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Abstract

Let G be a k-tree of order larger than k+1 and let ¢41(G) be its (k+1)-
line graph. We introduce a new concept called the k-clique graph of G,
and denote it by G/[k]. We show that G/[k] is a connected block graph
and (;11(@) is isomorphic to the block graph of G/[k]. This provides an
alternative proof for a recent result by Oliveira et al. that {41(G) is a
connected block graph. A relation between the Wiener index of G/[k]
and the Wiener index of its block graph ¢;,1(G) is obtained as a natural
generalization of the relation between the Wiener index of a tree 7" and
the Wiener index of its line graph L(T"). We further show that there is a
1-1 correspondence between the set of the blocks of (1(G) and the set
of minimal separators of G. Another new concept called the separator-k-
clique graph of G, denoted by G/[k]s, arises naturally with the property
that G/[k|s is isomorphic to the block graph of ¢, 1(G). By the Szeged-
Wiener Theorem, the Wiener index and the Szeged index are equal for

each of the connected block graphs G/[k], (x+1(G) and G/[k]s.

1 Introduction

Let k be a positive integer. The concept of k-trees was first introduced by Harary and
Palmer [13] as k-dimensional simplicial complexes. Beineke and Pippert [4] provided
an inductive definition for k-trees. A k-clique is a k-tree, and a k-tree of order n
can be extended to a k-tree of order n + 1 by adding a new vertex which is adjacent
to all vertices of a k-clique. Patil [20] observed that the above inductive definition
of a k-tree is equivalent to a perfect elimination ordering of a k-tree. We would like
to mention that standard trees are 1-trees in the k-tree notation.

A block of a graph is a maximal connected subgraph with more than one vertex
and without cut vertices. A block graph is a graph whose blocks are cliques. Block
graphs are a generalization of trees whose blocks are K,’s. The block graph of a
graph G, denoted by B(G), is a graph whose vertices are blocks of G and two blocks
are adjacent in B(G) if and only if they have a vertex in common. The block graph
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of a tree T is just its line graph L(7T'). It was shown in [11] that a graph is a block
graph if and only if it is the block graph B(G) of some graph G. Block graphs are
known as chordal and distance-hereditary graphs in which a shortest path between
any two vertices is unique (see [12]).

The concept of k-line graphs was first introduced by Lé [16] as a generalization
of line graphs. The (k+1)-line graph of a k-tree G of order larger than k41,
denoted by (;11(G), is the graph whose vertices are (k + 1)-cliques of G and two
(k4 1)-cliques are adjacent in /1 (G) if and only if they have k vertices in common.
Oliveira et al. [19] showed that ¢,1(G) is a connected block graph. In [17], special
types of k-trees called the simple-clique k-trees (briefly, SC k-tree) were charac-
terized as k-trees whose (k4 1)-line graphs are trees. Some well-known planar graphs
such as maximal outerplanar graphs and chordal maximal planar graphs (also called
Apollonian networks) are examples of SC k-trees. Sharp bounds on Wiener indices
of maximal outerplanar graphs and Apollonian networks and their extremal graphs
were given in [2] and [7], respectively.

Assume that G is a k-tree of order n where n > k + 1. We first introduce a new
concept called the k-clique graph of G (denoted by G/[k]) to show that G/[k] is a
connected block graph and /44 (G) is isomorphic to the block graph of G/[k]. This
provides an alternative proof for the result in [19] that ¢;.1(G) is a connected block

graph. Parallel to the relation W(T') = W(L(T)) + (3) (see [1]) between the Wiener

index of a tree T of order n and the Wiener index of its line graph L(7'), we prove
that W(G/[k]) = K*W (ly11(G)) + (1+(”2_k)k) as a relation between the Wiener index
of G/[k] and the Wiener index of its block graph ¢;,1(G) for a k-tree G of order n.
Recursive formulas for the Wiener index of £;41(G) and the Wiener index of G/[k]
are obtained based on their inductive constructions. We then show that there is a
1-1 correspondence between the set of the blocks of ¢, 1(G) and the set of minimal
separators of (G, that is, the set of k-cliques of GG each of which is contained in at
least two (k 4 1)-cliques of G. A new concept called the separator-k-clique graph of
G (denoted by G/[k]s) arises naturally. It turns out that G/[k|g is isomorphic to
the block graph of £x1(G). The Szeged-Wiener theorem [9] states that the Wiener
index and the Szeged index of a connected graph are equal if and only if the graph
is a connected block graph, which holds for each of G/[k], {x+1(G) and G/[k]s. This
further develops our work in [6] because the Wiener index of G/[k] is equivalent to
the k-Wiener index of a k-tree G introduced there.

