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Abstract

This is the first paper in a sequence of three that describe the 3-connected
binary matroids with circumference 8. A matroid M is said to be bent
provided it has a maximum size circuit C' such that M /C has a connected
component with rank exceeding 1. Otherwise, it is said to be unbent.
An unbent matroid M is said to be crossing when M has a maximum
size circuit C, sets X and Y contained in different rank-1 connected
components of M/C such that |X| = |Y] =2 and M|(CUX UY) is
a subdivision of M (Ky). Otherwise, it is said to be uncrossing. In this
paper, we construct the unbent crossing 3-connected binary matroids
with circumference 8. In the second paper of this sequence, we describe
the bent 3-connected binary matroids with circumference 8. In the third
and final paper of this series, we deal with the unbent uncrossing 3-
connected binary matroids with circumference 8.

1 Introduction

We assume familiarity with matroid theory. The notation and terminology used in
this article follow Oxley [7]. For a positive integer n, we use [n] to denote the set
{1,2,...,n}. For a set S, the family of 2-subsets of S is denoted by (g) We decided
to start the construction of all 3-connected binary matroids having circumference 8
and large rank with the unbent crossing case because only in this case does there
appear a family of 4-connected matroids.

There are many sharp extremal results in matroid theory whose bounds depend
on the circumference. When one of these bounds is used to prove a theorem, it may
imply that a counter-example to it must have small circumference. It is likely that
the knowledge of all matroids with small circumference may simplify the proof of
such a result. This was the motivation to construct the 3-connected binary matroids
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with circumference at most 7 and large rank by Cordovil, Maia Jr. and Lemos [2]. In
this paper, we start to construct all 3-connected binary matroids with circumference
8 and large rank. We hope to apply our results to describe the 3-connected binary
matroids with no odd circuit with size exceeding 7 extending the main result of
Chun, Oxley and Wetzler [1].

Lemos and Oxley [6] establish a sharp lower bound for the circumference of a
3-connected matroid with large rank, namely:

Theorem 1.1 Suppose that M is a 3-connected matroid. If r(M) > 6, then
circ(M) > 6.

A binary matroid M is said to be a book having pages My, My, . .., M,, for n > 2,
and r-spine T', for r > 2, provided:

(i) My, My, ..., M, are binary matroids;
(ii) T = E(M)NE(My)N---NE(M,);

(iv

)
)
(iii) E(My) —=T,E(Ms) —T,..., E(M,) — T are pairwise disjoint sets;
) My|T = Ms|T = --- = M,|T = K is isomorphic to PG(r — 1,2); and
) M =

(v PK(Ml, My, ..., M,), that is, the circuit space of M is spanned by C(M;)U

C(My)U---UC(M,).

The next two theorems were restated using this concept of a book proposed by Chun,
Oxley and Wetzler [1].

Theorem 1.2 (Cordovil, Maia Jr. and Lemos [2]) Let M be a 3-connected bi-
nary matroid such that r(M) > 8. Then, circ(M) = 6 if and only if there is a book
M’ with pages My, My, ..., M, forn=r(M)—2, and 2-spine T" such that, for each
i € [n], M; is isomorphic to M(Ky) or Fr and M = M'\S, for some S CT.

Let M’ be as described in Theorem 1.2. Without loss of generality, we may assume
that M; is isomorphic to F; if and only if i < m. For i € [m/, choose a; € E(M;) —T
and set T = E(M;) — (T'Ua;). Let Ng = M'\{a1,as,...,a,}. Note that Ny is
isomorphic to M(K3',). For i € [m], consider N; = M"\{a; : j € [m] and j > i}.
Hence N,, = M'. For i € [m], we have that

(1) T; is a triad of N;_1; and
(2) N;—1 = N;\a; and T U q; is a circuit-cocircuit of V;.

Therefore NNV; is the unique single-element binary extension of N;_; obtained by adding
the element a; such that T* U q; is a circuit. That is, M’ is obtained from a matroid
isomorphic to M(K3',) after a sequence of m single-element binary extensions each
one adding a new element making a 4-element circuit with the elements of some
triad. A similar construction can be done for M’ in Theorem 1.3. This description
was used to state the main results of Cordovil, Maia Jr. and Lemos [2].
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Theorem 1.3 (Cordovil, Maia Jr. and Lemos [2]) Let M be a 3-connected bi-
nary matroid such that r(M) > 9. Then, circ(M) = 7 if and only if there is a book
M’ with pages My, My, ..., M, forn=r(M)—3, and 2-spine T" such that, for each
i € [n—1], M; is isomorphic to M(Ky) or Fr, M, is a 3-connected rank-4 binary
matroid having a Hamiltonian circuit C' satisfying |T N C| =2 and M = M’'\S, for
some S CT.

A union of pages from a book with a 2-spine forms a 3-separating set. Con-
sequently any matroid that appears in Theorems 1.2 or 1.3 is not internally 4-
connected. The same thing happens with the main results of the next two papers of
this series dealing with 3-connected binary matroids with circumference 8 (see [4, 5]).
Below, we state the main result of [4] as an example. All matroids that will appear
in [4, 5] are described using books with a 2-spine.

Cordovil and Lemos [3] constructed the 3-connected matroids with circumfer-
ence 6. These matroids can be described using a natural generalization of a book for
non-binary maroids. We do not state the result here to avoid giving this definition
since it is not necessary in the remainder of this paper.

For an integer k£ exceeding 3, we denote by Z; the rank-k binary spike. There
is just one element of Z; belonging to k triangles. This element is called the tip of
Z. All matroids obtained from Zj; by deleting an element other than the tip are
isomorphic. When k = 4, such a matroid is isomorphic to Ss. The tip of Sy is its
unique element belonging to 3 triangles.

Let M be a 3-connected binary matroid having circumference 8. We say that
M is unbent provided, for every circuit C' of M satisfying |C| = 8, each connected
component of M/C has rank equal to 0 or 1. Otherwise, we say that M is bent.
Now, the main result of Lemos [4] is:

Theorem 1.4 Let M be a bent 3-connected binary matroid with circumference 8. If
r(M) > 14, then there is a book M’ with pages My, My, ..., M, and 2-spine T such
that, for a fived e € T and for each i € [n],

(i) M; is isomorphic to a matroid belonging to {Z4, Ss, Fr, M (Ky)};
(i1) when r(M;) =4, e is the tip of M;; and
(i) M = M'\T", for someT" C T.
Moreover, m = |{i € [n] : r(M;) =4} >3 and m +n > 12.
Let M be an unbent 3-connected binary matroid having circumference 8. We
say that M is crossing when M has an 8-element circuit C, sets X and Y contained
in different rank-1 connected components of M/C' such that |X| = |Y| = 2 and

M|(CUX UY) is a subdivision of M(K,). Now, we state the main result of this
paper. Its proof can be found in Section 3.
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Theorem 1.5 Let M be an unbent crossing 3-connected binary matroid with cir-
cumference 8. If r(M) > 11, then

(i) M is a 3-connected rank-preserving restriction of M", where M" is a book
with pages My, My, ..., My, for t = r(M) — 3, and 3-spine F' such that M; is
isomorphic to PG(3,2), for every i € [t]; or

(ii) M = M"\T', where T" CT and M" is a book with pages My, My, ..., My, for
t =r(M)—5, and 2-spine T such that, for each i € [t]—{1}, M; is isomorphic
to K(Ky4) or F; and My is a 3-connected binary matroid satisfying:

(A) My has a circuit D such that |D| =6 and |DNT|=2; and
(B) the simplification of My /T is isomorphic to F} or AG(3,2).

If M" is the book described in Theorem 1.5(i), then M" is internally 4-connected
and M"\F is 4-connected. Both M” and M"\ F have circumference equal to 8. Note
that M"\F has a rank-preserving restriction isomorphic to M (Ky,).

Every matroid described in the conclusion of Theorem 1.4 is a bent 3-connected
binary matroid with circumference 8. To restrict the matroids described in The-
orem 1.5(i) so that they are contained in the class of unbent crossing 3-connected
binary matroids with circumference 8 would produce a cumbersome statement (in the
next paragraph, we state the condition). By Lemma 2.7(v), any matroid described
in Theorem 1.5(i) has circumference at most 8. We give just one example to stress
the complications that may occur. For the book M” described in Theorem 1.5(i),
choose a line L of M"|F. For each i € [t], let P; be a plane of M; containing L.
Observe that N = M"|(FU P, U P, U---U P,) is a rank preserving restriction of
M". But N is a book with pages M"|F, M|Py, Ms|Ps, ..., M| P, and 2-spine L. By
Lemma 2.7(v), its circumference is 6. (Each page of NV is isomorphic to F7.)

