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Abstract

Let G be a k-tree of order larger than k+1 and let �k+1(G) be its (k+1)-
line graph. We introduce a new concept called the k-clique graph of G,
and denote it by G/[k]. We show that G/[k] is a connected block graph
and �k+1(G) is isomorphic to the block graph of G/[k]. This provides an
alternative proof for a recent result by Oliveira et al. that �k+1(G) is a
connected block graph. A relation between the Wiener index of G/[k]
and the Wiener index of its block graph �k+1(G) is obtained as a natural
generalization of the relation between the Wiener index of a tree T and
the Wiener index of its line graph L(T ). We further show that there is a
1–1 correspondence between the set of the blocks of �k+1(G) and the set
of minimal separators of G. Another new concept called the separator-k-
clique graph of G, denoted by G/[k]S, arises naturally with the property
that G/[k]S is isomorphic to the block graph of �k+1(G). By the Szeged-
Wiener Theorem, the Wiener index and the Szeged index are equal for
each of the connected block graphs G/[k], �k+1(G) and G/[k]S.

1 Introduction

Let k be a positive integer. The concept of k-trees was first introduced by Harary and
Palmer [13] as k-dimensional simplicial complexes. Beineke and Pippert [4] provided
an inductive definition for k-trees. A k-clique is a k-tree, and a k-tree of order n
can be extended to a k-tree of order n+ 1 by adding a new vertex which is adjacent
to all vertices of a k-clique. Patil [20] observed that the above inductive definition
of a k-tree is equivalent to a perfect elimination ordering of a k-tree. We would like
to mention that standard trees are 1-trees in the k-tree notation.

A block of a graph is a maximal connected subgraph with more than one vertex
and without cut vertices. A block graph is a graph whose blocks are cliques. Block
graphs are a generalization of trees whose blocks are K2’s. The block graph of a
graph G, denoted by B(G), is a graph whose vertices are blocks of G and two blocks
are adjacent in B(G) if and only if they have a vertex in common. The block graph
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of a tree T is just its line graph L(T ). It was shown in [11] that a graph is a block
graph if and only if it is the block graph B(G) of some graph G. Block graphs are
known as chordal and distance-hereditary graphs in which a shortest path between
any two vertices is unique (see [12]).

The concept of k-line graphs was first introduced by Lê [16] as a generalization
of line graphs. The (k+1)-line graph of a k-tree G of order larger than k+1,
denoted by �k+1(G), is the graph whose vertices are (k + 1)-cliques of G and two
(k+1)-cliques are adjacent in �k+1(G) if and only if they have k vertices in common.
Oliveira et al. [19] showed that �k+1(G) is a connected block graph. In [17], special
types of k-trees called the simple-clique k-trees (briefly, SC k-tree) were charac-
terized as k-trees whose (k+1)-line graphs are trees. Some well-known planar graphs
such as maximal outerplanar graphs and chordal maximal planar graphs (also called
Apollonian networks) are examples of SC k-trees. Sharp bounds on Wiener indices
of maximal outerplanar graphs and Apollonian networks and their extremal graphs
were given in [2] and [7], respectively.

Assume that G is a k-tree of order n where n > k + 1. We first introduce a new
concept called the k-clique graph of G (denoted by G/[k]) to show that G/[k] is a
connected block graph and �k+1(G) is isomorphic to the block graph of G/[k]. This
provides an alternative proof for the result in [19] that �k+1(G) is a connected block
graph. Parallel to the relation W (T ) = W (L(T )) +

(
n
2

)
(see [1]) between the Wiener

index of a tree T of order n and the Wiener index of its line graph L(T ), we prove
that W (G/[k]) = k2W (�k+1(G)) +

(
1+(n−k)k

2

)
as a relation between the Wiener index

of G/[k] and the Wiener index of its block graph �k+1(G) for a k-tree G of order n.
Recursive formulas for the Wiener index of �k+1(G) and the Wiener index of G/[k]
are obtained based on their inductive constructions. We then show that there is a
1–1 correspondence between the set of the blocks of �k+1(G) and the set of minimal
separators of G, that is, the set of k-cliques of G each of which is contained in at
least two (k + 1)-cliques of G. A new concept called the separator-k-clique graph of
G (denoted by G/[k]S) arises naturally. It turns out that G/[k]S is isomorphic to
the block graph of �k+1(G). The Szeged-Wiener theorem [9] states that the Wiener
index and the Szeged index of a connected graph are equal if and only if the graph
is a connected block graph, which holds for each of G/[k], �k+1(G) and G/[k]S. This
further develops our work in [6] because the Wiener index of G/[k] is equivalent to
the k-Wiener index of a k-tree G introduced there.