2 Preliminaries

Let G be a finite simple graph with the vertex set V(G) and the edge set E(G). The
order of (G is the number of its vertices. Assume that H; and Hs are two subgraphs
of a graph H. Then the graph with the vertex set V(H;) N'V(H;) and the edge set
E(H,)NE(H,) is called the intersection of H; and H, and denoted by HyNH,. Let
S be a subset of V(G). We use SUv (respectively, S\ v) to represent the set obtained
by adding one vertex v to S (respectively, removing one vertex v from S). We write
GS] for the induced subgraph of G on the set S, and G — S (respectively, G — v)
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for the induced subgraph of G obtained by removing all vertices in S (respectively,
removing one vertex v). The graph obtained from the disjoint union of a vertex v
and a graph H such that v is adjacent to all vertices of H is called the join of v and
H, and denoted by v + H.

Assume that G is a connected graph. Let dg(u,v) be the distance between two
vertices u and v in G. The diameter of G is the maximum distance between two ver-
tices of G. The Wiener index W (G) of GG is defined as W/(G) = >, ey () da(u, v)
21]. The status o¢(u) of a vertex u in G is defined as og(u) = 3, cy(g) de(u, v). If
H is a subgraph of G satisfying dy(u,v) = dg(u,v) for any two vertices u and v of
H, then H is called an isometric subgraph of G. A distance-hereditary graph
is a graph in which any connected induced subgraph is an isometric subgraph.

Lemma 2.1 [10] Let G be a connected graph. Then

(i) W(G) < W(G —v) + oc(v) for any vertex v of G. The equality holds if and
only if G — v is an isometric subgraph of G.

(i) W(G) = 5, Dy, where D; is the number of unordered pairs of vertices of
G with distance i in G.

Let Ng(v) be the set of all vertices adjacent to a vertex v in G. A vertex v is
called a simplicial vertex of G if Ng(v) induces a clique. A perfect elimination
ordering (briefly, peo) of a graph G is a bijection ¢ : {1,2,...,n} — V(G) such
that for each 1 < ¢ < n, ¢(i) = v; is a simplicial vertex of the induced subgraph
Gl{vn, vn-1,...,v;}]. By [20], a graph G of order n is a k-tree if and only if it has
a peo ¢ = (vy,vs,...,0,) such that each v; (1 <i < n — k) is a simplicial vertex of
degree k in G[{vn, vp_1,...,0;}].

During an inductive construction of a k-tree, the first k-clique chosen is called its
base k-clique. When a new vertex v is added, the k-clique chosen whose vertices
are all adjacent to v, is called the joint k-clique of v and denoted by JC(v), a
corresponding (k + 1)-clique v + JC(v) is generated and denoted as (v). The well-
known inductive definition [4, 20] of a k-tree can be stated as follows.

Observation 2.2 Let G be a k-tree of order n where n >k and ¢ = (v, va,...,0,)
be a peo of G. Then G can be constructed inductively with respect to ¢ as fol-
lows. Start from the base k-clique G[{vy,vn_1,...,Un_gs+1}], proceed by adding ver-
tices Uy, Un_k—1, - - ., 01 in order such that each of them is adjacent to all vertices
of its corresponding joint k-clique JC(v,_k), JC(Vy—g-1),...,JC(v1). Then a se-
quence of k-trees Gp,_1, Gp_r_1,...,G1 is generated in order. At the end, G = Gy is
obtained.

