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Abstract

The rth gonality of a graph is the smallest degree of a divisor on the graph
with rank r. The gonality sequence of a graph is a tropical analogue
of the gonality sequence of an algebraic curve. We show that the set of
truncated gonality sequences of graphs forms a semigroup under addition.
Using this, we study which triples (x, y, z) can be the first three terms of
a graph gonality sequence. We show that nearly every such triple with
z ≥ 3

2
x+ 2 is the first three terms of a graph gonality sequence, and also

exhibit triples where the ratio z
x
is an arbitrary rational number between

1 and 3. In the final section, we study algebraic curves whose rth and
(r + 1)st gonality differ by 1, and posit several questions about graphs
with this property.

1 Introduction

The theory of divisors on graphs, developed by Baker and Norine in [2, 3], mirrors
that of divisors on curves. Two important invariants of a divisor D, on either a graph
or a curve, are its degree deg(D) and its rank rk(D). For r ≥ 1, the rth gonality of
a graph is the smallest degree of a divisor of rank r:

gonr(G) := min
D∈Div(G)

{deg(D) | rk(D) ≥ r}.

The gonality sequence of a graph G is the sequence:

gon1(G), gon2(G), gon3(G), . . .
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In [1], the authors ask which integer sequences are the gonality sequence of some
graph.

In this paper, we approach this problem by studying the first r terms of the
gonality sequence. Let

Gr := {�x ∈ N
r | ∃ a graph G with gonk(G) = xk for all k ≤ r}.

Our first main observation is that Gr is a semigroup — that is, it is closed under
addition. We say that an element �x ∈ Gr is reducible if it can be written as the sum
of two elements in Gr.

Theorem 1.1. The set Gr is closed under addition. Moreover, if �x ∈ Gr is reducible,
then for all g sufficiently large, there exists a graph G of genus g such that gonk(G) =
xk for all k ≤ r.

The set Gr is always contained in the cone:

Cr := {�x ∈ N
r | xi < xi+1 and xi+j ≤ xi + xj for all i, j ≤ r}

(See Lemmas 2.1 and 2.2). Using Theorem 1.1, we give a short proof of [1, Theo-
rem 1.5].

Theorem 1.2. [1, Theorem 1.5] We have

G2 = C2 = {(x, y) ∈ N
3 | x+ 1 ≤ y ≤ 2x}.

Moreover, if x+ 2 ≤ y ≤ 2x, then for all sufficiently large g, there exists a graph G
of genus g such that gon1(G) = x and gon2(G) = y.

As noted in Section 4 of [1], Theorem 1.2 demonstrates that there are graphs
whose gonality sequence cannot be the gonality sequence of an algebraic curve. For
example, if C is a curve whose 2nd gonality gon2(C) = p is prime, then C maps
generically 1–to–1 onto a plane curve of degree p. It follows that the genus of C is at
most

(
p−1
2

)
. On the other hand, if p ≥ 5, then by Theorem 1.2 there exists a graph

G of genus g with gon1(G) = p− 2 and gon2(G) = p for all g sufficiently large. Since
the genus of a graph is determined by its gonality sequence, we see that the gonality
sequence of G does not agree with that of any algebraic curve.

On the other hand, if gon2(G) = gon1(G) + 1, then (gon1(G), gon2(G)) is an
irreducible element of G2. We know of two infinite families of graphs such that the
2nd gonality is 1 greater than the 1st gonality – the complete graph Kx+1 and the
generalized banana graph B∗

x,x from [1]. Interestingly, both graphs have genus
(
x
2

)
and 3rd gonality gon3 = 2x. This is exactly the genus and 3rd gonality of an algebraic
curve C satisfying gon2(C) = gon1(C)+1 = x+1 (see Lemma 7.2). We ask whether
this holds more generally.

Question 1.3. Let G be a graph with the property that gon2(G) = gon1(G) + 1.

(1) Is the genus of G necessarily g =
(
gon1(G)

2

)
?
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(2) For r < g, do we have

gonr(G) = k · gon2(G)− h,

where k and h are the uniquely determined integers with 1 ≤ k ≤ gon2(G)− 3,

0 ≤ h ≤ k, such that r = k(k+3)
2

− h?

(3) In particular, if gon1(G) ≥ 2, does it follow that gon3(G) = 2 · gon1(G)?

Much of this paper is dedicated to studying G3. Unlike G2, we are unable to
provide a complete description of G3. However, we have the following partial result.

Theorem 1.4. Let (x, y, z) ∈ C3 with z ≥ 2x. Suppose further that:

• if y = x+ 1, then z = 2x, and

• if z = x+ y, then y = 2x.

Then (x, y, z) ∈ G3.

We suspect that Theorem 1.4 classifies all realizable triples (x, y, z) ∈ G3 such
that z ≥ 2x. Indeed, by Lemmas 2.1 and 2.2, we have G3 ⊆ C3. If y = x+1, then an
affirmative answer to Question 1.3 would show that z = 2x. Similarly, if z = x + y,
then an affirmative answer to [1, Question 4.5] would show that y = 2x. The goal of
the rest of this paper is to study triples (x, y, z) ∈ G3 with z < 2x. In Section 6, we
prove the following.

Theorem 1.5. Let (x, y, z) ∈ C3 with x + 2 ≤ y ≤ z − 2 and z ≥ 3
2
x + 2. Then

(x, y, z) ∈ G3.

Theorems 1.4 and 1.5 give a possibly complete description of triples (x, y, z) ∈ G3

with z ≥ 3
2
x + 2. However, there exist triples (x, y, z) ∈ G3 such that z < 3

2
x + 2.

Indeed, we have the following.

Lemma 1.6. Let q be a rational number in the range 1 < q ≤ 3. Then there exists
(x, y, z) ∈ G3 such that z

x
= q.

Unfortunately, it is difficult to write down a simple, closed-form expression for
the semigroup generated by these triples. It seems likely that the techniques of this
paper could be used to study Gr for r ≥ 4, or to produce analogues of Theorem 1.5
where the ratio z

x
is bounded below by a constant that is smaller than 3

2
.