Let M"” be the book described in Theorem 1.5(i). We say that a subset X of
E(M") — F induces a crossing on M"” when there is a 6-subset {i1, s, 13,14, 15,16}
of [t], a partition { X1, Xo, X3, X4, X5, X6} of X and a 6-subset {aq, as, as, a4, as, ag}
of F' such that, for each k € [6], X}, is a 2-subset of E(M;,) — F and X; U ay, is
a triangle of M;, . A restriction M”|Y of M", for some Y C E(M"), is a rank-
preserving unbent crossing 3-connected binary matroid with circumference 8 if and
only if there is X C Y such that X induces a crossing on M” and, for every k € [t],
Y N [E(Mg) — F]| > 3. In Lemma 2.9, we establish this fact.

Note that M; may have at most 35 elements in Theorem 1.5(ii). This occurs
when each parallel class of M /T has 4 elements and its simplification is isomorphic
to AG(3,2). If M" satisfies Theorem 1.5(ii)(A), then the circumference of M” is at
least 8. To see this, assume that D N'T = {a, f} and chose triangles T and T3 of
M, and M3 respectively such that 7o, N T = {a} and T3 NT = {B}. Observe that
D N'Ty ATy is a circuit of M” avoiding T having 8 elements. By Lemma 2.6, the
circumference of M” is at most 8. Therefore, when M” satisfies Theorem 1.5(ii), the
circumference of M"\T is 8.
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The next results about the circuit space of a binary matroid M are used without
reference throughout this paper:

(i) A cycle of M is an union of pairwise disjoint circuits of M.
(ii) The symmetric difference of circuits of M is a cycle of M.

(iii) The circuit space of M is spanned by the circuits of M and it has dimension
equal to r*(M).

(iv) If C is a cycle of M and X C E(M), then C — X is a cycle of M/X.

2 Preliminary results

Let M be a matroid. For F* C E(M), an F-arc is a minimal non-empty subset A of
E(M) — F such that there exists a circuit C' of M with C — F = A and C N F # ().
Note that A is an F-arc if and only if A € C(M/F) — C(M). The next result is
Lemma 2.2 of Cordovil, Maia and Lemos [2].

Lemma 2.1 Let M be a connected matroid. If ) # F C E(M), M|F is connected
and circ(M/F) > 3, then there is a circuit C' of M/F such that C is an F-arc and
IC] > 3.

The next result is implicit in Cordovil, Maia and Lemos [2].

Lemma 2.2 Let M be a connected matroid. Suppose that M|F is connected, for
0#FSGEM). If |Al <2, for every F-arc A, then every connected component of
M/F has rank equal to 0 or 1.

Proof: The result follows because, by Lemma 2.1, circ(M/F) < 2. O

We say that L is a theta set of a matroid M provided L C E(M) and M|L is a
subdivision of Uy 3. When Ly, Ly and Lj are the series classes of M|L, {L1, Lo, L3}
is said to be the canonical partition of L in M. If |Li| = a,|Ls| = b and |L3| = ¢,
then L is said to be an (a,b,c)-theta set of M. The next result has a standard proof.
We present it for completeness.

Lemma 2.3 Let M be a matroid with circumference 8. If L is a theta set of M,
then |L| < 12. Moreover, when |L| € {11,12}, L is an (a,b, c)-theta set of M, where
(a,b,c) € {(4,4,4), (4,4,3),(5,3,3)}.

Proof: Let {Ly, L2, L3} be the canonical partition of L. Assume that

Li] > |Lal > | Lol (2.1)
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As C(M|L) = {Ll U LQ, L1 U Lg, L2 U Lg}, it follows that

= 2(|La| + |Lo| + [Ls]) = 2|L].

Therefore |L| < 12. If |L| = 12, then equality holds in (2.2). In particular, |L; U
Lyl = |Ly U Lg| = |LyU Ly| = 8. Hence |Ly| = |Ly| = |L3] = 4 and so L is a
(4,4, 4)-theta set. Assume that |L| = 11. By (2.2), there is a 2-subset {i,j} of
[3] such that |L; U L;| = 8. By (2.1), we may assume that {i,j} = {1,2}. Hence
|Ls| = |L| — |L1 U Ly| =11 — 8 = 3. Thus |L| = |Le| =4 and L is a (4,4, 3)-theta
set of M or |L1| =5 and |Ls| = 3 and L is a (5, 3, 3)-theta set of M. O

Lemma 2.4 If M is a matroid with circumference 8, then the following statements
are equivalent:

(i) M is unbent.

(ii) Every theta set of M has at most 10 elements.

Proof: Assume that M is bent. By definition, M has a circuit C' such that |C| = 8
and M/C has a connected component with rank exceeding 1. By Lemma 2.2, there
is a C-arc A of M such that |A| > 3. Therefore C'U A is a theta set of M having at
least 11 elements.

Now, assume that M has a theta set L such that |L| > 10. By Lemma 2.3, L is an
(a, b, ¢)-theta set of M, where (a, b, c) € {(4,4,4),(4,4,3),(5,3,3)}. If {Lq, Ly, L3} is
the canonical partition of L and |Ly| > |Ls| > |Ls|, then C' = Ly U Ly is a circuit of
M having 8 elements and, in M/C, Ls is a circuit with at least 3 elements. If K is
the connected component of M/C such that Ly C E(K), then r(K) > |L3| —1 > 2.
Thus M is bent. O

Lemma 2.5 Let N be 3-connected binary matroid having a triangle T' such that the
simplification of N/T is isomorphic to F¥ or AG(3,2). If C is a circuit of N such
that C N'T # 0, then

IC—T|<8-2|TNC|. (2.3)

Proof: Assume that [N C| = 1. In this case (2.3) becames |C| —1 < 6. This is true
because circ(N) < r(N)+1=7. If |TNC| =2, then N/T = N/(TnC)\(T — C).
Thus C' — T is a circuit of N/T and so |C' —T| < 4. Hence (2.3) follows. O

The next lemma will be used to establish that the circumference of any matroid
described in Theorem 1.5(ii) is exactly 8.

Lemma 2.6 Let N be a book having pages N1, No, ..., Ny, for m > 3, and 2-spine
T such that N; is isomorphic to F; or M(Ky), for each i € [m] — {1}. If Ny is a
3-connected binary matroid such that the simplification of Ny /T is isomorphic to F
or AG(3,2), then circ(N) < 8.
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Proof: Assume this result fails. If C'is a circuit of N such that |C| = circ(N), then
|C| > 9. For a positive integer n, C' = C;, AC;, A---AC;,, where C is a cycle of Nj,
for every j € J = {iy,i2,...,i,} C [m], where 1 < i3 < iy < -+ < i, < m. Choose
J and these cycles such that n is minimum. If n = 1, then C' is a circuit of N;;; a
contradiction because |C| < circ(V;,) < r(N;,) +1 < 7. Thus n > 2. By the choice
of n, C; =T # 0, for every j € J. (It C; C T, say j = iy, then C;, € {0, T} is a cycle
of N;, ,andso C;, , AC;, isacycle of N;, . This cycle can replace C;, , and C;, in
the symmetric difference that defines C'; a contradiction to the minimality of n.) If
C;NT =0, for some j € J, then there is a circuit D of N; such that D C C; ; C;a
contradiction since D is a circuit of N. Hence C;NT # (), for every j € J. Therefore
|C; NT| € {1,2}, for each j € J. For j € J, we set

]G when |C; NT| =1,
71O, AT, when |C;NT| = 2.

In particular, |D; N T| = 1. Note that D; is a circuit of N;, otherwise C' contains
properly a circuit of N;. Now, we show that

if {j,7'} is a 2-subset of [n], then D; N T # D;; NT. (2.4)

If (2.4) fails, then D; A D is acycle of N and so C = D;ADjy = (D;—T)U(D;—T).
If 7/ < j, then N; is isomorphic to M(Ky) or Fr and so |D; — T| = 2. Hence
9 < |C|] = |Dy —T| + 2; a contradiction because 7 < |Dy —T| = |Dy| —1 <
circ(Nj) —1 < r(N;) < 6. Thus (2.4) holds. In particular, n < |T'| = 3. Next, we
establish that ¢y = 1. If 1 € J, then

9<|C| = |CNT|+ Dy, —T|+|Dy, —T|+---+|D
CNT|+2n < |CNT|+6 < 8

_T|

in

a contradiction. Thus 1 € J.
Case 1. n = 3, say J = {1,2,3}.