It is known [4, 5] that for any k-tree of order n where n > k, each k-clique is
contained in a (k + 1)-clique, and the number of r-cliques is n, = (lﬁ) + (n—k) (:1)
for r > 1. In particular, ny = 1+ (n — k)k, ngy1 = n — k, and ngo = 0. Hence, any
k-tree is K o-free, and the number of (k + 1)-cliques in a k-tree of order n is n — k.
By Observation 2.2, an inductive construction can be obtained for the (k + 1)-line

graph (1(G) of a k-tree G.
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Corollary 2.3 Let G be a k-tree of order n where n > k and ¢ = (v, va,...,0,)
be a peo of G. Then vertices of lx1(G) can be represented by (v;) = v; + JC(v;),
where JC(v;) is the joint k-clique of v; for 1 < i < n — k, and generated in order
(Un—k), (Vn—k—1), - .-, (v1) during an inductive construction of G in Observation 2.2.

The concept of a k-walk was introduced in [5] as a generalization of a walk in a
graph. An alternating sequence poTip172ps - . . pr—17ep: Of k-cliques and (k4 1)-cliques
is called a k-walk if each (k+ 1)-clique 7; contains two distinct k-cliques p;_; and p;
for 1 <14 <t. A graph of order at least k£ + 1 is called k-linked if any two k-cliques
are joined by a k-walk, and every r-clique is contained in a k-clique for 1 < r < k.
A k-walk is a k-path if all terms of the alternating sequence are distinct. The k-
distance between two k-cliques of a graph is the minimum number of (k4 1)-cliques
on a k-path between them. The k-diameter of a k-linked graph is the maximum
k-distance between two k-cliques. A k-walk is a k-circuit if ¢ > 3 and p; = po,
and all other terms of the sequence are distinct. A graph is k-acyclic if it has no
k-circuits. Every k-tree of order at least k + 1 is k-linked and k-acyclic [5].

In [6], we introduced the k-status of a k-clique in a k-tree and the k-Wiener
index of a k-tree, and characterized the extremal graphs for the k-Wiener index of
a k-tree. Let G be a k-tree of order at least £ + 1. The k-status of a k-clique p
in GG, denoted as U[C];} (p), is the summation of k-distances between p and all other
k-cliques of G. The k-Wiener index of G, denoted as W (@), is the summation

of k-distances between every two k-cliques in G.

A minimal separator of a graph is an induced subgraph on a minimal set of
vertices whose removal results in a graph with more components. A minimal separa-
tor on one vertex is called the cut vertex of the graph. A graph is k-connected if
it has more than k& vertices and the removal of any k — 1 vertices cannot disconnect
the graph. A graph is said to be triangulated or chordal if every cycle of length
larger than 3 contains an edge which is not a part of the cycle but connects two
vertices of the cycle. In [20], a k-tree of order at least k 4+ 1 was characterized as a
k-connected and k-acyclic triangulated graph. Moreover, any minimal separator of
a k-tree is a k-clique. It follows that a k-clique of a k-tree is a minimal separator if
and only if it is contained in at least two (k + 1)-cliques.

For a peo ¢ = (vq,vg,...,v,) of a k-tree G, the position of a vertex v; is
¢~ (v;) = i, and the monotone adjacency set of v; is the set of vertices

X(vi) = {w € Ng(vi) | 97" (w) > ¢ (vi)}-
For 1 <i<n—k,|X(v;)| =k and X(v;) is the set of all vertices of the joint k-clique

JC(v;), and so JC(v;) = G[X(v;)]. Forn —k+1 <i <n, |X(v)| =n—1i and
X(Uz) - {Uny Un—1y--- avn—k+2}-

Theorem 2.4 [18] Let G be a k-tree of order n where n > k and ¢ = (vy,vg,...,v,)
be a peo of G. Then for each 1 < i < n — k, there exists a unique j satisfying
i<j<n—k+1, v € X(v) and X(v;) Cv; UX(vj). Moreover,

(i) j = min{¢~" (w) | w € X(v;)},
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) _J L ifj<n—k ‘ A

) X\ X ={ TSR x )\ X =
Hence, if j < n—k, there is a unique vertex B; € X (v;)\ X(v;) such that B; # v;
and X (v;) =v; UX(v;)\ By if j=n—k+1, then X(v;) = {vn, Un_1,. .., Un_ps1}-

3 Main Results

A k-tree of order at most k + 1 is either a k-clique or a (k + 1)-clique. All k-trees
considered in this section have order larger than £ + 1.