2 Preliminaries

Let G be a finite simple graph with the vertex set V (G) and the edge set E(G). The
order of G is the number of its vertices. Assume that H1 and H2 are two subgraphs
of a graph H . Then the graph with the vertex set V (H1) ∩ V (H2) and the edge set
E(H1)∩E(H2) is called the intersection of H1 and H2 and denoted by H1∩H2. Let
S be a subset of V (G). We use S∪v (respectively, S\v) to represent the set obtained
by adding one vertex v to S (respectively, removing one vertex v from S). We write
G[S] for the induced subgraph of G on the set S, and G − S (respectively, G − v)
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for the induced subgraph of G obtained by removing all vertices in S (respectively,
removing one vertex v). The graph obtained from the disjoint union of a vertex v
and a graph H such that v is adjacent to all vertices of H is called the join of v and
H , and denoted by v +H .

Assume that G is a connected graph. Let dG(u, v) be the distance between two
vertices u and v in G. The diameter of G is the maximum distance between two ver-
tices ofG. TheWiener indexW (G) ofG is defined asW (G) =

∑
{u,v}⊆V (G) dG(u, v)

[21]. The status σG(u) of a vertex u in G is defined as σG(u) =
∑

v∈V (G) dG(u, v). If

H is a subgraph of G satisfying dH(u, v) = dG(u, v) for any two vertices u and v of
H , then H is called an isometric subgraph of G. A distance-hereditary graph
is a graph in which any connected induced subgraph is an isometric subgraph.

Lemma 2.1 [10] Let G be a connected graph. Then

(i) W (G) ≤ W (G− v) + σG(v) for any vertex v of G. The equality holds if and
only if G− v is an isometric subgraph of G.

(ii) W (G) =
∑

i≥1 i ·Di, where Di is the number of unordered pairs of vertices of
G with distance i in G.

Let NG(v) be the set of all vertices adjacent to a vertex v in G. A vertex v is
called a simplicial vertex of G if NG(v) induces a clique. A perfect elimination
ordering (briefly, peo) of a graph G is a bijection φ : {1, 2, . . . , n} → V (G) such
that for each 1 ≤ i < n, φ(i) = vi is a simplicial vertex of the induced subgraph
G[{vn, vn−1, . . . , vi}]. By [20], a graph G of order n is a k-tree if and only if it has
a peo φ = (v1, v2, . . . , vn) such that each vi (1 ≤ i ≤ n− k) is a simplicial vertex of
degree k in G[{vn, vn−1, . . . , vi}].

During an inductive construction of a k-tree, the first k-clique chosen is called its
base k-clique. When a new vertex v is added, the k-clique chosen whose vertices
are all adjacent to v, is called the joint k-clique of v and denoted by JC(v), a
corresponding (k + 1)-clique v + JC(v) is generated and denoted as 〈v〉. The well-
known inductive definition [4, 20] of a k-tree can be stated as follows.

Observation 2.2 Let G be a k-tree of order n where n > k and φ = (v1, v2, . . . , vn)
be a peo of G. Then G can be constructed inductively with respect to φ as fol-
lows. Start from the base k-clique G[{vn, vn−1, . . . , vn−k+1}], proceed by adding ver-
tices vn−k, vn−k−1, . . . , v1 in order such that each of them is adjacent to all vertices
of its corresponding joint k-clique JC(vn−k), JC(vn−k−1), . . . , JC(v1). Then a se-
quence of k-trees Gn−k, Gn−k−1, . . . , G1 is generated in order. At the end, G = G1 is
obtained.