By (2.4), T = {e1, e9,e3}, where {e;} = D; N T for j € J. First, we prove that
{ea,e3} Ncly, (D1) = 0. If e5 or e3 belongs to cly, (D1), say eq, then there is a circuit
D of Ny such that e € D C (D —e1) Uey. Thus DA Dy C (Dy —e1) U (Dg — €3)
is a non-empty cycle of N properly contained in C'; a contradiction. Therefore
{e2,es3} Necly, (Dy) = 0. Hence |Dy| < r(N;) = 6. Observe that

C/:DlADQAD:gAT:(Dl—el)U(Dg—eg)U(Dg—eg)
is a cycle of N and so C' = C". Hence 9 < |C| = |Dy — e1]| + |Dy — es] + | D3 — e3] =

|Dy —e1] +4. Hence |Dy| = 6. Now, D = D; AT is a circuit of Ny because {eq, e3} N
cly, (D7) = 0; a contradiction to Lemma 2.5 since 5= |D —T| >8 —2|DNT| = 4.
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Case 2. n =2, say J = {1,2}.

As Cl N CQ 7é (Z), it follows that {01,02} € {{Dl A T, DQ}, {Dl,DQ A T}, {D1 A
T,Dy AT}}. Hence

. DlﬁDgAT: (D1—el)U(Dg—eg)U(T—{el,eg}) or
| D1 A Dy =Dy UD,.

The second possibility cannot occur and so

9<|Cl = |Di—el+|D2— e +|T —{er, €2}
= |D1—€1|+2—|—1 = |D1_€1‘+3-

Therefore |D;| = 7 and Dy — ey is a basis for N;. When T = {ey, e, e3}, there is a
circuit C” of Ny such that e3 € C" C (D; — e1) U es; a contradiction because C” is
properly contained in C. O

Now, we establish a simple result. Item (ii) of the next lemma was used by
Cordovil, Maia Jr. and Lemos [2] without proof. We added item (iv) in the next
lemma because Theorem 1.5 (i) will become an immediate consequence of it.

Lemma 2.7 Let N be a simple binary matroid. For L C E(N) and m > 2, if
the connected components Ky, Ky, ..., K, of N/L satisfy r(K;) = r(K3) = -
r(K,) =1, then

(1) the circuit space of N is spanned by {C € C(N) : |C — L| € {0,2}};
(i) E(Ky), E(K3),..., E(K,,) are pairwise disjoint cocircuits of N ;

(i1i) when N|L = PG(r — 1,2), for some r > 2, then N is a book with pages
N|[E(K,)UL],N|[E(K2)UL],...,N|[E(K,)UL] and r-spine L. Moreover,
each page of this book has rank equal to r + 1; and

(iv) when N|L = PG(r—1,2), for somer > 2, then N is a rank-preserving restric-
tion of a book with r-spine L and r(N) —r pages, each isomorphic to PG(r,2);
and

(v) when N|L = PG(r —1,2), for some r > 2, then circ(N) < 2r + 2.

Proof: 1f B" and B" are bases of N|L and N/L respectively, then B = B’ U B” is
a basis of N. As K; is a connected component of N/L and r(K;) = 1, it follows
that |B” N E(K;)| = 1, say B" N E(K;) = {a;}. Hence B" = {ay,as,...,a,}. For
each b € B* = E(N) — B, let C} be the circuit of N such that C, — B = {b}.
The circuit space of N is spanned by C = {C}, : b € B*}. Observe that (i) follows
provided we establish that |C, — L| € {0,2}. As C, — L is a cycle of N/L, it follows
that C, — L is a disjoint union of circuits of N/L. In particular, |C, N E(K;)| €
{0,2}, for every i € [m], and |C, N E(K;)] = 2 if and ounly if b € E(K;) (and
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Cy N E(K;) = {b,a;}). Therefore C, C L, when b € L, and C, — L = {b,a;},
when b € E(K;). Hence (i) follows. Observe that cly(B — a;) = E(N) — E(K;) for
each i € [m]. Therefore F(K;) is a cocircuit of N. We have (ii). By the proof of
(i), there is a natural partition {Co,C1,Ca,...,Cp} of C, where Cop = {C, : b € L}
and, for i € [m], C; = {C} : b € E(K;) — a;}. Note that, for i € [m], Co UC;
spans the circuit space of N; = N|[FE(K;) U L] because B’ U b; is a basis of N;.
Therefore N = Ppy(N1,Na, ..., Ny,) and (iii) holds. For i € [m], let N] be a
matroid isomorphic to PG(r,2) such that E(N;) € E(N!) and N; = N/|E(N;).
Choose N1, N3, ..., N such that E(N;)— L, E(N;)—L,...,E(N],)— L are pairwise
disjoint. Consider the book N' = Py (N7, N3, ..., N],) having pages N{, N3, ..., N,
and r-spine L. Note that N = N'|E(N) and m = r(M) —r(L) = r(M) — r. Hence
(iv) follows.

Now, we establish (v). Let C' be a circuit of N such that |C| = circ(N). As-
sume that |C| > 2r + 2 > 4. By binary orthogonality and (ii), C' N E(K;),C N
E(K3),...,CNE(K,,) are even sets that partition C'— L. Therefore there is a parti-

tion { X1, Xo, ..., X} of C' — L such that | X;| = | X3| =+ = | X,| = 2 and, for each
i € [s], there exists j € [m] such that X; C E(K;). By (iii), for each i € [s], there is
a; € L such that X; U qa; is a triangle of N. If agy1,as19,...,a; are the elements of
C'N L, then,

for any 2-subset {7, 7} of [t], a; # a;. (2.5)

Assume that (2.5) fails. Suppose that ¢ < j. If j > s, then ¢ < s and X; Uaq; is a
triangle of M contained in C'. Hence C' = X; U a;; a contradiction. Thus ¢ < j < s.
In this case (X; Ua;) A (X; Ua;) = X; UXj is a cycle of N contained in C. Hence
C = X, U Xj; a contradiction. Therefore (2.5) holds. Next, we show that

any proper subset of {ay, as,...,a;} is independent in N|L. (2.6)
Let C' be a circuit of N|L contained in {ay, as,...,a:}, say C' = {a;,, @iy, - .., i, },
for 1 <1 <ip <---<iy <t. Ify, <s, then we define [ = k. If s < 7y, then there is

l € [k — 1] such that i, < s < i;41. (If s < iy, then C" = C; a contradiction because
circ(N|L) =r +1.) Thus

C/A (X“ Uail) A (Xzz UaiQ) JARRRWAN (X” Uail) = Xi1 U)(i2 U--- UXil U{OJZ'HN ey aik}
is a non-empty cycle of NV contained in C. Thus it must be equal to C. Hence k = t,

that is, C' = {aq, as, ..., a:}. Therefore (2.6) holds. By (2.6), t < circ(N|L) =r+1
and |C| < 2t = 2r + 2; a contradiction and so (v) follows. O

The next result has a very simple proof. We omit it.

Lemma 2.8 Let C be a cycle of a binary matroid N. If S is a series class of N
such that C' — S is a non-empty independent set of N, then C' is a circuit of N.

In the next lemma, we use the same notation as used in Theorem 1.5(i).
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Lemma 2.9 Fort > 6, let M" be a book with pages My, My, ..., M; and 3-spine F
such that M; is isomorphic to PG(3,2) for every i € [t]. ForY C E(M"), M"|Y is
a rank-preserving unbent crossing 3-connected binary matroid with circumference §

if and only if there is X CY such that X induces a crossing on M" and, for every
ke lt], |Y N[E(M) — F]| > 3.

Proof: By Lemma 2.7(v), the circumference of M"” is 8. First, we describe a maximum
size circuit of M”. Let C be a circuit of M” such that |C| = 8. For i € [t],
set X; = [E(M;) — F] N C. Assume that |X;| > | X3 > --- > |X;|. By binary
orthogonality, |X;| is even. As r(M;) = 4, it follows that |X;| € {0,2,4}. Let s be
the biggest integer such that | X| # 0. For i € [s], set

F; = {a € F : there is a 2-subset A of X; such that AU a is a triangle of M"}.