Definition 1 Let G be a k-tree of order larger than k + 1. The k-clique graph of
G, denoted by G/[k], is a graph whose vertices are k-cliques of GG, and two k-cliques
are adjacent in G/[k] if and only if they are contained in a common (k + 1)-clique

of G.

Lemma 3.1 Let G be a k-tree of order larger than k + 1. Then (i) G/[k] is a
connected block graph, (ii) lk1(G) is isomorphic to B(G/[k]).

Proof. By [5], any two distinct k-cliques of a k-tree G' are connected by a k-path,
so G/[k] is connected. The set of all k-cliques contained in one (k + 1)-clique of G
induces a complete subgraph of G/[k] of order k + 1. By [20], G is Ky o-free and
a k-clique is a minimal separator of GG if and only if it is contained in more than
one (k + 1)-clique of G. By [5], every k-tree of order at least k + 1 is k-linked and
k-acyclic, we observe that a k-clique is a minimal separator of GG if and only if it is
a cut vertex of G/[k]. It follows that all k-cliques which are vertices of a block of
G/[k] must be contained in one common (k + 1)-clique of G. Hence, any block of
G/[k] is a complete subgraph of order k£ + 1, and G/[k] is a block graph.

We have shown that all vertices of a block of G/[k] are the set of k-cliques
contained in a (k + 1)-clique of G. Then the set of blocks of G/[k] is in a 1-1
correspondence to the set of (k + 1)-cliques of G, which is the set of vertices of
Uk 1(G). Two vertices of (1 1(G) are adjacent if and only if they have a k-clique of
G in common if and only if the corresponding two blocks of G/[k] have one vertex
in common if and only if the corresponding two blocks of G/[k] are adjacent in

B(G/[k]). Therefore, £,1(G) is isomorphic to B(G/[k]). O

By Lemma 3.1, we provide an alternative proof for the following result in [19].

Corollary 3.2 [19] Let G be a k-tree of order larger than k+ 1. Then {;11(G) is a
connected block graph.

Proof. A graph is a block graph if and only if it is the block graph of some graph
[11]. By Lemma 3.1, the conclusion follows. O

It was shown in [1] that W (T) = W(L(T))+ (3) for any tree T of order n, where
the line graph L(T) of a tree T is just the block graph of 7. We will generalize this
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result to a relation between W(G/[k]) and W (€r41(G)), where ¢, 11(G) is the block
graph of G//[k] for a k-tree G of order n. By definition, the distance between two
vertices in the k-clique graph G/[k] is the k-distance between the corresponding two
k-cliques in G. Therefore, the Wiener index W (G//[k]) is the k-Wiener index WH(G)
introduced in [6] for a k-tree G.

Theorem 3.3 Let G be a k-tree of order n wheren >k + 1. Then

W(G/[K]) = WH(G) = k- W (011 (G)) + (1 " <"2_ k)k).
Proof. Note that the diameter of G//[k] is the k-diameter of G, which is at most
n — k, the number of (k + 1)-cliques of G. Let 1 < ¢ < n —k — 1. Assume that
p and v are two vertices of £;41(G) with dy, ., (@) (¢, ) = i. Then there is a unique
path of length i between p and v in l41(G) because a shortest path between any
two vertices in a block graph is unique [12], and /5, 1(G) is a connected block graph
by Corollary 3.2. Any vertex of {;41(G) is a (k4 1)-clique of G and the intersection
of any two adjacent vertices in ¢41(G) is a k-clique of G. Then the unique shortest
path between p = pp and v = p; in ;11 (G) can be written as an alternating sequence
(1= po)prpapz - - - pic1pi(py = v) of (k + 1)-cliques and k-cliques of G such that for
each 1 < j < i, p; is a k-clique which is the intersection of two (k + 1)-cliques:
pj—1 and p;. The number of k-cliques contained in each (k + 1)-clique is k& + 1. Let
pu # p1 be a k-clique of G contained in gt = py. Then G has k such p,’s. Let
p, # pi be a k-clique of G contained in v = y;. Then G has k such p,’s. Recall
that G/[k] is a connected block graph by Lemma 3.1. Then the alternating sequence
pu(pt = po)pipips - .. pi(p; = v)p, is the unique shortest path between p, and p, in
G/[k]. So, da i (pu, pv) = i+ 1, which is the number of (k+1)-cliques on the shortest
path between p, and p,. It follows that for each 1 < ¢ <n —k — 1 and any pair of
vertices {u, v} with distance 7 in £1(G), there are k? pairs of vertices {p,, p,} with
distance ¢ + 1 in G/[k], and vice versa.