Remark 1.7. A metric graph is a compact, connected metric space obtained from a
graph by identifying the edges with line segments. One can also define the gonality
sequence of a metric graph, and it is natural to ask which integer sequences are the
gonality sequence of some metric graph. By [2, Corollary 1.5], if D is a divisor on
a graph G, and Γ is the corresponding metric graph in which every edge has length
1, then rkG(D) = rkΓ(D). It follows that the rth gonality of Γ is less than or equal
to that of G for all r. In some cases, the rth gonality of Γ is equal to that of G, for
example, if G is a complete graph [7] or complete bipartite graph [6]. However, this
is not always the case [15], and we do not know whether this holds for some of the
graphs appearing in this paper. For this reason, the analogs of our results remain
open for metric graphs
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The paper is organized as follows. In Section 2, we present background on the
divisor theory of graphs. In Section 3 we introduce graphs with known 1st, 2nd, and
3rd gonalities. In Section 4, we prove all of the main results except for Theorem 1.4,
which is proved in Sections 5 and 6. Finally, in Section 7, we study the gonality
sequences of certain algebraic curves, and ask several questions about graphs with
the same gonality sequences.

2 Preliminaries

In this section we will introduce the notion of gonality on graphs, along with impor-
tant terms and concepts. Throughout, we allow graphs to have parallel edges, but
no loops.

A divisor on a graph G is a formal Z-linear combination of the vertices in G. A
divisor D can be expressed as

D =
∑

v∈V (G)

D(v) · v,

where each D(v) is an integer. The degree of a divisor D, denoted deg(D), is the
sum of the coefficients of D. The support of a divisor, denoted Supp(D), is defined
as

Supp(D) = {v ∈ V (G)|D(v) > 0}.
It is standard to think about divisors on graphs in terms of chip configurations.

In a chip configuration, the coefficient of a vertex v is reinterpreted as the number of
chips sitting on v. So, in a divisor D, v has D(v) chips sitting on it. A vertex with
a negative number of chips is said to be “in debt.” A divisor is effective if, for every
w ∈ V (G), we have D(w) ≥ 0. In other words, a divisor is effective if there are no
vertices in debt. A divisor is effective away from v if, for every w ∈ V (G) \ {v}, we
have D(w) ≥ 0.

From this interpretation we can define a chip firing move. Firing a vertex v
causes v to redistribute some of its chips by passing one chip across each of the edges
incident to it. We say that two divisors D and D′ are equivalent if D′ can be obtained
from D via a sequence of chip firing moves. The rank of a divisor D, denoted rk(D),
is the largest integer r such that D−E is equivalent to an effective divisor for every
effective divisor E of degree r. By convention, if D is not equivalent to an effective
divisor, we define it to have rank −1.

The rank of a divisor is often framed as a chip firing game. Given a starting
divisor we allow the “opponent” of the game to remove r chips from anywhere on
the graph. A divisor has rank r if, for every choice of chips by the opponent, there
is a sequence of chip firing moves that eliminates all debt on the graph.

For a graph G and a vertex v ∈ V (G) we say that a divisor D is v-reduced if the
following conditions are satisfied:

(1) D is effective away from v, and



A. FESSLER ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 343–361 347

(2) for any subset A ⊆ V (G)�{v}, the divisor D′ obtained by firing all the vertices
in A is not effective.

Given a divisor D and a vertex v, by [4, Corollary 4.13], there exists a unique
divisor equivalent to D that is v-reduced. Dhar’s Burning Algorithm is a procedure
that produces this unique representative. A good introduction to this algorithm can
be found in Section 5.1 of [4]. The algorithm proceeds as follows:

(1) Replace D with a divisor that is effective away from v.

(2) Start a fire by burning vertex v.

(3) Burn every edge that is incident to a burnt vertex.

(4) Let U be the set of unburnt vertices. For each w ∈ U we burn w if the number
of burnt edges incident to w is strictly greater than D(w). If no new vertices
in U were burnt proceed to step (5). Otherwise return to step (3).

(5) Let U be the set of unburnt vertices. If U is empty, then D is v-reduced and
the algorithm terminates. Otherwise, replace D with the equivalent divisor D′

obtained by firing all vertices in U and return to step (2).

Note that a divisor is v-reduced if and only if starting a fire at v results in the
entire graph being burnt. Dhar’s burning algorithm is useful for determining the
rank of a divisor. Specifically, we show that if D is v-reduced and D(v) ≤ 0, then D
cannot have positive rank. To see this, note that if D′ is an effective divisor, then
the divisor obtained by firing all unburnt vertices is also effective. It follows that the
v-reduced divisor equivalent to D′ is effective as well. Since D is v-reduced, we have
that D− v is v-reduced as well. Since D− v is v-reduced and not effective, it is not
equivalent to an effective divisor, and thus D does not have positive rank.

The rth gonality of a graph is the minimum degree over all divisors of rank r.
We recall some basic facts about the rth gonality from [1].

Lemma 2.1. [1, Lemma 3.1] Let G be a graph. For all r, we have gonr(G) <
gonr+1(G).

Lemma 2.2. [1, Lemma 3.2] Let G be a graph. For all r and s, we have gonr+s(G) ≤
gonr(G) + gons(G).

3 Dramatis Personae

This section surveys graphs for which the first few terms of the gonality sequence
are known. The first of these graphs is the complete graph Kn, which has genus
g =

(
n−1
2

)
.

Lemma 3.1. [7, Theorem 1] For r < g, the rth gonality of the complete graph Kn

is gonr(Kn) = kn − h, where k and h are the uniquely determined integers with
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1 ≤ k ≤ n− 3, 0 ≤ h ≤ k, such that r = k(k+3)
2

− h. In particular, if n ≥ 3, then

gon1(Kn) = n− 1

gon2(Kn) = n

gon3(Kn) = 2n− 2.

Next, we have the complete bipartite graph Km,n, which has genus g =
(m− 1)(n− 1). Let

Ir = {(a, b, h) ∈ N
3 | a ≤ m− 1, b ≤ n− 1, and r = (a+ 1)(b+ 1)− 1− h},

and let
δr(m,n) = min{an+ bm− h | (a, b, h) ∈ Ir}.

