v]; otherwise,
the robber can move to, and damage a third vertex. Thus, if dmg(G) = 2, conditions
(1), (2), and (3) of the theorem must hold. The existence of the conditions implies
that the robber can damage two vertices. Notably, any vertex w, at distance two or
three from z must either satisfy those conditions (to ensure the number of vertices
damaged cannot exceed two), or w satisfies the condition of Theorem 3.5, which
implies the damage number would be 1 if the robber were to initially occupy such a
vertex.

Considering the reverse implication, let G be a graph with radius 2 or radius 3.
Now, suppose the conditions of the theorem are met and the cop initially occupies
z. Suppose the robber initially occupies a vertex y satisfying conditions (1), (2),
and (3). Since no vertex in N [z] o-dominates y, regardless of where the cop moves,
the robber will be able to move to, and damage, a second vertex. Thus, if the cop
initially occupies z, at least two vertices will be damaged. We next show that at
most two vertices will be damaged. The cop initially moves from z to some vertex sy
as described by the conditions of the theorem and the robber’s only move is to some
vertex x 6∈ N [sy]. Recall such a vertex exists because of condition (2). However, by
condition (3), the cop can move to a vertex sx ∈ N [sy] such that N(x)\{y} ⊆ N [sx].
To avoid capture, the robber can either remain at x (provided sx 6∼ x) or move back
to y (provided sx 6∼ y). But, in moving back to y, the cop can then move to v ∈ N [sx]
such that N(y)\{x} ⊆ N [v] by condition (3). Thus, the robber can only damage two
vertices when the cop and robber initially occupy z and y, respectively.

Let G be the graph shown in Figure 3. Observe that rad(G) = 2; c is the only
center vertex (so the only vertex with eccentricity 2); and z has eccentricity 3. Either
by inspection or using Theorem 3.9, it is easy to see that if the cop begins at z, the
robber can damage at most two vertices. With a little more work, one can observe
that if the cop instead begins on vertex c, the robber can damage at least three
vertices: suppose the cop and robber initially occupy c and v5, respectively.
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• If the cop passes or moves to z or v3, the robber can move to v8. Regardless of
the cop’s next move, the robber will be able to move to one of v6, v7 and not
be adjacent to the cop. Thus, the robber will damage at least three vertices.

• If the cop initially moves to v6, the robber can move to v4. Regardless of the
cop’s next move, the robber will be able to move to one of v3, v7 and not be
adjacent to the cop. Thus, the robber will damage at least three vertices.

Figure 3: An example of a graph with radius 2 and damage number 2 where the
optimal starting location for the cop is not a center vertex.

Thus, the graph in Figure 3 shows that for a graph of radius 2, the vertex identified
as z in Theorem 3.9 is not necessarily a center vertex. In contrast, if G is a graph
with radius 3 and damage number 2, the cop must begin on a center vertex in order
to restrict the damage to two vertices. Otherwise, if the cop begins on a vertex of
eccentricity at least 4, the robber can start distance 2 away from the cop and damage
3 vertices, as per the argument in the second paragraph of the proof of Theorem 3.9.
More generally, if G is a graph with rad(G) = k and dmg(G) = k− 1, the cop needs
to start on a center. But if dmg(G) > rad(G) − 1 then that is not necessarily the
case. While it seems that Theorem 3.9 could be extended to characterize graphs
with damage number 3, 4, and so on, to use such characterizations, one would have
to consider not just center vertices as potential starting positions for the cop, but
non-center vertices too.

To conclude, we briefly comment on the product of graphs with damage number
2. Let G and H be graphs, each with damage number 2, and for which |V (G)| ≥
|V (H)|. By Corollary 2.7 dmg(G�H) ≤ max{2|V (G)|, 3|V (H)|}. A natural question
is whether there exist such graphs G and H (as described above) for which the
damage number of the product exceeds 2|V (G)|. Theorem 2.17 answers this question
affirmatively: dmg(C6�C6) > 2|V (C6)|. (In fact, by Lemma 2.16, dmg(C6�C6) =
2|V (C6)|+ 1.) We conclude with a natural question.

Question 3.10. Can the upper bound of Corollary 2.7 be improved when the input
graphs G and H both have damage number 2?
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