Let D} be the number of pairs of vertices of ¢;11(G) with distance ¢ in ¢4 (G).
Let D; be the number of pairs of vertices of G/[k] with distance i in G//[k]. We have
shown that D} = 5Dy for 1 <i <n—k—1. Itis clear that the diameter of ;1 (G)
is at most n — k — 1 since the diameter of G/[k] is at most n — k. By Lemma 2.1,

n—k—1 n—k—1

W(ta(@) = 3 i Dl ,j Z i+ Din = kiza—w

By Lemma 2.1, Z i-D; = W(G/[k]). Note that Z D, = (H( ) which is the

number of 2- element subsets of the set of k-cliques i 1n G and the number of k-cliques
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in G s 14 (n— k)k. Hence, W (et (G)) = ]:2 WG/~ (*0 4. 1 follows
that

WG/ k) = WH(G) = B2 - W (6o (G)) + (1 - k)k).

O

By Lemma 3.1, G/[k] is a connected block graph, and the set of blocks of G/[k]
is in a 1-1 correspondence to the set of (k4 1)-cliques of G. Parallel to the inductive
construction of ¢;1(G), an inductive construction of G/[k] can also be obtained by
Observation 2.2.

Corollary 3.4 Let G be a k-tree of order n where n > k+1 and ¢ = (v, va,...,0,)
be a peo of G. During an inductive construction of G in Observation 2.2, a sequence
of k-clique graphs G _y/[k], Gn_k-1/[k],...,G1/[k] can be generated in order. For
eachn —k—12>1>1, when a vertex v; is added to the k-tree G;1 to get the k-tree
G, a block B; whose vertices are k-cliques of G contained in v; + JC(v;) is added

to Git1/1k] to get G;/[k] with the property that B; has exactly one common vertex
<]C7(vi) Uﬂfh»(;@+1/[k].

By Observation 2.2, for 1 < i < n —k — 1, each v; is a simplicial vertex of G;,
and so G,y = G; — v; is an isometric subgraph of G;. By Lemma 2.1, W(G;) =
W(Git1) + og,(v;) for 1 <i <n—k — 1. Note that W (G,—) = (k;rl) since G,,_}, 1S

k-1

a (k+ 1)-clique. Then W(G) = (kH) + Z 0¢,(v;). Similar formulas for Wiener

indices W (0 41(G)) and W (G/[k]) can be obtalned by the inductive constructions of
lk+1(G) and G/[k], respectively.

Lemma 3.5 Let G be a k-tree of order n wheren > k+1 and ¢ = (vy,vq,...,v,) be
a peo of G. Assume that G; where n —k > 1 > 1 is the sequence of k-trees generated
during the inductive construction of G in Observation 2.2. Then G; = G and

—k—
(i) W(lp1(G)) = Z O'gk+1(G.)(<’Ui>), where (v;) is a vertex of the (k + 1)-line
graph l1(G;) of Gi for 1 <i<n—k—1;