It is known [4, 5] that for any k-tree of order n where n > k, each k-clique is
contained in a (k + 1)-clique, and the number of r-cliques is nr =

(
k
r

)
+ (n− k)

(
k

r−1

)
for r ≥ 1. In particular, nk = 1+ (n− k)k, nk+1 = n− k, and nk+2 = 0. Hence, any
k-tree is Kk+2-free, and the number of (k+ 1)-cliques in a k-tree of order n is n− k.
By Observation 2.2, an inductive construction can be obtained for the (k + 1)-line
graph �k+1(G) of a k-tree G.
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Corollary 2.3 Let G be a k-tree of order n where n > k and φ = (v1, v2, . . . , vn)
be a peo of G. Then vertices of �k+1(G) can be represented by 〈vi〉 = vi + JC(vi),
where JC(vi) is the joint k-clique of vi for 1 ≤ i ≤ n − k, and generated in order
〈vn−k〉, 〈vn−k−1〉, . . . , 〈v1〉 during an inductive construction of G in Observation 2.2.

The concept of a k-walk was introduced in [5] as a generalization of a walk in a
graph. An alternating sequence ρ0τ1ρ1τ2ρ2 . . . ρt−1τtρt of k-cliques and (k+1)-cliques
is called a k-walk if each (k+1)-clique τi contains two distinct k-cliques ρi−1 and ρi
for 1 ≤ i ≤ t. A graph of order at least k + 1 is called k-linked if any two k-cliques
are joined by a k-walk, and every r-clique is contained in a k-clique for 1 ≤ r < k.
A k-walk is a k-path if all terms of the alternating sequence are distinct. The k-
distance between two k-cliques of a graph is the minimum number of (k+1)-cliques
on a k-path between them. The k-diameter of a k-linked graph is the maximum
k-distance between two k-cliques. A k-walk is a k-circuit if t ≥ 3 and ρt = ρ0,
and all other terms of the sequence are distinct. A graph is k-acyclic if it has no
k-circuits. Every k-tree of order at least k + 1 is k-linked and k-acyclic [5].

In [6], we introduced the k-status of a k-clique in a k-tree and the k-Wiener
index of a k-tree, and characterized the extremal graphs for the k-Wiener index of
a k-tree. Let G be a k-tree of order at least k + 1. The k-status of a k-clique ρ
in G, denoted as σ

[k]
G (ρ), is the summation of k-distances between ρ and all other

k-cliques of G. The k-Wiener index of G, denoted as W [k](G), is the summation
of k-distances between every two k-cliques in G.

A minimal separator of a graph is an induced subgraph on a minimal set of
vertices whose removal results in a graph with more components. A minimal separa-
tor on one vertex is called the cut vertex of the graph. A graph is k-connected if
it has more than k vertices and the removal of any k − 1 vertices cannot disconnect
the graph. A graph is said to be triangulated or chordal if every cycle of length
larger than 3 contains an edge which is not a part of the cycle but connects two
vertices of the cycle. In [20], a k-tree of order at least k + 1 was characterized as a
k-connected and k-acyclic triangulated graph. Moreover, any minimal separator of
a k-tree is a k-clique. It follows that a k-clique of a k-tree is a minimal separator if
and only if it is contained in at least two (k + 1)-cliques.

For a peo φ = (v1, v2, . . . , vn) of a k-tree G, the position of a vertex vi is
φ−1(vi) = i, and the monotone adjacency set of vi is the set of vertices

X(vi) = {w ∈ NG(vi) | φ−1(w) > φ−1(vi)}.
For 1 ≤ i ≤ n−k, |X(vi)| = k and X(vi) is the set of all vertices of the joint k-clique
JC(vi), and so JC(vi) = G[X(vi)]. For n − k + 1 ≤ i ≤ n, |X(vi)| = n − i and
X(vi) ⊆ {vn, vn−1, . . . , vn−k+2}.

Theorem 2.4 [18] Let G be a k-tree of order n where n > k and φ = (v1, v2, . . . , vn)
be a peo of G. Then for each 1 ≤ i ≤ n − k, there exists a unique j satisfying
i < j ≤ n− k + 1, vj ∈ X(vi) and X(vi) ⊆ vj ∪X(vj). Moreover,

(i) j = min{φ−1(w) | w ∈ X(vi)},
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(ii) |X(vj) \X(vi)| =
{

1, if j ≤ n− k
0, if j = n− k + 1

and X(vi) \X(vj) = vj.