Note that |F;| = 1, when |X;| = 2, and |F;| = 6, when |X;| = 4. Set Fy = C N F.
Now, we prove that Fy, Fi, Fy, ..., F, are pairwise disjoint. Suppose that a € F; N Fj
for 0 <i < j <s. Let A be a 2-subset of X, such that AUa is a triangle of M". As
AUa ¢ C, it follows that a € C and so ¢ > 1. If A" is a 2-subset of X; such that
A'Ua is a triangle of M"” | then AUA" = (AUa) A (A’ Ua) is a cycle of M” properly
contained in C'; a contradiction. Hence Fy, Fy, Fy, . .., F, are pairwise disjoint and so
|Fo| + |Fil + -+ + |Fs| < |F| = 7. Next, we show that |X;| = 2. If | X;| # 2, then
|X1| =4 and so |Fi| = 6. In this case, s = 1 and |C| < 5 or s = 2 and |C| = 6; a
contradiction. Thus |X;| = 2. For i € [s], we have that F; = {a;}, for some a; € F.
Note that D = FyU{aq,as,...,as} is a circuit of M”|F. Therefore s < 4 — |Fp| and
so |C| = |Fo| + 2s = 8 — |Fy|. Consequently |Fy| = 0 and s = 4. In resume, there
is a partition { X1, Xo, X3, X4} of C such that | X;| = | Xs| = |X3| = | X4| = 2, there
are pairwise different elements iy, 95, i3 and i, of [¢] such that X}, C E(M;, ) — F and,
when X Uay is a triangle of M” for ay € F, we have that {ai, as, as,as} is a circuit
of M"|F. If X" and Y’ are contained in different rank-1 connected components of
(M"|Y)/C, | X' =Y =2 and M|(CUX'UY’) is a subdivision of M(K,), then
we can take X5 = X’ and Xg = Y’ to construct the set X = CU X' UY’ CY that
induces a crossing on M"|Y.

Suppose that M”|Y" is not 3-connected. Let {Z, W} be a [-separation for M"|Y,
where [ € {1,2}, say |Z N X| > 6. As M” does not have loops or parallel elements,
it follows that r(Z) < r(M") — 1. Now, we may assume that Z is closed in M"Y
Observe that |Z N X| > 10 because M"|X is a subdivision of M (K,) having every
series class with size 2. Hence Z spans F in M” and so

clyn(Z) = U{E(M;) : i € [t] and [E(M;) — F|N Z # 0}.
IfI={ielt]:[E(M;)— FINZ =0}, then I # () and
W = Uier[(Y = F) N E(M;)].

Note that r(M") = r(Z)+1] and r(W) > 2+|1|. Therefore r(Z)+r(IV) > r(M")+2.
With this contradiction, we conclude that M”|Y is 3-connected. O
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G H

3 o2

Figure 1: Graphs G and H. For K € {G, H}, let K’ be a graph obtained from K
by replacing each edge uv whose label is a 2-set S by a uv-path of size 2 whose
edges are labeled by the elements of S. Observe that M(G’") = M|(C U A; U A;)
(see item (i) of Lemma 3.1) and that M(H') = M|(C U I}) in item (vi)(2) of
Lemma 3.1.

3 Proof of Theorem 1.5

We first fix some of the notation used throughout this section. Let M be an unbent
3-connected binary matroid having circumference 8. Let C' be a circuit of M such that
|C| = 8. Let Hy, Hy, ..., H, be the rank-1 connected components of M/C. By defi-
nition, when H is a connected component of M/C such that H € {Hy, Ho, ..., H,},
then r(H) = 0. Therefore r(M) = 7+ n. We assume that

n > 4 or, equivalently, r(M) > 11. (3.1)

By Lemma 2.7(ii), E(H,), E(Hs), ..., E(H,) are pairwise disjoint cocircuits of M.

For a 2-subset {i,j} of [n], when there are 2-subsets A; and A; of E(H;) and
E(H,), respectively, such that M|(C U A; U A;) is a subdivision of M (K}), we say
that:

(1) A; and A; cross with respect to C'; and

(2) the 2-subset {i,j} of [n] induces a crossing on C.

Moreover, the next two definitions are used to split the proof of Theorem 1.5 into
two natural cases:

(3) M is C-crossing provided there is a 2-subset of [n] that induces a crossing on
C; and

(4) M is strong C-crossing provided, for every k € [n], there is a 2-subset of
[n] — {k} that induces a crossing on C.

The next lemma is the core of the proof of Theorem 1.5.
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Lemma 3.1 Let A; be a 2-subset of E(H,;), for every | belonging to the 3-subset
{i,7,k} of [n]. If A; and A; cross with respect to C, then, when Cy and Cy are
circuits of M such that A; CCy CCUA; and A; C Cy C CUA;,

(Z) ‘S1| = ‘S2| = ‘S3| = ‘S4| = 2, where Sl = Cl HCQ,SQ = (Cl — CQ) ﬂC', 53 =
C—(CLUCy) and Sy = (Cy — C1)NC. (See the graph in the left in Figure 1.)

(i) Dy = Cy A Cqy and Dy = (C; A Cy) A C are 8-elements circuits of M.

(11i) Suppose that S € {Ag,{e}}, where e € cly(C) — C. If D is a circuit of M
such that S € D C CUS, then |J| < 2, where J = {l € [4] : |S,Nn D| = 1}.
Moreover, if S = {e}, then |J| < 1.

(iv) There is J C [4] such that Ay U ((J{S;: 1 € J}) is a circuit of M.
(v) r(E(H,;)) <4, for everyl € [n] —{i,j}.

(vi) If I is an independent set of M such that |I| = 4 and I C E(H,), for some
l€n]—{i,j}, then

(1) there is a 3-subset {a,b,c} of I such that {a,b} US; U Sy, {a,c} U S U
Ss},{b,c} US1USy are circuits of M and, when d € I —{a,b,c}, {a,d}U
Siyy {b,d} U S;,, {c,d} US;, are circuits of M, for a 3-subset {iy,ia,i3} of
[4]; or

(2) The elements of I can be labeled by a,b,c,d such that {a,b} U S;,{b,c}U
Siy, {e,d} U Siy,{d,a} US;, are circuits of M, where [4] = {iy,iz,13,74}.
(See the graph in the right in Figure 1.)

(vii) If I is an independent set of M such that I C E(H,;) and r(E(H,)) = |I| = 3,
for some | € [n] — {i, 7}, then the elements of I can be labeled by a,b,c such
that

(1) {a,b} US; U Sy, {a,c} US;USs,{b,c} US| USy are circuits of M; or

(2) {a,b} U S;,{b,c}US;, {a,ctUS;, US,, are circuits of M, for a 2-subset
{i1, 42} of [4].

(viii) If it is not possible to choose Ay such that A; and Ay cross with respect to C,
then r(E(Hg)) = 3 and (vii)(2) occurs for | =k and an independent 3-subset
I of E(Hy) with {i1,i2} € {{1,2},{3,4}}. Moreover, we can choose Ay such
that A; and Ay cross with respect to C.

(iz) If {i,k} does not induces a crossing on C, for every k € [n] — {i,j}, then
r(E(H,)) =3, for every l € [n] — {j}, and when I, is an independent set of M
such that I} C E(H,), |I;| = 3, we can label the elements of I; by a;, by, ¢; such
that

(1) {ay, b} U Sy, {b,c} USs, {a, e} US USy are circuits of M; or
(2) {a;, b} USs, {by,c;} USy, {a,} US3U Sy are circuits of M.
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Figure 2: The geometric representation of M'|F (see Lemma 3.1(xi)). It is iso-
morphic to F7.

(x) If r(E(H;)) =3, forl € [n], then |E(H,)| € {3,4}. Moreover, when |E(H,))| =
4, E(H,) is a circuit-cocircuit of M.

(xi) Let M’ be a binary matroid such that:
(a) E(M) C E(M’);
(b) r(M) = r(M’);
(¢) M = M'|E(M);
(d) E(M’) — E(M) C {041,042,043,064,0412,0613,0414} = Iy
(e) M'|F = F; (see Figure 2);
(f) S1Uay, Sy Uag, SsUas, Sy Uay are triangles of M'; and
(9) |E(M")| is minimum subject to the conditions (a) to (f).