(i) W(G/[k]) = k(kgl) — n( )+ k [nzl JGi/[k](pi)}, where p; is a k-clique of the

k-tree G; containing v; for 1 <1 é n—k—1.
Proof. (i) For 1 <i <n—k, write H; = {;,1(G;). By Corollary 3.2, we observe that
H; is a block graph of order n — ¢+ 1 — k since G, is a k-tree of order n—i+ 1, and
(v;) = v; + JC(v;) is a vertex of H;. Then H;,; = H; — (v;) is an isometric subgraph
of H; for 1 <i<n—k—1. By Lemma 2.1, we have W(H;) = W(H;41) + om,((v;))
for 1 <i<n—k—1. Note that H; = {}1(G1) where G; = G. It follows that

W(len(G)) = W(Hns) +0on,_ o ((0np-1)) + .-+ om ((01)

n—k—1

i=1
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The last equality is valid because W (H,,_x) = 0 where H,,_y = l;411(G,_x) is a one
vertex graph.

(ii) Recall that the Wiener index of G/[k] is the k-Wiener index of G, and the
status of a vertex in G/[k| is the k-status of the corresponding k-clique in G. By

n—k
Theorem 4.3 in [6], W/(G/[k]) = k {Z TG,/ (pz)} —(n—k) (g), where p; is a k-clique
i=1

of G; containing v; for 1 <7 < n— k. Note that Gn_r/[k] is a (k+1)-clique and p,,_
is a vertex of G,_j/[k]. Then the vertex status oq, , /k(pn—r) = k. It follows that

gla@/m (pz): —(n—k) @
- k;(k ; 1) —n(l;) +k :n;f:aai/m(m)] :

n

W(G/K]) = kK +k

O

The k-star of order n, denoted by S¥, is a k-tree obtained from a base k-clique
by adding n — k vertices, each of them is adjacent to all vertices of the base k-clique.
The k-th power of a path of order n, denoted by P¥, is a k-tree whose vertices
can be labelled as vy, vy, ..., v, such that two vertices v; and v; are adjacent if and
only if 1 < |j — ] < k. In [6], we showed that the k-Wiener index of a k-tree G' of
order n where n > k is bounded below by Q(H(";k)k) —(n—k) (k;rl) and above by
k2 (”_§+2) —(n—k) (g) The bounds are attained when G is a k-star and a k-th power
of a path, respectively. The above results for the k-Wiener index of a k-tree GG also
hold for the Wiener index of its k-clique graph G/[k] since W (G/[k]) = WH(G). Tt
is well-known that the Wiener indices of connected graphs of order n—k are bounded
below by (”;k) and above by (”_l;“), whose extremal graphs are a complete graph
and a path of order n — k, respectively. Therefore, the bounds and extremal graphs

for W(l4+1(G)) follow immediately.

Corollary 3.6 Let G be a k-tree of order n where n >k + 1. Then
(1) 2700 = (= B) (") S WIG/IR) < B ("57%) = (= B)(3):
(i1) ('51) < Wt (@) < (5.
Moreover, the lower bounds (respectively, upper bounds) can be attained when G is
Sk (respectively, G is P¥).

Parallel to the compact code of a k-tree defined in [18], we provide the following
terminology.

Definition 2 Let G be a k-tree of order n where n > k+ 1 and ¢ = (v1,vg,...,v,)
be a peo of G. For 1 < i < n — k, the unique j satisfying the property stated in
Theorem 2.4 is called the compact code index of ¢ with respect to ¢ and denoted
by c4(7).

By Theorem 2.4 and the definition of a compact code index, if j = ¢4(i) < n—k,
then (v;) N (v;) = JC(v;), and so (v;) and (v;) are adjacent in (4 (G).
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Theorem 3.7 Let G be a k-tree of ordern where n>k+1 and let ¢ = (vy,vq,...,0,)
be a peo of G.

(1) Leti < j < n—k. Then (v;) and (v;) are adjacent in ly1(G) if and only if
(vi) N (v;) = JC(v;). Moreover, JC(v;) = JC(v;) if and only if (v;) and (v;)
are adjacent in Uy 1(G) and j # cy(3).

(i) Let B be a block of {1 (G) with vertices (v;,) = v;; +JC(vy;), where 1 < j <b

b
and 1 <iy <iy <...<iy <n—k. Then ()(v;;) = JC(v;,). Moreover, either
j=1
all JC(vy;) where 1 < j < b are the base k-clique of G with respect to ¢, or
JC(vi,0) are the same for 1 < j <b—1 and different from JC(vy,).