Hence, if j ≤ n−k, there is a unique vertex βj ∈ X(vj) \X(vi) such that βj �= vj
and X(vi) = vj ∪X(vj) \ βj; if j = n− k + 1, then X(vi) = {vn, vn−1, . . . , vn−k+1}.

3 Main Results

A k-tree of order at most k + 1 is either a k-clique or a (k + 1)-clique. All k-trees
considered in this section have order larger than k + 1.

Definition 1 Let G be a k-tree of order larger than k+ 1. The k-clique graph of
G, denoted by G/[k], is a graph whose vertices are k-cliques of G, and two k-cliques
are adjacent in G/[k] if and only if they are contained in a common (k + 1)-clique
of G.

Lemma 3.1 Let G be a k-tree of order larger than k + 1. Then (i) G/[k] is a
connected block graph, (ii) �k+1(G) is isomorphic to B(G/[k]).

Proof. By [5], any two distinct k-cliques of a k-tree G are connected by a k-path,
so G/[k] is connected. The set of all k-cliques contained in one (k + 1)-clique of G
induces a complete subgraph of G/[k] of order k + 1. By [20], G is Kk+2-free and
a k-clique is a minimal separator of G if and only if it is contained in more than
one (k + 1)-clique of G. By [5], every k-tree of order at least k + 1 is k-linked and
k-acyclic, we observe that a k-clique is a minimal separator of G if and only if it is
a cut vertex of G/[k]. It follows that all k-cliques which are vertices of a block of
G/[k] must be contained in one common (k + 1)-clique of G. Hence, any block of
G/[k] is a complete subgraph of order k + 1, and G/[k] is a block graph.

We have shown that all vertices of a block of G/[k] are the set of k-cliques
contained in a (k + 1)-clique of G. Then the set of blocks of G/[k] is in a 1–1
correspondence to the set of (k + 1)-cliques of G, which is the set of vertices of
�k+1(G). Two vertices of �k+1(G) are adjacent if and only if they have a k-clique of
G in common if and only if the corresponding two blocks of G/[k] have one vertex
in common if and only if the corresponding two blocks of G/[k] are adjacent in
B(G/[k]). Therefore, �k+1(G) is isomorphic to B(G/[k]). �

By Lemma 3.1, we provide an alternative proof for the following result in [19].

Corollary 3.2 [19] Let G be a k-tree of order larger than k + 1. Then �k+1(G) is a
connected block graph.

Proof. A graph is a block graph if and only if it is the block graph of some graph
[11]. By Lemma 3.1, the conclusion follows. �

It was shown in [1] that W (T ) = W (L(T ))+
(
n
2

)
for any tree T of order n, where

the line graph L(T ) of a tree T is just the block graph of T . We will generalize this
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result to a relation between W (G/[k]) and W (�k+1(G)), where �k+1(G) is the block
graph of G/[k] for a k-tree G of order n. By definition, the distance between two
vertices in the k-clique graph G/[k] is the k-distance between the corresponding two
k-cliques in G. Therefore, the Wiener index W (G/[k]) is the k-Wiener index W [k](G)
introduced in [6] for a k-tree G.

Theorem 3.3 Let G be a k-tree of order n where n > k + 1. Then

W (G/[k]) = W [k](G) = k2 ·W (�k+1(G)) +

(
1 + (n− k)k

2

)
.