Then M' is 3-connected and, when | € [n]—{i, 7}, H; is a connected component
of M'/F.

(zii) If A US| is a circuit of M, for some l € [4], then C' = (C — S;) U Ay, is an
8-element circuit of M such that A; and A; cross with respect to C'. More-
over, there is a rank-1 matroid K such that S; C E(K) and K is a connected
component of both M /C" and M'/F.

(z1ii) Fach element of clpy (C)—(CUF) is in parallel to some element of C' in M’/ F .

Consider the circuits C] = C; AC and C), = Co AC of M. As A; C C] C CUA;
and A; C C) C C'UA;, we can replace C; by C] and/or Cy by C}, when necessary,
in the proof of Lemma 3.1. Observe that

C{ N 02 = 54 and C - (Ci U 02) = SQ;
01 N Cé = SQ and C - (01 U Cé) = 54;
CINChL=5; and C—(ClLUCLY) =5,

Depending on the choice of the circuits contained in the theta sets A, UC and A;UC
to be C; and Oy respectively, any series class of M|(C' U A; U A;) contained in C
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can be S; or S3, for example. In the proof of this lemma, when we want to prove
some property of Sy, for [ € [4], we just say that “by symmetry, we may assume that
[ =17. (For [ to be 1, we may need to replace Cy by C] and/or Cy by C but we
are not going to say that every time to avoid repetition.) The next matrix organizes
the intersection of these circuits with C'. The union of the sets in the first and the
second lines are equal to Cy N C' and C4 N C respectively. The union of the sets in
the first and the second columns are equal to C] NC' and C} N C respectively.

Sy Sh

Sy Sy
Compare this matrix with the subgraph G\{A;, A;} of the graph G illustrated in
Figure 1.

Proof: (i) First, we show that |S;| > 2, for every [ € [4]. Assume that |S)| < 1. As
M|(C'UA; U A;) is a subdivision of M(K,), it follows that S; # 0. Thus |S;| = 1.
Observe that L = (CUA;UA;)—S; is a theta set of M because r*(M|(CUA;UA;)) =3
and S is a series class of M|(C'UA;UA;). Hence |L| = |C|+|Ai| +|4;] =S| = 11; a
contradiction to Lemma 2.4. Therefore |5;| > 2, for every | € [4]. The result follows
because {S1, Sa, 53,54} is a partition of C' and |C] = 8.

(11) Observe that both D1 = Az U Aj U SQ U 54 and D2 = Az U Aj U Sl U Sg have 8
elements, by (i).

(iii) Replacing D by D A C', when necessary, we may assume that |D N C| < 4. For
leJ,set DNS, ={a;} and S;— D = {b;}. For clarity, we decide to divide the proof
of this item into two similar parts.

Now, suppose that |J| € {3,4}. By symmetry, when |J| = 3, we may assume
that J = {1,2,4}. Thus DN S; = ) because |D N C| < 4. Consider the following
cycle of N = M|(CUA; UA; US):

C, DA01ACQ:SUAiUAjU{al,bg,ag,b4}, when |J|:47
|CADAC,AC,=SUAUA;U{b,as,a,}USs, when |J]| =3.
Observe that
C/—S: AiUAjU{&l,b27a37b4}, When |J| :4,
AiUAjU{bl,ag,a4}U53, when |J| :3,
is a non-empty independent set of N. By Lemma 2.8, C" is a circuit of N since S is
a series class of N. We arrive at a contradiction because |C'| > 9. Thus |J| < 2.

Next, suppose that |J| = 2. To finish the proof of (iii), we need to establish
that S # {e}. By symmetry, we may assume that D NS, = (). First, we show that
IDNC|=2. It |DNC|# 2, then |[DNC| =4 and DNS; # 0, for every [ € [3].
Moreover, there is a unique [ € [3] such that S; C D. Consider the cycle of N:

DAC,AC=SUA;US; US;UA{as,bs}, when S; C D,
D'=¢DAC, ACy,=SUA;UA;USyU{as, a3}, when Sy C D,
DACy,=8SUA;US3USiU{by,as}, when S3 C D.
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Observe that D’ — S is an independent set of N. By Lemma 2.8, D’ is a circuit
of N; a contradiction because |D’| > 9. Thus |D N C| = 2. Now, we show that
J = {1,3}. Suppose that J € {{1,2},{2,3}}. By symmetry, we may assume that
J ={1,2}. In this case, using Lemma 2.8 again, we conclude that D A C} A Cy =
SUA;UA;U{ay, by} USy is acircuit of N with at least 9 elements; a contradiction.
Thus J = {1,3}. Assume that S = {e}. In [M|(C U A; UA,)]/D;, S; and Sz are
parallel classes. Hence M/D; has rank-1 connected components H; and H, such that
S1 C E(HY) and S3 C E(H)) because, by (ii), D; is an 8-element circuit of M and M
is unbent. As D = {e, a1, a3} is a cycle of M /Dy, it follows that a; € X1 = DNE(HY)
and ag € Xo = DNE(H)) are disjoint cycles of M/D; contained in D; a contradiction
because | X1| > 2,|X3| > 2 and |D| = 3. Consequently |J| < 1 when S = {e}. Thus
(iii) follows.

(iv) As Ay U C' is a theta-set of M, we can choose a circuit D of M such that A C
D C CUAj and |DNC| < 4. Observe that |[DNC| > 2, otherwise (A,UC)—(DNC)
is a circuit of M with 9 elements. Assume that (iv) fails. By symmetry, we may
assume that |D N S;| = 1. Now, we show that D NSy # 0. If DN Sy = (), then
0 # DN (S3USy) G S3USy because 2 < [DNC| < 4and so 1 < [DN[C'—(S1US,)]| < 3.
Therefore A; and Ay cross with respect of C'; a contradiction to (i) applied to A; and
Ay because |[C; N D| = 1. Thus D NSy # 0. Now, A; and Ay cross with respect to
C. By (i) applied to A; and Ay, we have that |[D N (S; USy)| = |DN(S2USs)| = 2.
As |D NSy = 1, it follows that |D N Syl = 1. Observe that A; and Ay cross with
respect to C' and so |[D N (S;USy)| = |DN(S3U8y)| =2, by (i) applied to A; and
Ag. Therefore |D N S| = 1, for every | € [4]; a contradiction to (iii). With this
contradiction, we finish the proof of item (iv).

Now, we set the notation to be used in items (v) to (vii). Assume that [ is an
independent set of M such that I C E(H,), for some [ € [n]. For a 2-subset A of
I, let C4 be a circuit of M such that A C Cy C C' U A. (There are two choices for
Ca because C'U A is a theta set of M.) By (iv), there is a ) # J4 G [4] such that
Ca=AU(U{S::t € Ja}). Note that

Ja # Ja, when A and A’ are different 2-subsets of I, (3.2)

otherwise Cy A Cyr = AN A’ # 0 is a cycle of M properly contained in I.

(v) Suppose that |I| = 5. Replacing Cy by C' A Cy, when necessary, we may assume
that 4 € J4. There are at most 7 different possibilities for J4. As ’ (é) ’ = 10, it follows
that I contains different 2-subsets A and A’ such that J4 = Ja; a contradiction
to (3.2) and so I does not exist. Hence r(E(H;)) < 4.

To establish items (vi) and (vii), we make a different choice for J4. Replacing Cy
by C' A Cy, when necessary, we may assume that |J4| € {1,2} and, when |J4| = 2,
1 € J4. Therefore

Ja€ {{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {1,4}}. (3.3)

(vi) Suppose that || = 4. Consider T = {J4: A € (})}. By (3.2), |Y| = 6. By (3.3),

we have 7 choices for J4. We have two cases to deal with:
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Case 1. {{1,2},{1,3},{1,4}} C T.

Suppose that Ja, = {1,2}, Ja, = {1,3} and Ja, = {1,4}, for 2-subsets A;, A and
As of I. Thus

CA1ACA2ACA3:(AlﬁAgAAg)U(SlLJSQUSgUSZL):(AlAAQAAg)UC.