Proof. (i) Assume that ¢ < j < n — k. Note that (v;) = v; + JC(v;) and (v;) =
vj + JC(v;). By an inductive construction of G' in Observation 2.2, v; cannot be a
vertex of JC'(v;) since j > i. So, v; cannot be a vertex of (v;) N (v;). Then (v;) and
(vj) are adjacent in ¢4 (G) if and only if (v;) N (v;) is a k-clique of G if and only if
(vi) N (v;) = JC(wy).

If JC(v;) = JC(vj), then (v;) N (v;) = JC(v;) and v; ¢ X (v;). It follows that
J # () by Theorem 2.4. On other hand, if (v;) N (v;) = JC(v;) and j # c4(i), then
vj ¢ X (v;). Otherwise, if v; € X (v;), then j satisfies the property stated in Theorem
240 i < j<n—k, v, € X(v;) and X(v;) C v; UX(vj). So, j = cp(7). This is a
contradiction. Therefore, v; ¢ X(v;). By the assumption that (v;) N (v;) = JC(v;)
which is a k-clique of G, we have (v;) N (v;) = JC(v;) since v; ¢ X(v;). Then
JC(v;) = JC(vy).

(ii) Note that b > 2 since any block B has at least two vertices. By Corollary 2.3,
(Vi,)s (Viy_1)s -+, (v;;) are added to B in order during an inductive construction of
li+1(G) with respect to ¢. Since {41(G) is a connected block graph, all vertices of

B are pairwise adjacent. Then the intersection of any two vertices of B is a k-clique
b

of G. By (i), M (v;;) = JC(vy,) since (vy,) is the last vertex added to the block B.
j=1
In particular, the intersection of any two vertices of B is JC(v;,).

By (i), for all 1 < j < b—1, (v3,) N (v;;) = JCO(v;,) since i; < 4 < n — k.
We have shown that the intersection of any two vertices of B is JC(v;;). Then
JC(vy;) = JC(vy,) for all 1 < j < b— 1. It follows that X(v;;) = X (vy,) for all
1 <j <b—1. By Theorem 2.4, c4(i;) = min{¢~ (w) | w € X(v;,)} = min{¢~ ' (w) |
w € X(v;,)} =cp(iy) forall 1 < j <b—1. By Theorem 2.4, either c4(iy) =n—k+1
or ¢4(i1) <n —k.

If cy(i1) =n—k+1, then cy(i;) = c4(th) =n—k+1foralll <j <b-—1
Moreover, i, ¢ X(v;,) since i, < n — k. Then (v;,) N (v;,) = JC(v;,) implies that
X (vi,) = X (vi,) and so ¢4(ip) = ¢4(i1) = n — k + 1. Therefore, for all 1 < j < b,
JC(vi;) = G{vn,Un-1,...,Un_g41}), which is the base k-clique of G with respect
to ¢.

If C¢(’i1)

< n —k, then ¢4(i;) = c4(t1) < n—kfor1 < j < b—1. Since
ij < cglij) < n

—k for 1 < j < b—1, we observe that (v;;) and (v.,.,)) are
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adjacent with (v;;) N (ve ;) = JC(vy;) = JC(v;,) for 1 < j < b—1. Then the
vertex (ve,(i;)) = (Uey(ir)) 15 also contained in the block B for 1 < j < b — 1.
Note that cg(i;) & {ip-1,.--,%5,...,01} for each 1 < j < b— 1. Then (ve,q,)) ¢
i) (i;)y oo, (vgy) } for each 1 < j < b — 1. It follows that (vc,;)) is the
vertex (v;,) of B for 1 < j < b — 1. Therefore, c4(i;) =4 for all 1 < j < b— 1.
By (i), JC(v;,) are the same for 1 < j < b — 1 and different from JC(v;,). O

J

Corollary 3.8 Let G be a k-tree of order larger than k+1 and {1 (G) be its (k+1)-
line graph. Then there is a 1-1 correspondence between the set of the blocks of (1 1(QG)
and the set of minimal separators of G.