Proof. Note that the diameter of G/[k] is the k-diameter of G, which is at most
n − k, the number of (k + 1)-cliques of G. Let 1 ≤ i ≤ n − k − 1. Assume that
μ and ν are two vertices of �k+1(G) with d�k+1(G)(μ, ν) = i. Then there is a unique
path of length i between μ and ν in �k+1(G) because a shortest path between any
two vertices in a block graph is unique [12], and �k+1(G) is a connected block graph
by Corollary 3.2. Any vertex of �k+1(G) is a (k+ 1)-clique of G and the intersection
of any two adjacent vertices in �k+1(G) is a k-clique of G. Then the unique shortest
path between μ = μ0 and ν = μi in �k+1(G) can be written as an alternating sequence
(μ = μ0)ρ1μ1ρ2 . . . μi−1ρi(μi = ν) of (k + 1)-cliques and k-cliques of G such that for
each 1 ≤ j ≤ i, ρj is a k-clique which is the intersection of two (k + 1)-cliques:
μj−1 and μj. The number of k-cliques contained in each (k + 1)-clique is k + 1. Let
ρμ �= ρ1 be a k-clique of G contained in μ = μ0. Then G has k such ρμ’s. Let
ρν �= ρi be a k-clique of G contained in ν = μi. Then G has k such ρν ’s. Recall
that G/[k] is a connected block graph by Lemma 3.1. Then the alternating sequence
ρμ(μ = μ0)ρ1μ1ρ2 . . . ρi(μi = ν)ρν is the unique shortest path between ρμ and ρν in
G/[k]. So, dG/[k](ρμ, ρν) = i+1, which is the number of (k+1)-cliques on the shortest
path between ρμ and ρν . It follows that for each 1 ≤ i ≤ n− k − 1 and any pair of
vertices {μ, ν} with distance i in �k+1(G), there are k2 pairs of vertices {ρμ, ρν} with
distance i+ 1 in G/[k], and vice versa.

Let D′
i be the number of pairs of vertices of �k+1(G) with distance i in �k+1(G).

Let Di be the number of pairs of vertices of G/[k] with distance i in G/[k]. We have
shown that D′

i =
1
k2
Di+1 for 1 ≤ i ≤ n−k−1. It is clear that the diameter of �k+1(G)

is at most n− k − 1 since the diameter of G/[k] is at most n− k. By Lemma 2.1,

W (�k+1(G)) =
n−k−1∑
i=1

i ·D′
i =

1

k2

n−k−1∑
i=1

i ·Di+1 =
1

k2

n−k∑
i=2

(i− 1) ·Di

=
1

k2

[
n−k∑
i=2

i ·Di −
n−k∑
i=2

Di

]
=

1

k2

[
n−k∑
i=1

i ·Di −
n−k∑
i=1

Di

]
.

By Lemma 2.1,
n−k∑
i=1

i · Di = W (G/[k]). Note that
n−k∑
i=1

Di =
(
1+(n−k)k

2

)
, which is the

number of 2-element subsets of the set of k-cliques in G, and the number of k-cliques
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in G is 1 + (n − k)k. Hence, W (�k+1(G)) =
1

k2

[
W (G/[k])− (

1+(n−k)k
2

)]
. It follows

that

W (G/[k]) = W [k](G) = k2 ·W (�k+1(G)) +

(
1 + (n− k)k

2

)
.

�

By Lemma 3.1, G/[k] is a connected block graph, and the set of blocks of G/[k]
is in a 1–1 correspondence to the set of (k+1)-cliques of G. Parallel to the inductive
construction of �k+1(G), an inductive construction of G/[k] can also be obtained by
Observation 2.2.

Corollary 3.4 Let G be a k-tree of order n where n > k+1 and φ = (v1, v2, . . . , vn)
be a peo of G. During an inductive construction of G in Observation 2.2, a sequence
of k-clique graphs Gn−k/[k], Gn−k−1/[k], . . . , G1/[k] can be generated in order. For
each n− k− 1 ≥ i ≥ 1, when a vertex vi is added to the k-tree Gi+1 to get the k-tree
Gi, a block Bi whose vertices are k-cliques of G contained in vi + JC(vi) is added
to Gi+1/[k] to get Gi/[k] with the property that Bi has exactly one common vertex
JC(vi) with Gi+1/[k].

By Observation 2.2, for 1 ≤ i ≤ n − k − 1, each vi is a simplicial vertex of Gi,
and so Gi+1 = Gi − vi is an isometric subgraph of Gi. By Lemma 2.1, W (Gi) =
W (Gi+1) + σGi

(vi) for 1 ≤ i ≤ n− k − 1. Note that W (Gn−k) =
(
k+1
2

)
since Gn−k is

a (k + 1)-clique. Then W (G) =
(
k+1
2

)
+

n−k−1∑
i=1

σGi
(vi). Similar formulas for Wiener

indices W (�k+1(G)) and W (G/[k]) can be obtained by the inductive constructions of
�k+1(G) and G/[k], respectively.