Lemma 3.2. [6, Theorem 4] For r < g, the rth gonality of the complete bipartite
graph Km,n is gonr(Km,n) = δr(m,n). In particular, if 2 ≤ m ≤ n, then

gon1(Km,n) = m

gon2(Km,n) = min{2m,m+ n− 1}
gon3(Km,n) = min{3m,m+ n}.

The banana graph Bn is the graph consisting of 2 vertices with n edges connecting
them. A generalized banana graph is a graph with vertex set {v1, . . . , vn} such that
for each 1 ≤ i < n, there is at least one edge between vi and vi+1 and no edges
elsewhere.

In [1], the authors study the gonalty sequences of different families of generalized
banana graphs. The generalized banana graph Bn,e is the graph with vertex set
{v1, . . . vn} and where there are e edges between vi and vi+1 for 1 ≤ i ≤ n − 1. The
generalized banana graph B∗

a,b is the graph with vertex set {v1, . . . , va} and with
b − a + i + 1 edges between vi and vi+1 for 1 ≤ i ≤ a − 1. The generalized banana
graphs B4,3 and B∗

4,5 are depicted in Figure 1.

B4,3

B∗
4,5

Figure 1: The generalized banana graphs B4,3 and B∗
4,5.

Lemma 3.3. [1, Lemmas 5.2-5.4] We have

gon1(Bn,e) = min{n, e}
gon2(Bn,e) = min{2n, 2e, n+ e− 1}.
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Lemma 3.4. [1, Lemmas 5.5 and 5.6] If 2 ≤ a ≤ b ≤ 2a− 1, we have

gon1(B
∗
a,b) = a

gon2(B
∗
a,b) = b+ 1.

The 2-dimensional n by m rook graph is the Cartesian product of the complete
graphs Kn and Km. The vertices can be thought of as the squares of an n × m
chessboard, in which 2 vertices are adjacent if a rook can move from one to the
other. By convention, we assume throughout that m ≥ n. In [14], Speeter computes
the first 3 gonalities of these rook graphs.

Lemma 3.5. [14] If 2 ≤ n ≤ m, then

gon1(Kn�Km) = (n− 1)m

gon2(Kn�Km) = nm− 1

gon3(Kn�Km) = nm.

4 Proofs of Theorems 1.1-1.4

In this section, we prove many of the main theorems. The central construction is
the following. Given two graphs G1 and G2, and vertices v1 ∈ V (G1), v2 ∈ (G2),
we “put them together” by connecting v1 to v2 with a number of parallel edges,
as in Figure 2. This construction is very similar to that of vertex gluing, as seen
for instance in [12, 5, 13], the only difference being that the vertices v1 and v2 are
connected by multiple parallel edges, rather than a single edge.

G1 G2v1 v2

�

Figure 2: Gluing two graphs together

Lemma 4.1. Let G1 and G2 be graphs, let v1 ∈ V (G1), v2 ∈ V (G2), and let G be
the graph obtained by connecting v1 to v2 with � edges, as in Figure 2. If D is a
v1-reduced divisor on G, then rk(D|G1) ≥ rk(D).

Proof. If D has rank −1, there is nothing to prove, so we assume throughout that
D has nonnegative rank. Since D is v1-reduced, it follows that D is effective.
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Now, let E be an effective divisor of degree rk(D) on G1. By definition, D − E
is equivalent to an effective divisor. Therefore, there exists a sequence of subsets:

U1 ⊆ U2 ⊆ · · · ⊆ Uk ⊂ V (G)

and a sequence of effective divisors D0, . . . , Dk such that:

(1) D0 = D,

(2) Dk − E is effective, and

(3) Di is obtained from Di−1 by firing Ui.

Since D0 is v1-reduced and D1 is effective, we must have v1 ∈ U1. Thus, v1 ∈ Ui for
all i.

Now, consider the sequence of subsets Wi = Ui ∪ V (G2). Let D′
0 = D and let

D′
i be the divisor obtained from D′

i−1 by firing Wi. Since V (G2) ∪ {v1} ⊆ Wi for all
i, we have D′

i(v) = D(v) for all v ∈ V (G2). Since D is v1-reduced, it follows that
D′

k(v) ≥ 0 for all v ∈ V (G2). Note also that D′
i(v) = Di(v) for all v ∈ V (G1)� {v1},

and D′
i(v1) ≥ Di(v1). It follows that D

′
k −E is effective.

Finally, note that firing Wi passes no chips from G1 to G2 or from G2 to G1.
Thus, D|G1 is equivalent to D′

k|G1 on G1. In this way, D|G1 −E is equivalent on G1

to an effective divisor. Since E was arbitrary, we see that rk(D|G1) ≥ rk(D).

If the number of parallel edges between v1 and v2 is large enough, then the rth
gonality of the graph G is the sum of the rth gonalities of the graphs G1 and G2.

Proposition 4.2. Let G1 and G2 be graphs, let v1 ∈ V (G1), v2 ∈ V (G2), and let G
be the graph obtained by connecting v1 to v2 with � edges. If � ≥ gonr(G1)+gonr(G2),
then

gonk(G) = gonk(G1) + gonk(G2) for all k ≤ r.

Proof. Let k ≤ r, let D1 be a divisor of rank k and degree gonk(G1) on G1, and let
D2 be a divisor of rank k and degree gonk(G2) on G2. Then the divisor D1+D2 has
rank at least k on G, so gonk(G) ≤ gonk(G1) + gonk(G2).

For the reverse inequality, let D be a divisor of rank at least k on G. We must
show that deg(D) ≥ gonk(G1) + gonk(G2). If deg(D|Gi

) ≥ gonk(Gi) for i = 1, 2,
then deg(D) ≥ gonk(G1) + gonk(G2). On the other hand, suppose without loss of
generality that deg(D|G1) < gonk(G1). Then D|G1 has rank less than k, so we must
be able to pass chips from G2 to G1. Since there are � edges between G1 and G2, it
follows that deg(D) ≥ � ≥ gonk(G1) + gonk(G2).

Theorem 1.1 is a direct corollary.