Therefore A; A Ay A As C Iis acycle of M and so A; A Ay AN As = 0. As Ay, Ay, A
are 2-subsets of I, it follows that A; = {a, b}, Ay = {a, c}, A3 = {b, ¢}, for a 3-subset
{a,b,c} of I. Thus {a,b} US; U Sy, {a,c}US; USs, {b,c}US;US, are circuits of
M. If d € A, for a 2-subset A of I and {d} = I — {a,b,c}, then, by (3.3), |[Ja| = 1.
By (3.2), we have (vi)(1) holds in this case.

Case 2. {{1},{2},{3}.{4}} C T.

Let G be a complete graph having [ as vertex set. If {a,b} is a 2-subset of I,
then we color the edge ab of G with the color |J. 53| € {1,2}. By (3.2) and (3.3),
G has 2 edges with color 2 and 4 edges with color 1. Now, we show that G has
no monochromatic triangle. Assume that {a,b,c} is a monochromatic triangle of
G. The color of its edges must be 1. There is a 3-subset {iy,i2,i3} of I such
that Crapy = {a,b} U Si,, Craey = {a,c} U S, and Cp ey = {b,c} U S;,. Therefore
Crapy & Claey A Cppey = 53, U Si, US;, is a cycle of M properly contained in C; a
contradiction. Thus G has no monochromatic triangle. Hence the edges of color 2
is a perfect matching of G, say ac and bd. Therefore Cyopy = {a,b} U S;,Cppey =
{b, C} U SZ‘2, C{C,d} = {C, d} U Siga O{d,a} = {d, CL} U Si47 where {il, ig, ig, 24} = [I] We
have (vi)(2). Note that M|(C U I) is a subdivision of M (W,).

(vii) If (1) does not hold, then, by (3.2) and (3.3), there is a 2-subset {a, b} of I such
that Capy = {a, b}US;,, for some iy € [4]. We have (2) unless Cy, 0y = {a, c}US1US;,
and Cp ey = {b,c} U S1 U S, for a 2-subset {ji, j2} of [4]. Assume this is the case.
Thus the cycle of M

1] 75 C{a,b} A C{mc} A C{b,c} = Sil AN (Sj1 U sz)

is properly contained in C'; a contradiction.

(viii) Suppose this result fails. First, we show that r(F(Hy)) = 3. Assume that
r(E(Hy)) > 3. By (v), r(E(Hg)) = 4. If (vi)(1) happens for | = k, then A; and
Ay, = {b, ¢} cross with respect to C; a contradiction. If (vi)(2) happens for [ = k, then
A; and Ay cross with respect to C, for some Ay € {{a,c},{b,d}}; a contradiction.
Hence r(E(Hy)) = 3. Now, we show that (vii)(1) cannot happen for | = k. If (vii)(1)
occurs for [ = k, then A; and Ay = {b,c} cross with respect of C'; a contradiction.
Thus (vii)(2) happens for [ = k. As A; and Ay = {a, ¢} do not cross with respect to
C, it follows that {i,i2} € {{1,2},{3,4}}. Note that A; and A; = {a, c} cross with
respect of C'.

(ix) By (viii), (ix) follows for [ € [n] — {i,j}. We need to establish it for I = i. By
(viii), there is a 2-subset {j1,j2} € {{1,2},{3,4}} such that A, US;, US}, is a circuit
of M, for some A;. Hence A, U S, US; is a circuit of M. Thus A; and Ay, cross. By
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(viii) applied to k, 7,4 in place of 4, j, k, we conclude that (vii)(2) holds for [ = i with
{i1,i2} € {{1,2},{3,4}}. Hence (ix) follows also for [ = i.

(x) If d € E(H;) — I, where I is a 3-subset of E(H,), then, by binary orthogonality,
dU [ is a circuit of M. Thus d is unique and |E(H,)| = 4.

(xi) As F may contain many elements of M, it follows, by the minimality of M’,
that M’ is simple and so M’ is 3-connected. By (iv), E(H,) is contained in a parallel
class of M'/F. As E(H,) is a cocircuit of M, by Lemma 2.7, and E(M) — E(H,)
spans F'in M’, it follows that F(H,;) is a cocircuit of M’. Thus H; is a connected
component of M'/F.

(xii) By symmetry, we may assume that [ = 1. As C'U Ay, is a theta set of M, it
follows that C" = C' A (S; U Ay) is an 8-element circuit of M. The simplification
N of M|(CUA; UA,;UAy) has a non-trivial parallel class P = E(N) N (S; U Ay),
say P = {a,b}, where a € Sy and b € A;. Thus N\b and N\a are simplifications
of M|(C'UA; UA,) and M|(C"U A; U A;) respectively. Hence A; and A; cross
with respect of both C' and C’. Note that {Ag, Ss,Ss3,S4} is the set of non-trivial
series classes of M|(C'U A; U A;) contained in C". As Hy,...,Hy_1, Hppa,..., Hy
are the rank-1 connected components of M/(C'U A;) = M/(C"U S)), it follows that
M /C' has another rank-1 connected component K such that S; C K. Observe that
AU = (S1Uaq) A (A US)) is a triangle of M’. Therefore, when we construct the
matroid M’ using C’ instead of C', we arrive at the same matroid (up to the labeling
of the elements of F'). By Lemma 3.1(xi) taking C” in the place of C, we conclude
that K is also a connected component of M'/F,

(xiii) Assume that e € cly(C) — (C U F). Let D be a circuit of M such that e €
D C C'Ue. There are disjoint subsets J; and J, of [4] such that [DN S| =t € {1,2}
if and only if [ € J;. By (iii) applied to S = {e}, we have that |J;| < 1. As Sj, 59, S3
and Sy are circuits of M'/F, it follows that D" = D — U{S, : | € J} is a cycle of
M'/F. It J; = 0, then D’ = {e} and so e is spanned by F in M’; a contradiction.
Thus |Ji| =1, say J; = {l} and DN S; = {@;}. In this case, D" = {e,a;} and (xiii)
follows. O

Now, we describe briefly how to establish Theorem 1.5(i). Let M’ be defined
as in Lemma 3.1(xi). In items (xi) and (xii) of Lemma 3.1, we give conditions for
M'/F to have many rank-1 connected components. When we are lucky and all
connected components of M’/F have rank equal to 1, we can apply Lemma 2.7(iv)
to conclude that Theorem 1.5(i) holds. This strategy will be used three times to
obtain Theorem 1.5(i). In the remaining case, we need another decomposition to get
Theorem 1.5(ii).

To describe M, we need to divide the analysis into two cases with different ap-
proaches.
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Case 1. It is possible to choose C such that M is strong C-crossing.

Lemma 3.2 If X = cly(C) — C, then there is a partition {S1, S, S3,S4} of C
such that Sy, Ss, S3, Sy are non-trivial series classes of M\X. Moreover, when M’ is
defined as in Lemma 3.1(xi), Hy, Ha, ..., H, are connected components of M'/F.

Proof: Let G be a simple graph having [n] as vertex set such that ij € F(G) if
and only if {i, 7} is a 2-subset of [n] that induces a crossing on C. (Remember that
n >4, by (3.1).) By hypothesis, for each ¢ € [n], there is an edge of G not incident
to i. By Lemma 3.1(viii), for each ij € F(G) and k € [n] — {i,7}, we have that
E(G) N {ik,jk} # 0. Thus G contains a matching Y such that |Y| = 2. After a
reordering of H;’s, we may assume that Y = {12,34}, that is,

both {1,2} and {3,4} induce a crossing on C. (3.4)

For {i,j} € {{1,2},{3,4}}, let A; and A; be respectively a 2-subset of E(H;) and
E(H;) such that A; and A; cross with respect to C. Consider N;; = M\[X U
(E(H;)—A;)U(E(H;) — A;j)]. By Lemmas 2.7(i) and 3.1(i)(iv), there are partitions
{S1, 52, 53,54} and {S}, 5%, S5, S} of C such that Sy, Sy, S3, S, are non-trivial series
classes of Ny and S7, 5%, 5%, are non-trivial series classes of N3y As Nipo|(C'U
A1 U A2 U Ag U A4) = N34|(C U A1 U A2 U Ag U A4), it follows that {Sl, SQ, Sg, 54} =
{851, 5%,55,5,}. The result follows because the circuit space of M\X is spanned
by C(N12) UC(N34). To conclude that Lemma 3.1(v)(vi)(vii)(xi)(xiii) holds for every
[ € [n] and Lemma 3.1(xii) holds for every k € [n], we apply Lemma 3.1 for an {7, j} €
{{1,2},{3,4}} such that [ & {i,j} and k & {7, j} respectively. By Lemma 3.1(xi),
H,, H,, ..., H, are connected components of M'/F. O

Lemma 3.3 Using the partition {Sy, Sa, S3,S4} of C obtained in Lemma 3.2, if M’
is the matroid described in Lemma 3.1(xi), then the connected components of M'/F
are Hy,Ho, ..., H,, K1, K5, K3, Ky, where r(K;) = 1 and S; C E(K;), for every
i€ [4].