Lemma 3.5 Let G be a k-tree of order n where n > k+1 and φ = (v1, v2, . . . , vn) be
a peo of G. Assume that Gi where n− k ≥ i ≥ 1 is the sequence of k-trees generated
during the inductive construction of G in Observation 2.2. Then G1 = G and

(i) W (�k+1(G)) =
n−k−1∑
i=1

σ�k+1(Gi)(〈vi〉), where 〈vi〉 is a vertex of the (k + 1)-line

graph �k+1(Gi) of Gi for 1 ≤ i ≤ n− k − 1;

(ii) W (G/[k]) = k
(
k+1
2

)− n
(
k
2

)
+ k

[
n−k−1∑
i=1

σGi/[k](ρi)

]
, where ρi is a k-clique of the

k-tree Gi containing vi for 1 ≤ i ≤ n− k − 1.

Proof. (i) For 1 ≤ i ≤ n−k, write Hi = �k+1(Gi). By Corollary 3.2, we observe that
Hi is a block graph of order n− i+ 1− k since Gi is a k-tree of order n− i+ 1, and
〈vi〉 = vi + JC(vi) is a vertex of Hi. Then Hi+1 = Hi − 〈vi〉 is an isometric subgraph
of Hi for 1 ≤ i ≤ n− k − 1. By Lemma 2.1, we have W (Hi) = W (Hi+1) + σHi

(〈vi〉)
for 1 ≤ i ≤ n− k − 1. Note that H1 = �k+1(G1) where G1 = G. It follows that

W (�k+1(G)) = W (Hn−k) + σHn−k−1
(〈vn−k−1〉) + . . .+ σH1(〈v1〉)

=
n−k−1∑
i=1

σHi
(〈vi〉).
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The last equality is valid because W (Hn−k) = 0 where Hn−k = �k+1(Gn−k) is a one
vertex graph.

(ii) Recall that the Wiener index of G/[k] is the k-Wiener index of G, and the
status of a vertex in G/[k] is the k-status of the corresponding k-clique in G. By

Theorem 4.3 in [6], W (G/[k]) = k

[
n−k∑
i=1

σGi/[k](ρi)

]
− (n−k)

(
k
2

)
, where ρi is a k-clique

of Gi containing vi for 1 ≤ i ≤ n−k. Note that Gn−k/[k] is a (k+1)-clique and ρn−k

is a vertex of Gn−k/[k]. Then the vertex status σGn−k/[k](ρn−k) = k. It follows that

W (G/[k]) = k2 + k

[
n−k−1∑
i=1

σGi/[k](ρi)

]
− (n− k)

(
k

2

)

= k

(
k + 1

2

)
− n

(
k

2

)
+ k

[
n−k−1∑
i=1

σGi/[k](ρi)

]
.

�

The k-star of order n, denoted by Sk
n, is a k-tree obtained from a base k-clique

by adding n−k vertices, each of them is adjacent to all vertices of the base k-clique.
The k-th power of a path of order n, denoted by P k

n , is a k-tree whose vertices
can be labelled as v1, v2, . . . , vn such that two vertices vi and vj are adjacent if and
only if 1 ≤ |j − i| ≤ k. In [6], we showed that the k-Wiener index of a k-tree G of
order n where n > k is bounded below by 2

(
1+(n−k)k

2

) − (n − k)
(
k+1
2

)
and above by

k2
(
n−k+2

3

)−(n−k)
(
k
2

)
. The bounds are attained when G is a k-star and a k-th power

of a path, respectively. The above results for the k-Wiener index of a k-tree G also
hold for the Wiener index of its k-clique graph G/[k] since W (G/[k]) = W [k](G). It
is well-known that the Wiener indices of connected graphs of order n−k are bounded
below by

(
n−k
2

)
and above by

(
n−k+1

3

)
, whose extremal graphs are a complete graph

and a path of order n− k, respectively. Therefore, the bounds and extremal graphs
for W (�k+1(G)) follow immediately.

Corollary 3.6 Let G be a k-tree of order n where n > k + 1. Then

(i) 2
(
1+(n−k)k

2

)− (n− k)
(
k+1
2

) ≤ W (G/[k]) ≤ k2
(
n−k+2

3

)− (n− k)
(
k
2

)
;

(ii)
(
n−k
2

) ≤ W (�k+1(G)) ≤ (
n−k+1

3

)
.