Proof of Theorem 1.1. Let �x, �y ∈ Gr. By definition, there exist graphs G1 and G2

such that gonk(G1) = xk and gonk(G2) = yk for all k ≤ r. By Proposition 4.2, there
exists a graph G with gonk(G) = xk + yk for all k ≤ r. Moreover, if G1 has genus
g1 and G2 has genus g2, then by Proposition 4.2, for any � ≥ gonr(G1) + gonr(G2),
there exists such a graph G of genus g = g1 + g2 + �.
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Using the fact that G2 is closed under addition, we provide a short proof of
Theorem 1.2.

Proof of Theorem 1.2. Let G be a graph. By Lemma 2.1, we have gon2(G) ≥
gon1(G) + 1. By Lemma 2.2, gon2(G) ≤ 2 · gon1(G). In other words, G2 ⊆ C2.

We now show the reverse containment. In other words, we show that if x + 1 ≤
y ≤ 2x, then there exists a graph G with gon1(G) = x and gon2(G) = y. We proceed
by induction on y − x. For the base case, when y = x + 1, by Lemma 3.1, the
complete graph on x+ 1 vertices Kx+1 satisfies

x = gon1(Kx+1) = gon2(Kx+1)− 1.

For the inductive step, if y ≥ x+2, then since (y−2)−(x−1) = y−x−1, by induction
(x − 1, y − 2) ∈ G2. If T is a tree, then gonr(T ) = r for all r, so (1, 2) ∈ G2. By
Theorem 1.1, therefore, (x, y) is a reducible element of G2, and the result follows.

A similar strategy allows us to construct triples (x, y, z) ∈ G3 where z is large
relative to x.

Proof of Theorem 1.4. Let (x, y, z) ∈ N
3 satisfy x < y < z, y ≤ 2x, z ≤ x + y.

Suppose further that if y = x + 1, then z = 2x, and if z = x + y, then y = 2x. We
will address these two edge cases first. Suppose that y = x + 1 and z = 2x. By
Lemma 3.1, the first 3 terms of the gonality sequence of the complete graph Ky are
(x, x + 1, 2x), so (x, x + 1, 2x) ∈ G3. Similarly, suppose that z = x + y and y = 2x.
The first three terms of the gonality sequence of a tree are (1, 2, 3). By Theorem 1.1,
therefore, we have (x, 2x, 3x) ∈ G3. For the remainder of the proof, we assume that
y ≥ x+ 2 and z ≤ x+ y − 1.

We now show that, if z = 2x, then (x, y, z) ∈ G3. If y = 2x − 1, then by
Lemma 3.2, the first 3 terms of the gonality sequence of the complete bipartite graph
Kx,x are (x, 2x − 1, 2x), so (x, 2x − 1, 2x) ∈ G3. Otherwise, if x + 2 ≤ y ≤ 2x − 2,
then the first 3 terms of the gonality sequence of the complete graph K2x−y+1 are
(2x − y, 2x − y + 1, 4x − 2y) and the first 3 terms of the gonality sequence of the
complete bipartitie graph Ky−x,y−x are (y−x, 2y−2x−1, 2y−2x). By Theorem 1.1,
therefore, we have

(2x− y, 2x− y + 1, 4x− 2y) + (y − x, 2y − 2x− 1, 2y − 2x) = (x, y, 2x) ∈ G3.

We now consider cases where 2x < z ≤ x + y − 1. If y = 2x, then the first 3
terms of the gonality sequence of the complete bipartitie graph Kx,z−x are (x, 2x, z),
so (x, 2x, z) ∈ G3. If y = x + 2, then by assumption, z = 2x + 1. As above, the
first 3 terms of the gonality sequence of the complete graph Kx are (x− 1, x, 2x− 2)
and the first 3 terms of the gonality sequence of a tree are (1, 2, 3). By Theorem 1.1,
therefore, we have

(x− 1, x, 2x− 2) + (1, 2, 3) = (x, x+ 2, 2x+ 1) ∈ G3.
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It remains to consider the cases where x + 3 ≤ y ≤ 2x − 1. Similar to the
above, the first 3 terms of the gonality sequence of the complete graph K2x−y+2 are
(2x−y+1, 2x−y+2, 4x−2y+2). Since z > 2x, we have z+y−3x−1 > y−x−1,
and since z ≤ x+y−1, we have z+y−3x−1 ≤ 2(y−x−1). It follows that the first
3 terms of the gonality sequence of the complete bipartitie graph Ky−x−1,z+y−3x−1

are (y − x− 1, 2y − 2x− 2, 2y − 4x− 2 + z). By Theorem 1.1, therefore, we have

(2x−y+1, 2x−y+2, 4x−2y+2)+(y−x−1, 2y−2x−2, 2y−4x−2+z) = (x, y, z) ∈ G3.

Proof of Lemma 1.6. If q ≥ 2, the conclusion follows from Theorem 1.4. If 1 < q < 2,
then there exists an integer n ≥ 2 such that n+1

n
≤ q < n

n−1
. If q = n+1

n
, then by

Lemma 3.5, for all m ≥ n + 1, we have (nm, (n + 1)m− 1, (n+ 1)m) ∈ G3, and the
conclusion follows.

If q > n+1
n
, let ε1 = q − n+1

n
, let ε2 = n−(n−1)q

n+1
, and let ε = min{ε1, ε2}. By

assumption, ε > 0. We can therefore write q = z
x
, where x ≥ 1

ε
. Finally, let

m = nz − (n + 1)x and let m′ = nx − (n − 1)z. By construction, m ≥ n and
m′ ≥ n+ 1. By Lemma 3.5 and Theorem 1.1, we have

((n− 1)m,nm− 1, nm) + (nm′, (n+ 1)m′ − 1, (n+ 1)m′) = (x, z − 2, z) ∈ G3.

5 Third Gonality of the Graphs B∗
a,b

The 1st and 2nd gonalities of the graph B∗
a,b are computed in [1]. In this section, we

compute the 3rd gonalities of these graphs. We first consider divisors on B∗
a,b of rank

3 with a large number of chips on va.

Lemma 5.1. Let D be a divisor of at least rank 3 on the graph B∗
a,b. If D(va) ≥ b+1,

then deg(D) ≥ a + b.

Proof. We proceed by induction on a. For the base case consider the banana graph
B∗

2,b. We will proceed by cases.