Proof: By Lemma 3.2, Hy, Hs, ..., H, are connected components of M’'/F. For
i € [4], there is a parallel class P; of M'/F such that S; C P; because S; is a
circuit of M'/F. If K; is a connected component of M'/F such that P; C E(K;),
then E(K;) C E(M') — [FUE(H,)UE(Hy)U---UE(H,)| = cly(C) — F because
H,,H,, ..., H, are connected components of M’/F. By Lemma 3.1(xiii), cly(C) —
F:P1UP2UP3UP4. Thus E(Kl) QP1UP2UP3UP4 IfE(KZ) :PZ‘, forevery
i € [4], then Lemma 3.3 follows. Assume that F(K;) # P, for some i € [4], say
i=1. As ryp(C) = 7 and ry(F) = 3, it follows that 7y /p(C) = 4. For i € [4],
choose a; € S;. Hence ryp/p({a1,a2,a3,as}) = 4. Let K be the simplification of
K such that E(K) C {ay, as, a3, as}. We arrive at a contradiction because E(K) is
independent in K. a
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By Lemma 3.3, we can apply Lemma 2.7(iv) to M’ to obtain Theorem 1.5(i),
when Case 1 happens.

Case 2. It is not possible to choose C' such that M is strong C-crossing. Choose C'
such that M is C-crossing (but M is not strong C-crossing).

By definition of strong C-crossing, there is j € [n] such that no 2-subset of
[n] — {j} induces a C-crossing. When necessary, we can reorder Hy, Ho, ..., H, so
that j =1 and {1,2} induces a crossing on C. By Lemma 3.1(i), there is a partition
{51, 52,53, 54} of C' and 2-subsets A; and Ay of F(H;) and E(Hs) respectively such
that |Sl| = |SQ| = |Sg| = |S4| = 2 and 01 = Al U Sl U 54 and 02 = A2 U Sl U SQ are
circuits of M. (We are applying Lemma 3.1 for i = 2 and j = 1.)

By Lemma 3.1(viii), {1,{} induces a crossing on C, r(E(H;)) = 3 and, for an
independent set of E(H;), Lemma 3.1(vii)(2) occurs with {1,492} € {{1,2},{3,4}},
for every | € [n] — {1} (depending of the value of I, use {1,2} or {1,3} as the set
that induces a crossing on C' to apply this lemma). For an integer m satisfying
1 <m <n, we may assume that Lemma 3.1(vii)(2) occurs with {iy, i} = {1, 2}, for
every [ such that 2 <[ < m, and Lemma 3.1(vii)(2) occurs with {iq,is} = {3,4}, for
every [ such that m +1 <1 <n. That is, for [ € [n] — {1}, there is an independent
3-set I; of M contained in FE(H,), say I, = {a;, b, ¢;}, such that:

(1) {ai, b} U Sy, {b,c} U Sy {a, ¢} US; USy are circuits of M, for every [ such
that 2 <1 < m; and

(2) {ay, b} U Ss,{by,c;} USy,{a, ¢} U S3U Sy are circuits of M, for every [ such
that m+1 <[ <n.

(If m = 1, then (2) occurs for every [ € [n] —{1}. If m = n, then (1) occurs for every
Len]—A{1})

When m = 1 or m = n, we say this C-crossing is homogeneous. When 2 < m < n,
we say this C-crossing is heterogeneous.

Subcase 2.1. We can choose C' such that the C-crossing is heterogeneous.

Thus 2 < m < n. Consequently the partition {Si, S, S3,S,} of C is defined by
(1) and (2) applied to [ = 2 and [ = n respectively. Therefore this partition does not
depend on the choice of A;. Let M’ be the matroid defined in Lemma 3.1(xi). By
Lemma 3.1(xi) applied to [ € [n]—{1}, we conclude that H; is a connected component
of M'/F. By Lemma 3.1(xii), for each ¢ € [4], there is a rank-1 connected component
K; of M'/F such that S; C FE(K;). Therefore Hs, Hs, ..., H,, K1, Ky, K3, K4 are
rank-1 connected components of M'/F. As M'/F does not have loops, it follows,
by (3.1), that M’/ F has just another connected component that must have rank 1.
This connected component must be H;. Again, we obtain the book decomposition

described Theorem 1.5(i) as an immediate consequence of Lemma 2.7(iv) applied
to M.

Subcase 2.2. We cannot choose C' such that the C-crossing is heterogeneous.
Choose C' such that the C-crossing is homogeneous.
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S3

Figure 3: A graph that illustrates the possibility of m = n in Subcase 2.2.

Assume that m = 1 or m = n. By symmetry, we may assume that m = n. In
Figure 3, we illustrate this situation. The roles of a, 8 and v are described in the
next paragraph. Assume also that Theorem 1.5(i) does not hold. By Lemma 2.7(iv),

M'/F must have a connected component with rank exceeding 1. (3.5)

Let M” be a matroid such that E(M) C E(M"),r(M) = r(M"), M"|E(M) =
M,E(M")=EM)U{«a, 5,7}, aUS;,BUSy and T = {a, 3,7} are triangles of M”
and M" is simple (that is, some of the elements of {«, 3,7} may belong to M). Hence
M" is 3-connected. By (1), for I € [n] — {1}, {a;, b, ¢} is contained in a parallel class
of M"/T and so, Lemma 3.1(x), E(H,) is contained in a parallel class of M"/T. As
E(H,) is a cocircuit of M"| it follows that Hs, Hj, ..., H, are connected components
of M"/T. For | € [n] — {1}, set M; = M"|(T'U E(H;)). (Observe that if we rename
aq, g and aqe in M\ [{as, ay, cns, an 4} — E(M)] by o, 8 and v respectively, then we
obtain M".)

Now, we prove that M” /T has a rank-1 connected component K; such that S; C
E(K);), for each [ € [2], say | = 1. By Lemma 3.1(xii) and (1), C' = C A ({an, b, } U
S1) = (C' = Sy)U{ay, by} is a circuit of M such that A; and A cross with respect to
C’. By Lemma 3.1(xii), there is a rank-1 connected component K; of M/C" such that
S1 C E(Ky). Set S7 = {an,b,}. By (1), forl € [n—1]—{1}, ({a;, b }US1) A(STUS) =
{a;,b;} U S} is a circuit of M. Similarly {a;,¢;} U S] U Sy is a circuit of M. Hence

(3) {ai, b} U ST, {b, e} U Sy {a, ¢} US)US, are circuits of M, for every [ such
that 2 <[ <n—1.
If S; ={al,b,}, then {al,b,} US] is a circuit of M. Choose ¢, € E(K;) — {a,, b}
such that I! = {al, ¥}, } is independent in M. As the C’-crossing is homogeneous
and (3) holds for [ € {2,3} since n > 4, it follows that
(4) {al,b,} US,{b,, . }USy{al,c,} US]USy are circuits of M or

n-n n’n n’n
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V1

%) 23

Y2 Y3

Figure 4: A graph G such that (M"/T)|(S3U S, U A) = M(G).

(5) {b,,al} US], {al,,c, }USy {b,, c}US]US, are circuits of M

because {a/,, b/, }US] is a circuit of M. When we use C” instead of C' to construct M”,
we obtain the same matroid because M” is defined by (1) or (3) for [ = 2. By the
previous paragraph applied to C” instead of C', we conclude that K is a connected

component of M"/T. For | € 2], set My, = M"|(T U E(K)})).

If My, = M"\[E(H,) U E(Hs) U--- U E(H,) U E(K;) U E(K,)], then M" is a
book having My, My, ..., M,, M, 1, M, .o as pages and spine T'. Moreover, for each
l € [n+ 2] — {1}, M, is isomorphic to M (K4) or F; because r(M;) = 3.