Moreover, the lower bounds (respectively, upper bounds) can be attained when G is
Sk
n (respectively, G is P k

n ).

Parallel to the compact code of a k-tree defined in [18], we provide the following
terminology.

Definition 2 Let G be a k-tree of order n where n > k+ 1 and φ = (v1, v2, . . . , vn)
be a peo of G. For 1 ≤ i ≤ n − k, the unique j satisfying the property stated in
Theorem 2.4 is called the compact code index of i with respect to φ and denoted
by cφ(i).

By Theorem 2.4 and the definition of a compact code index, if j = cφ(i) ≤ n− k,
then 〈vi〉 ∩ 〈vj〉 = JC(vi), and so 〈vi〉 and 〈vj〉 are adjacent in �k+1(G).
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Theorem 3.7 Let G be a k-tree of order n where n>k+1 and let φ = (v1, v2, . . . , vn)
be a peo of G.

(i) Let i < j ≤ n−k. Then 〈vi〉 and 〈vj〉 are adjacent in �k+1(G) if and only if
〈vi〉 ∩ 〈vj〉 = JC(vi). Moreover, JC(vi) = JC(vj) if and only if 〈vi〉 and 〈vj〉
are adjacent in �k+1(G) and j �= cφ(i).

(ii) Let B be a block of �k+1(G) with vertices 〈vij〉 = vij +JC(vij ), where 1 ≤ j ≤ b

and 1 ≤ i1 < i2 < . . . < ib ≤ n− k. Then
b⋂

j=1

〈vij〉 = JC(vi1). Moreover, either

all JC(vij ) where 1 ≤ j ≤ b are the base k-clique of G with respect to φ, or
JC(vijo) are the same for 1 ≤ j ≤ b− 1 and different from JC(vib).

Proof. (i) Assume that i < j ≤ n − k. Note that 〈vi〉 = vi + JC(vi) and 〈vj〉 =
vj + JC(vj). By an inductive construction of G in Observation 2.2, vi cannot be a
vertex of JC(vj) since j > i. So, vi cannot be a vertex of 〈vi〉 ∩ 〈vj〉. Then 〈vi〉 and
〈vj〉 are adjacent in �k+1(G) if and only if 〈vi〉 ∩ 〈vj〉 is a k-clique of G if and only if
〈vi〉 ∩ 〈vj〉 = JC(vi).

If JC(vi) = JC(vj), then 〈vi〉 ∩ 〈vj〉 = JC(vi) and vj /∈ X(vi). It follows that
j �= cφ(i) by Theorem 2.4. On other hand, if 〈vi〉∩ 〈vj〉 = JC(vi) and j �= cφ(i), then
vj /∈ X(vi). Otherwise, if vj ∈ X(vi), then j satisfies the property stated in Theorem
2.4: i < j ≤ n − k, vj ∈ X(vi) and X(vi) ⊆ vj ∪ X(vj). So, j = cφ(i). This is a
contradiction. Therefore, vj /∈ X(vi). By the assumption that 〈vi〉 ∩ 〈vj〉 = JC(vi)
which is a k-clique of G, we have 〈vi〉 ∩ 〈vj〉 = JC(vj) since vj /∈ X(vi). Then
JC(vi) = JC(vj).

(ii) Note that b ≥ 2 since any block B has at least two vertices. By Corollary 2.3,
〈vib〉, 〈vib−1

〉, . . . , 〈vi1〉 are added to B in order during an inductive construction of
�k+1(G) with respect to φ. Since �k+1(G) is a connected block graph, all vertices of
B are pairwise adjacent. Then the intersection of any two vertices of B is a k-clique

of G. By (i),
b⋂

j=1

〈vij〉 = JC(vi1) since 〈vi1〉 is the last vertex added to the block B.

In particular, the intersection of any two vertices of B is JC(vi1).