(1) If D(v2) = b+1, then since D has rank at least 3, the divisor D−2 · (v2)− (v1)
must be equivalent to an effective divisor. This divisor has b − 1 chips on v2,
so we must have D(v1) ≥ 1. Hence, deg(D) ≥ a+ b.

(2) If D(v2) ≥ b+ 2, then deg(D) ≥ b+ 2 = a+ b.

Now for the induction step assume that the theorem holds for the banana graph
B∗

a−1,b−1. If D(va) ≥ a + b, we are done. If D(va) = b + 1, then let D′ = D − 2va.
Without loss of generality, assume that D′ is va−1-reduced. Then, by Lemma 4.1, we
have

rk(D|B∗
a−1,b−1

) ≥ rk(D′|B∗
a−1,b−1

) ≥ rk(D′) ≥ rk(D)− 2 ≥ 1.
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By Lemma 3.4, it follows that deg(D|B∗
a−1,b−1

) ≥ a, hence deg(D) ≥ a+b+1. Finally,

if b+ 2 ≤ D(va) < a + b, consider the equivalent divisor obtained by firing va. This
divisor has at least 2 chips on va. Note that va can only be fired once since a < b. By
Lemma 4.1, the restriction of this divisor to the subgraph B∗

a−1,b−1 must have rank
at least 3 and there are at least b chips on va−1, so by the inductive hypothesis there
are least a + b− 2 chips on this subgraph. So deg(D) ≥ a+ b.

We also consider divisors on B∗
a,b of rank 3 with a small number of chips on va.

Lemma 5.2. Let D be a divisor on B∗
a,b of rank at least 3. If D(va) ≤ 2, then

deg(D) ≥ a+ b.

Proof. Assume without loss of generality that D is va−1-reduced. We proceed by
cases.

(1) If D(va) = 0, then consider the divisor D−va. The resulting divisor has a debt
on va, so we must have D(va−1) ≥ b. After moving b of these chips in D to va
and subtracting one from va, by Lemma 4.1, the remaining divisor must have
rank at least 2 on B∗

a−1,,b−1. Hence, by Lemma 3.4, there must be at least b
more chips on the rest of the graph. So deg(D) ≥ 2b ≥ a+ b.

(2) If D(va) = 1, then consider the divisor D − 2 · (va). The resulting divisor has
a debt on va, so D(va−1) ≥ b. After moving b of these chips in D to va and
subtracting two from va, by Lemma 4.1 the remaining divisor must have rank
at least 1 on B∗

a−1,b−1. Hence, by Lemma 3.4, there must be at least a−1 chips
on the rest of the graph. Therefore, deg(D) ≥ a + b.

(3) If D(va) = 2, then consider the divisor D−3 ·va. There is now a debt of −1 on
va, so again there must be at least b chips on va−1. By Lemma 5.1, there must
be at least a+b−2 chips on the subgraph induced by the vertices {v1, . . . va−1}.
Thus, deg(D) ≥ (a+ b− 2) + 2 = a+ b.

Our computation of the 3rd gonality of B∗
a,b will proceed by induction on a. The

following lemma establishes the base case, when a = 2.

Lemma 5.3. If b ≥ 4, then gon3(B
∗
2,b) = 6.

Proof. As with any graph gon3(B
∗
2,b) ≤ 3|V (B∗

2,b)| = 6. Assume there is a divisor D
with deg(D) < 6. By symmetry, we may assume that D(v2) ≤ 2. We proceed by
cases.

(1) If D(v2) = 0, then D(v1) ≤ 5. Consider the divisor D − 2 · (v1) − (v2). This
divisor has a debt of −1 on v2 but at most 3 chips on v1, so D cannot be rank
at least 3.

(2) If D(v2) = 1, then D(v1) ≤ 4. Consider the divisor D − (v1) − 2 · (v2). This
divisor has a debt of −1 on v2 but at most 3 chips on v1, so D cannot be rank
at least 3.



A. FESSLER ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 343–361 354

(3) If D(v2) = 2, then D(v1) ≤ 3. Consider the divisor D − 3 · (v2). This divisor
has a debt of −1 on v2 but at most 3 chips on v1, so D cannot be rank at
least 3.

We conclude that gon3(B
∗
2,b) = 6.

Lemma 5.4. If b ≥ 2a, then gon3(B
∗
a,b) = 3a.

Proof. As with any graph, gon3(B
∗
a,b) ≤ 3|V (B∗

a,b,n)| = 3a. Now, let D be a divisor
of rank 3, and assume without loss of generality that D is va−1-reduced. If deg(D) ≥
a + b, we are done. If not, by Lemma 5.2, D(va) ≥ 3. We will proceed by induction
on a. The base case is Lemma 5.3. Now assume that gon3(B

∗
a−1,b−1) = 3(a− 1). By

Lemma 4.1, the restriction of D to B∗
a−1,b−1 must have rank at least 3, so there are

at least 3(a− 1) chips on that subgraph. It follows that deg(D) ≥ 3a.

Theorem 5.5. If a ≤ b ≤ 2a− 1 then gon3(B
∗
a,b) = a+ b.

Proof. First note that the divisor

(b+ 1) · (va) +
a−1∑
i=1

vi

has rank at least 3 and degree a + b, so gon3(B
∗
a,b) ≤ a + b. Now, let D be a

divisor of rank at least 3. If deg(D) ≥ a + b, we are done. If not, by Lemma 5.2,
we have D(va) ≥ 3. We proceed by induction on a. For the base cases, we have
gon3(B

∗
2,2) = 4 and gon3(B

∗
2,3) = 5, by the Riemann-Roch Theorem for graphs [3,

Theorem 1.12], and gon3(B
∗
a,2a) = 3a by Lemma 5.4. For the induction step assume

that gon3(B
∗
a−1,b−1) = a + b − 2. Since D(va) ≥ 3, therefore, we have deg(D) >

a + b.