To conclude the proof of Theorem 1.5(ii), we need to verify that M; satisfies (A)
and (B).

Consider K = M"\|E(Hs)UE(H3)U---UE(H,)U(E(K;)—S1)U(E(K3)—52)].
Observe that S; and Sy are non-trivial series classes of K such that K\ (S;USy) = M;.
Let H be a cosimplification of K. Assume that F(H)NS; = {a} and E(H)NS, = {b}.
As S;Ua and Sy U § are triangles of K, it follows that {a,a} and {b, 5} are parallel
classes of H. Moreover, H\{a,b} = M;. This construction permits one to obtain a
circuit of K'\T from a circuit of M; by replacing o and 3 by respectively the elements
of Sy and Sy (and vice-versa). In the first cases, we use symmetric differences to go
from one of these circuits to the other.

Observe that D = C A (e« U S1) A (BUSs) = {a, 5} U S3U S, is a circuit of M;.
Consequently M, satisfies (A) of Theorem 1.5(ii).

Now, we describe the matroid M;. Let A be a 2-subset of E(H;) such that
AUS;USy is acircuit of M. Thus (AUS;USy) A (S1Ua) = AU S Ua is a circuit
of My. Assume that S35 = {ys, 22}, 54 = {y3, 23} and A = {y1,21}. If G is the graph
in Figure 4, then (M"/T)|(S3U Sy U A) = M(G). Observe that {z1,y1,vy2,y3} is a
basis of M;/T. For e € E(M;) — (S3 US4 UAUT), let C, be a circuit of M;/T
such that e € C, C eU S3U Sy U A. For i € [3], there is X; C {y;, z;} such that
C. =eUX; UXyUXj3. Choose C, such that z, = | X;| + | Xz| + | X3] is minimum.
First, we establish that

if {4, 7} is a 2-subset of [3], then | X;| + | X;| < 2. (3.6)

Assume that (3.6) fails. As {v;,y;, 2, 2;} is a circuit of M; /T, it follows that |.X;| +
|X;| = 3, say X; C C, and y; € C.. Observe that D = C. A {vi,yj, 2,2} =
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(C.Uzx;)—(X;Uy;) is a cycle of My /T. If D' is a circuit of M; /T such thate € D" C D,
then D’ is contrary to the choice of C, because |[D'N(AUS3USy)| < x.—2. Thus (3.6)
follows. Now, we consider the three possibilities for x.. If ., = 1, then e is in parallel
with some element of S3 U Sy U A in M;/T. The other two possibilities for z. are
dealt in the next two lemmas.

There is a circuit C? of M; such that C!, — T = C, and C.NT C {«, 8}. Making
the symmetric difference of C! with the triangles S; U o and S, U 8, when necessary,
we obtain the following circuit D, of M:

C., it ¢! Nn{a, B} =10,
b _ JCus, if ¢L N {a, B} = {a},
“T)C.USs, if C.n{w, B} = {8},

Ce U Sl U SQ, if Cé N {a, 6} = {a, 6}

Lemma 3.4 Ifz. = 2, then |X;| = 2, for some i € [3], and e labels an edge joining
v with vy 1 G.

Proof: Assume this result fails. Hence | X;| = |X;| = 1, for a 2-subset {7, 5} of [3]. If
{i,7} = {2, 3}, then, we may permute y3 with z3 in the graph to assume that e label
the edge vgvy. That is, C. = {e,y2,y3}. Hence D, —C = {e} and so e € cly(C) - C.
We arrive at a contradiction to Lemma 3.1(iii) by taking S = {e} because D.NS; =
{yo} and D, N Sy = {y3}. Thus 1 € {i,j}. By symmetry, we may assume that
{i,j} = {1,2}, say C. = {e,y1,92}; that is, e labels the edge vyvs. Observe that
D. — C = {e,y1}. Therefore e belongs to E(H;) because A = {y1,21} C E(H,).
As CN[D. — ({ag, 2} U ST USs)| = {ya}, it follows, by Lemma 3.1(i), that {e,y;}
and {ag, o} do not cross with respect to C. Thus D, = C, or D, = C. U S; U 5.
Observe that C, cannot be a circuit of M, otherwise C A C, = (C' —y2) U {e,y1} is
a 9-element circuit of M. Thus

{e,y1,y2} U S1 U Sy is a circuit of M. (3.7)

Observe that C. A {y1,ys, 21, 22} = {e, 21, 20} is a circuit of M /T. Taking {e, 21, 22}
instead of C, in the previous argument, (3.7) became

{e, 21,20} U ST U S, is a circuit of M. (3.8)
By (3.7) and (3.8),
({e,y1, y2} US1US:) A ({e, 21, 20} U S1 U Ss) = {1,402, 21, 22} = AU S5

is a cycle of M properly contained in AU Sy U S3; a contradiction. a

Lemma 3.5 If z. = 3, then {e,y1,y2,ys} or {e, z1,y2,y3} is a circuit of My/T.
Moreover, My /T must have {e,y1,ya2,y3} or {e, z1,y2, Y3} as a circuit.
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Proof: By the choice of C, and (3.6), we have that | X;| = | Xs| = |X3| = 1. The first
part of the result follows provide we replace C. by C!, where

Ce A {yQ,y:s,ZQ, 23}, when {22, 23} C C.,
Cé = Ce A {yla Ys, Z1, 23}7 when {y2, Z3} g Ce,
Ce A {Y1,Y2, 21, 22},  when {2z, y3} C C..

Observe that [M'/F]|(S3U Sy U A) = M(G’), where G’ is the graph obtained from
G by identifying v; with ve. In particular S3,S; and A are 2-circuits of M'/F.
If z; € {1,2}, for every f € E(M;) — (S3U S, UAUT), then, by Lemma 3.4,
cach element of EF(M;) — (T'U F) is in parallel with some element of {y1,vs,ys3}
in M'/F. As {y1,99,y3} is independent in M'/F, it follows that, for each i € [3],
there is a rank-1 connected component N; of M'/F such that y; € E(N;). Thus
M'/F has only rank-1 connected components; a contradiction. Therefore there is
feE(M)—(S3US;UAUT) such that zy = 3 and the second part of this result
follows from the first. O

Lemma 3.6 z. # 2.

Proof: Assume that z. = 2, for some e € E(M;) — (S3US;UAUT). By Lemma 3.4,
we can take C. = {e,y;, 2}, for some i € [3]. If j # i and j € [3], we can replace
Ce by Co A {yi, 21,95, 2} = {e,y;,2;}. Thus we may assume that C. = {e, y2, 22}.
By Lemma 3.5, there is f € E(M;) — (S5 U Sy UAUT) such that zy = 3. If
possible, choose C such that {as, co} and Dy — C' cross with respect to C'. Assume
that Cr = {f,y1,92,y3}. Observe that f € E(H;) because Dy — C = {f,y1} and
y1 € E(Hy). Now, we prove that {as,c2} and {f,y;} does not cross with respect
to C. If {ag, o} and {f,y1} cross with respect to C, then, by Lemma 3.1(i), S5 =
{yg, yg} = Df — ({CLQ, Cg} USl USQ) and 56 = {22, 23} =(C- [Df U ({CLQ, CQ} USl USQ)]
are series classes of M|(C' U {f,y1,as,c2}). Note that D, meets both S5 and Sg in
just one element; a contradiction to Lemma 3.1(iii) because e € clp(C) — C. Thus
{ag,co} and {f,y1} does not cross with respect to C. Now, Dy N (S USy) = 0 or
S1USy € Dy. Then Dy = Cror Dy AC = {f,y1, 22, 23} is a circuit of M respectively,
say Cy is a circuit of M. But Cy A (AUS1USy) = {f, 21} U{y2, 23} U S, is a circuit
of M. Thus {ag, c2} and {f, z1} cross with respect to C. Therefore {f, z1} U{y2, 23}
is contrary to the choice of Cfy. O

By Lemmas 3.5 and 3.6, the simplification K of M;/T is isomorphic to F} or
AG(3,2). The following matrix gives the binary representation of K. The labels of
the first 6 columns are respectively yi, 21, Yo, 3, 22 and z3. At least one of the last
two columns must exist in the representation of K.

10001110
a_l01o0o011001
00101011
00010111

Consequently M; satisfies (B) of Theorem 1.5(ii). Therefore the proof of Theorem 1.5
is concluded.
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