Proof. By Theorem 3.7, the intersection of all vertices in a block of f;1(G) is a
k-clique of G. So, each block of ¢.1(G) corresponds to a k-clique of G which is
contained in at least two (k+ 1)-cliques of G. On the other hand, if a k-clique of G is
contained in at least two (k + 1)-cliques of G, then all (k + 1)-cliques containing the
same k-clique are pairwise adjacent in ¢41(G) and form a block of ¢1(G). Recall
that a k-clique of G is a minimal separator of G if and only if it is contained in at
least two (k + 1)-cliques of G. Therefore, there is a 1-1 correspondence between the
set of the blocks of ¢, 1(G) and the set of minimal separators of G. O

Definition 3 Let GG be a k-tree of order larger than £+ 1. The separator-k-clique
graph of G, denoted by G/[k]s, is a graph whose vertices are the minimal separators
of G, that is, the k-cliques of G each of which is contained in at least two (k + 1)-
cliques of G, and two minimal separators of G are adjacent in G/[k|g if and only if
they are contained in a common (k + 1)-clique of G.

The cut-point graph was first defined by Harary in [11]. The cut-point graph
of a graph G, denoted by C(G), is a graph whose vertices are the cut vertices of
G and two cut vertices are adjacent if and only if they are contained in a common
block. It was shown in [11] that a graph is a block graph if and only if it is the block
graph B(G) of some graph G and B(B(G)) = C(G).

Lemma 3.9 Let G be a k-tree of order larger than k+1. Then both B({x1(G)) and
C(G/[k]) are isomorphic to G/[kls, and G/[k|s is an isometric subgraph of G/[k].

Proof. By Corollary 3.8, there is a 1-1 correspondence between the set of the blocks
of l11(G) and the set of vertices of G/[k]s. Two blocks of ¢, 1(G) are adjacent in
B(lr41(@)) if and only if two blocks of ¢;11(G) have a cut vertex (v) of lp41(G)
in common if and only if the corresponding two vertices of G/[k]g (considered as k-
cliques of ) are contained in (v) (considered as (k-+1)-cliques of ) if and only if the
corresponding two vertices of G/[k|g are adjacent in G/[k|g. Therefore, B({41(G))
is isomorphic to G/[k]s. By Lemma 3.1, ¢;11(G) is isomorphic to B(G/[k]). Then
B(B(G/[k])) is isomorphic to G/[k]s. By [11], B(B(G/[k])) = C(G/[k]). Tt follows
that C'(G/[k]) is isomorphic to G/[k]s. By the definition of a separator-k-clique
graph, G/[k|s is an induced subgraph of G/[k]. Moreover, G/[k]s is isometric in
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G /[k] because G /[k] is a block graph and block graphs are distance-hereditary graphs
by [12]. O

Assume that G is a connected graph. Let e = uv be an edge of G. A vertex w
of G is said to be closer to u than to v in G if dg(w,u) < dg(w,v). Let n.(u)
be the number of vertices that are closer to w than to v in G, and n.(v) be the
number of vertices that are closer to v than to u in G. The Szeged index of G is
defined as Sz(G) = >  ne(u)ne(v) [8]. The Wiener index and the Szeged index

weE(G)

are two closely related graph invariants. It is known [15] that W(G) < Sz(G) for
any connected graph G. The Szeged-Wiener Theorem [9] states that W/(G) = Sz(G)
if and only if G is a connected block graph; proofs are available in [3, 9, 14]. In
particular, W(G) = Sz(G) if G is a tree [21|. By Lemma 3.1 and Lemma 3.9, G/[k],
lk+1(G) and G/[k]s are connected block graphs, since a graph is a block graph if and
only if it is the block graph of some graph [11]. We have the following conclusion by
the Szeged-Wiener Theorem.

Corollary 3.10 Let G be a k-tree of order larger than k + 1. Then

(i) W(G/[K]) = Sz(G/[k]).
(1) W(lk11(G)) = S2(len (G))-
(1ii) W(G/[k]s) = S2(G/[K]s)-
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