6 Symmetric Generalized Banana Graphs

Our goal now is to find a large family of graphs G such that gon3(G) < 2 · gon1(G).
In this section, we consider a family of generalized banana graphs. Let v1, . . . , va be
the vertices in L = B∗

a,b and let w1, . . . , wa be the vertices in R = B∗
a,b. Let B

0,0
a,b,k be

the graph obtained by connecting va to wa with k edges, as in Figure 3.

v1 v2 v3 v4 w4 w3 w2 w1

L R

Figure 3: The symmetric generalized banana graph B0,0
4,5,7.
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As we will see in Lemma 6.1 and Corollary 6.2.1 below, the 1st and 2nd gonality of
B0,0

a,b,k are both even. To obtain more gonality sequences, we also consider generalized

banana graphs that are “almost” symmetric. Let B0,1
a,b,k be the graph obtained by

connecting the vertex va in L = B∗
a,b−1 to the vertex wa in R = B∗

a,b by k edges.

Let B1,0
a,b,k be the graph obtained by connecting the vertex va−1 in L = B∗

a−1,b to

the vertex wa in R = B∗
a,b by k edges. Finally, let B1,1

a,b,k be the graph obtained by
connecting the vertex va−1 in L = B∗

a−1,b−1 to the vertex wa in R = B∗
a,b by k edges.

We begin by computing the first gonalities of these graphs.

Lemma 6.1. If 2 ≤ a ≤ b ≤ 2a− 1 and k ≥ 2a, then

gon1(B
0,0
a,b,k) = gon1(B

0,1
a,b,k) = 2a

gon1(B
1,0
a,b,k) = gon1(B

1,1
a,b,k) = 2a− 1.

Proof. This follows directly from Lemma 3.4 and Proposition 4.2.

To compute the 2nd gonality of these graphs, we will need the following refinement
of Proposition 4.2.

Proposition 6.2. Let G1 and G2 be graphs, let v1 ∈ V (G1), v2 ∈ V (G2), and let G
be the graph obtained by connecting v1 to v2 with � edges. If

� ≥ gon2(G1) + gon2(G2)−min{gon1(G1), gon1(G2)},

then
gon2(G) = gon2(G1) + gon2(G2).

Proof. Let D1 be a divisor of rank 2 and degree gon2(G1) on G1, and let D2 be a
divisor of rank 2 and degree gon2(G2) on G2. Then the divisor D1 +D2 has rank at
least 2 on G, so gon2(G) ≤ gon2(G1) + gon2(G2).

For the reverse inequality, let D be a divisor of rank at least 2 on G. We must
show that deg(D) ≥ gon2(G1) + gon2(G2). Without loss of generality, assume that
D is v1-reduced. Since D has rank at least 2, deg(D|G1) ≥ gon2(G1) by Lemma 4.1.
We proceed by cases. First, if deg(D|G2) ≥ gon2(G2), then deg(D) ≥ gon2(G1) +
gon2(G2).

Second, if gon1(G2) ≤ deg(D|G2) < gon2(G2), then (D|G2) does not have rank
at least 2, so we must be able to pass chip across the � edges. Thus, deg(D) ≥
� + gon1(G2) ≥ gon2(G1) + gon2(G2).

Finally, if deg(D|G2) < gon1(G2), then D|G2 does not have positive rank. Again,
we must be able to pass chips across the � edges. Let D′ be the divisor obtained by
firing the subset of vertices V (G1). If E is the sum of a vertex of G1 and a vertex
of G2, then D − E is equivalent to an effective divisor. It follows that D′|G1 must
have positive rank. Thus, deg(D′|G1) ≥ gon1(G1), so deg(D′) ≥ � + gon1(G1) ≥
gon2(G1) + gon2(G2).
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Corollary 6.2.1. If 2 ≤ a ≤ b ≤ 2a− 1 and k ≥ 2b− a+ 3, then

gon2(B
0,0
a,b,k) = gon2(B

1,0
a,b,k) = 2b+ 2

gon2(B
0,1
a,b,k) = gon2(B

1,1
a,b,k) = 2b+ 1.

Proof. This follows directly from Lemma 3.4 and Proposition 6.2.

We now compute the 3rd gonalities of these graphs.

Theorem 6.3. Let 2 ≤ a ≤ b ≤ 2a− 1 and let 2b ≤ k. We have the following:

(1) if k ≤ 2a+ b− 1, then gon3(B
0,0
a,b,k) = k + b+ 1,

(2) if k ≤ 2a+ b− 1, then gon3(B
0,1
a,b,k) = k + b,

(3) if k ≤ 2a+ b− 2, then gon3(B
1,0
a,b,k) = k + b+ 1, and

(4) if k ≤ 2a+ b− 2, then gon3(B
1,1
a,b,k) = k + b.

Proof. We prove this in the case of B0,0
a,b,k. The other graphs are similar. First

note that the divisor k · (va) + (b + 1) · (wa) has rank at least 3. This shows that
gon3(B

0,0
a,b,k) ≤ b+k+1. For the reverse inequality, let D be a divisor of rank at least

3 on B0,0
a,b,k, and assume that D is va-reduced. By Lemma 4.1 and Theorem 5.5, we

have deg(D|L) ≥ a + b. We proceed by cases.

First, if deg(D|R) ≥ a + b, then deg(D) ≥ 2a+ 2b ≥ k + b+ 1.

Next, if b+1 ≤ deg(D|R) < a+b, then D|R has rank at most 2, so we must be able
to pass chips across the k edges. It follows that deg(D|L) ≥ k, so deg(D) ≥ k+b+1.

Third, if a ≤ deg(D|R) < b + 1, then D|R has rank at most 1, so we must able
to pass chips across the k edges. Let D′ be the divisor obtained from D by firing
the subset of vertices V (L). If E is an effective divisor with deg(E|L) = 1 and
deg(E|R) = 2, then D − E is equivalent to an effective divisor. It follows that D′|L
must have rank at least 1. Thus, deg(D) ≥ 2a+ k ≥ k + b+ 1.

Finally, if deg(D|R) < a, then D|R does not have positive rank, so we must be
able to pass chips across the k edges. Again, let D′ be the divisor obtained from D
by firing the subset of vertices V (L). If E is an effective divisor with deg(E|L) = 2
and deg(E|R) = 1, then D − E is equivalent to an effective divisor. It follows that
D′|L must have rank at least 2. Thus, deg(D) ≥ k + b+ 1.

We can use these graphs to identify a large collection of sequences in G3.

Theorem 6.4. If (x, y, z) ∈ C3 satisfies y ≥ x + 2, 3
2
y ≤ z + 2 ≤ x + y, then

(x, y, z) ∈ G3.

Proof. If x and y are both even, consider the graph B0,0
a,b,k with a = 1

2
x, b = 1

2
(y− 2),

and k = z − 1
2
y. Since y ≥ x + 2, we have a ≤ b. Since z ≤ x + y − 2, we have

k ≤ 2a + b − 1, and since z ≥ 3
2
y − 2, we have 2b ≤ k. By Theorem 6.3, the first 3

terms of the gonality sequence of B0,0
a,b,k are (2a, 2b+ 2, k + b+ 1) = (x, y, z).
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Similarly, if x is even and y is odd, consider the graph B0,1
a,b,k with a = 1

2
x,

b = 1
2
(y−1), and k = z− 1

2
(y−1). If x is odd and y is even, consider the graph B1,0

a,b,k

with a = 1
2
(x + 1), b = 1

2
(y − 2), and k = z − 1

2
y. Finally, if x and y are both odd,

consider the graph B1,1
a,b,k with a = 1

2
(x+ 1), b = 1

2
(y − 1), and k = z − 1

2
(y − 1).

Corollary 6.4.1. If 2a+ 2 ≤ b ≤ 3a− 1, b 
= 2a+ 3, then (2a, b, 3a+ 1) ∈ G3.

Proof. If b = 2a+2, then (2a, 2a+2, 3a+1) ∈ G3 by Theorem 6.4. If 2a+4 ≤ b and
m = b−2a−1, then m ≥ 3. By Lemma 3.5, the first 3 terms of the gonality sequence
of the rook graph K3�Km are (2m, 3m− 1, 3m) ∈ G3. If n = 3a− b+1, then n ≥ 2.
By Theorem 6.4, we have (2n, 2n+ 2, 3n+ 1) ∈ G3. Thus, by Theorem 1.1, we have

(2m, 3m− 1, 3m) + (2n, 2n+ 2, 3n+ 1) = (2(n+m), 3m+ 2n+ 1, 3(m+ n) + 1)

= (2a, b, 3a+ 1) ∈ G3.

We now prove Theorem 1.5.

Proof of Theorem 1.5. If z ≥ 2x, then this follows from Theorem 1.4. For the re-
mainder of the proof, we therefore assume that z < 2x.

Next, consider the case where y = x + 2. By Theorem 6.4, if 3
2
x + 1 ≤ z ≤ 2x,

then (x, x+ 2, z) ∈ G3. For the remainder of the proof, we assume that y ≥ x+ 3.

Next, consider the cases where z ≥ 2x− 2. If z = 2x− 1, then since 3
2
x+ 2 ≤ z,

we have x ≥ 6, and if z = 2x−2, then then since 3
2
x+2 ≤ z, we have x ≥ 8. For x ≤

7, the possibilities are: (x, y, z) = (6, 8, 11), (6, 9, 11), (7, 9, 13), (7, 10, 13), (7, 11, 13).
All of these except for (7, 11, 13) are in G3 by Theorem 6.4. To see that (7, 11, 13) ∈
G3, note that (3, 5, 6) ∈ G3 by Theorem 1.4, and (4, 6, 7) ∈ G3 by the third graph in the
right column of [1, Table 4.1]. By Theorem 1.1, (3, 5, 6)+ (4, 6, 7) = (7, 11, 13) ∈ G3.
For 8 ≤ x ≤ y − 3, by Theorem 1.4, we have (x − 6, y − 8, 2x − 11), (x − 6, y −
8, 2x− 10) ∈ G3, and by Lemma 3.5, we have (6, 8, 9) ∈ G3. Thus, by Theorem 1.1,
(x, y, 2x− 2), (x, y, 2x− 1) ∈ G3 as well. For the remainder of the proof, we assume
that z < 2x− 2.

We now consider the cases where 3x ≤ y + z. Let a = 2z − 3x, b = 2x− z, and
c = y + 3z − 6x + 1. Since z ≥ 3

2
x + 2, we have a ≥ 2. Since y ≤ z − 2, we have

c ≤ 2a−1, and since 3x ≤ y+z, we have c ≥ a+1. It follows from Theorem 1.4 that
(a, c, 2a) ∈ G3. Similarly, since z ≤ 2x− 3, we have b ≥ 3. By Lemma 3.5, the first
3 terms of the gonality sequence of the rook graph K3�Kb are (2b, 3b− 1, 3b) ∈ G3.
Thus, by Theorem 1.1, we have

(a, c, 2a) + (2b, 3b− 1, 3b) = (a+ 2b, 3b+ c− 1, 2a+ 3b)

= (x, y, z) ∈ G3.

We now consider the remaining cases. Since y ≥ x+3 and 3x ≥ y+ z+1, we see
that z ≤ 2x−4. Similarly, since z ≥ 3

2
x+2, we have y ≤ 3x−z−1 ≤ 3

2
x−3 ≤ z−5.

If a = 2z− 3x− 2, then a ≥ 2, so by Theorem 1.4, we have (a, c, 2a) ∈ G3 for all c in
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the range a+1 ≤ c ≤ 2a−1. If b = 2x− z+1, then since z ≤ 2x−4, we have b ≥ 5.
Thus, by Corollary 6.4.1, (2b, d, 3b+1) ∈ G3 for all d in the range 2b+2 ≤ d ≤ 3b−1,
d 
= 2b+ 3. If a > 2, we can choose c and d so that c+ d can take any integer value
in the range

x+ 3 = (a + 1) + (2b+ 2) ≤ c+ d ≤ (2a− 1) + (3b− 1) = z − 3.

If a = 2, then c must be 3, and we cannot choose d so that c+ d = 2b+3. However,
in this case we have y = x+4, and the sequence (x, x+4, z) is in G3 by Theorem 1.4.
Otherwise, since x+ 3 ≤ y ≤ z − 5, we may choose c and d so that c+ d = y. Thus,
by Theorem 1.1, we have

(a, c, 2a) + (2b, d, 3b+ 1) = (a+ 2b, c+ d, 2a+ 3b+ 1)

= (x, y, z) ∈ G3.

7 Gonality Sequences of Algebraic Curves

By Theorem 1.2, the semigroup Gr is not finitely generated for any r ≥ 2. Indeed,
if �x ∈ Gr and xi+1 = xi + 1 for some i, then �x is irreducible. As we have seen
in Theorem 1.1, if �x ∈ Gr is reducible, then there exists graphs of arbitrarily large
genus with gonality sequence �x. Irreducible elements of Gr are more mysterious. In
this final section, we study the gonality sequences of algebraic curves C such that
gonr(C) = gonr−1(C) + 1 for some r. These curves have interesting properties, and
we ask whether graphs with the same gonality sequence exhibt the same properties.

Lemma 7.1. Let C be a smooth curve and let r be a positive integer. If gonr(C) =
gonr−1(C) + 1, then C is isomorphic to a smooth curve of degree gonr(C) in P

r.

Proof. Let L be a line bundle on C of rank r and degree gonr(C). Let ϕL : C → P
r

be the map given by the complete linear series of L, let B = ϕL(C) be the image,

let ν : B̃ → B be the normalization of B, and let ϕ : C → B̃ be the induced map.

We first show that the map ϕ has degree 1, and is therefore an isomorphism.
For any point p ∈ B̃, the line bundle ν∗OB(1)(−p) has rank at least r − 1 on B̃.
Thus, ϕ∗ν∗OB(1)(−p) has rank at least r − 1 on C. Note that L = ϕ∗ν∗OB(1), and
deg ϕ∗(p) = deg(ϕ), hence

deg(ϕ∗ν∗OB(1)(−p)) = deg(L)− deg(ϕ) = gonr(C)− deg(ϕ).

Since gonr−1(C) = gonr(C)− 1, it follows that deg(ϕ) = 1.

We now show that the map ν is an isomorphism. If not, then B is singular,
and projection from a singular point yields a nondegenerate map to P

r−1 of degree
at most gonr(C) − 2. Since gonr−1(C) = gonr(C) − 1, this is again impossible. It
follows that the map ϕL is an isomoprhism onto its image.

Lemma 7.1 has several consequences.



A. FESSLER ET AL. /AUSTRALAS. J. COMBIN. 88 (3) (2024), 343–361 359

Lemma 7.2. Let C be a curve with the property that gon2(C) = gon1(C) + 1. Then
the genus of C is g =

(
gon1(C)

2

)
and, for any r < g, we have

gonr(C) = k · gon2(C)− h,

where k and h are the uniquely determined integers with 1 ≤ k ≤ gon2(C) − 3,

0 ≤ h ≤ k, such that r = k(k+3)
2

− h.

In particular, if gon1(C) ≥ 2, then gon3(C) = 2 · gon1(C).

Proof. By Lemma 7.1, C is isomorphic to a smooth plane curve of degree gon2(C).
The genus of such a curve is

(
gon1(C)

2

)
, and its gonality sequence is computed in

[11, 9].

Lemma 7.3. Let C be a curve with the property that gon3(C) = gon2(C) + 1, and
let m = �1

2
gon2(C)
. Then the genus of C is at most m · gon3(C) − m(m + 2).

Moreover, if equality holds, then

gon1(C) =
⌈1
2
(gon3(C)− 1)

⌉
.

Proof. By Lemma 7.1, C is isomorphic to a smooth space curve of degree gon3(C).
By [8, Theorem IV.6.7], the genus of C is at most m · gon3(C) − m(m + 2), and
if equality holds, then C is contained in a quadric surface. A tangent plane to the
quadric meets it in two lines, which meet the curve C in gon3(C) points. It follows
that one of these two lines must meet C in at least 1

2
gon3(C) points, and projection

from this line yields a nondegenerate map to P
1 of degree at most 1

2
gon3(C). Thus,

gon1(C) ≤ 1

2
gon3(C).

On the other hand, we have

gon1(C) ≥ 1

2
gon2(C) =

1

2
(gon3(C)− 1),

and the result follows.

Question 7.4. Let G be a graph with the property that gon3(G) = gon2(G) + 1, and
let m = �1

2
gon2(G)
.

(1) Must the genus of G be at most m · gon3(G)−m(m+ 2)?

(2) If equality holds, is it true that

gon1(C) =
⌈1
2
(gon3(C)− 1)

⌉
?

Lemma 7.5. Let C be a curve. If gon3(C) ≤ gon1(C) + 3, then gon1(C) ≤ 6 and
gon1(C) 
= 5.
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Proof. Suppose that gon3(C) ≤ gon1(C) + 3. Then either gon2(C) = gon1(C) + 1 or
gon3(C) = gon2(C) + 1. If gon2(C) = gon1(C) + 1, then by Lemma 7.2,

2 gon1(C) = gon3(C) ≤ gon1(C) + 3,

hence gon1(C) ≤ 3.

If gon3(C) = gon2(C) + 1, then by Lemma 7.1, C is isomorphic to a smooth
space curve of degree gon3(C). By [10, Proposition 4.1], if gon3(C) ≥ 10, then
gon3(C) ≥ gon1(C) + 4, hence we must have gon3(C) ≤ 9.

It remains to show that, if gon3(C) = 8, then gon1(C) ≤ 4. Since every curve
of genus 6 or less has gonality at most 4, we may assume that C has genus at least
7. By Lemma 7.3, if gon3(C) = 8, then C has genus at most 9, and if it is equal
to 9, then gon1(C) ≤ 4. If C has genus 8, then OC(2) has degree 16 > 2 · 8 − 2,
hence h0(C,OC(2)) = 9. It follows that C is contained in a quadric surface, and
again, gon1(C) ≤ 1

2
gon3(C) = 4. Finally, if C has genus 7, then by Riemann-Roch,

KC ⊗OC(−1) has degree 4 and rank 1, hence gon1(C) ≤ 4.

Question 7.6. Let G be a graph. If gon1(G) = 5 or gon1(G) ≥ 7, does it follow that
gon3(G) ≥ gon1(G) + 4?
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