By (i), for all 1 ≤ j ≤ b − 1, 〈vib〉 ∩ 〈vij〉 = JC(vij ) since ij < ib ≤ n − k.
We have shown that the intersection of any two vertices of B is JC(vi1). Then
JC(vij ) = JC(vi1) for all 1 ≤ j ≤ b − 1. It follows that X(vij ) = X(vi1) for all
1 ≤ j ≤ b− 1. By Theorem 2.4, cφ(ij) = min{φ−1(w) | w ∈ X(vij)} = min{φ−1(w) |
w ∈ X(vi1)} = cφ(i1) for all 1 ≤ j ≤ b−1. By Theorem 2.4, either cφ(i1) = n−k+1
or cφ(i1) ≤ n− k.

If cφ(i1) = n − k + 1, then cφ(ij) = cφ(i1) = n − k + 1 for all 1 ≤ j ≤ b − 1.
Moreover, ib /∈ X(vi1) since ib ≤ n − k. Then 〈vib〉 ∩ 〈vi1〉 = JC(vi1) implies that
X(vib) = X(vi1) and so cφ(ib) = cφ(i1) = n − k + 1. Therefore, for all 1 ≤ j ≤ b,
JC(vij ) = G[{vn, vn−1, . . . , vn−k+1}], which is the base k-clique of G with respect
to φ.

If cφ(i1) ≤ n − k, then cφ(ij) = cφ(i1) ≤ n − k for 1 ≤ j ≤ b − 1. Since
ij < cφ(ij) ≤ n − k for 1 ≤ j ≤ b − 1, we observe that 〈vij〉 and 〈vcφ(ij)〉 are
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adjacent with 〈vij〉 ∩ 〈vcφ(ij)〉 = JC(vij ) = JC(vi1) for 1 ≤ j ≤ b − 1. Then the
vertex 〈vcφ(ij)〉 = 〈vcφ(i1)〉 is also contained in the block B for 1 ≤ j ≤ b − 1.
Note that cφ(ij) /∈ {ib−1, . . . , ij , . . . , i1} for each 1 ≤ j ≤ b − 1. Then 〈vcφ(ij)〉 /∈
{〈vib−1

〉, . . . , 〈vij〉, . . . , 〈vi1〉} for each 1 ≤ j ≤ b − 1. It follows that 〈vcφ(ij)〉 is the
vertex 〈vib〉 of B for 1 ≤ j ≤ b − 1. Therefore, cφ(ij) = ib for all 1 ≤ j ≤ b − 1.
By (i), JC(vij ) are the same for 1 ≤ j ≤ b− 1 and different from JC(vib). �

Corollary 3.8 Let G be a k-tree of order larger than k+1 and �k+1(G) be its (k+1)-
line graph. Then there is a 1–1 correspondence between the set of the blocks of �k+1(G)
and the set of minimal separators of G.

Proof. By Theorem 3.7, the intersection of all vertices in a block of �k+1(G) is a
k-clique of G. So, each block of �k+1(G) corresponds to a k-clique of G which is
contained in at least two (k+1)-cliques of G. On the other hand, if a k-clique of G is
contained in at least two (k+ 1)-cliques of G, then all (k+ 1)-cliques containing the
same k-clique are pairwise adjacent in �k+1(G) and form a block of �k+1(G). Recall
that a k-clique of G is a minimal separator of G if and only if it is contained in at
least two (k + 1)-cliques of G. Therefore, there is a 1–1 correspondence between the
set of the blocks of �k+1(G) and the set of minimal separators of G. �

Definition 3 Let G be a k-tree of order larger than k+1. The separator-k-clique
graph of G, denoted by G/[k]S, is a graph whose vertices are the minimal separators
of G, that is, the k-cliques of G each of which is contained in at least two (k + 1)-
cliques of G, and two minimal separators of G are adjacent in G/[k]S if and only if
they are contained in a common (k + 1)-clique of G.

The cut-point graph was first defined by Harary in [11]. The cut-point graph
of a graph G, denoted by C(G), is a graph whose vertices are the cut vertices of
G and two cut vertices are adjacent if and only if they are contained in a common
block. It was shown in [11] that a graph is a block graph if and only if it is the block
graph B(G) of some graph G and B(B(G)) = C(G).

Lemma 3.9 Let G be a k-tree of order larger than k+1. Then both B(�k+1(G)) and
C(G/[k]) are isomorphic to G/[k]S, and G/[k]S is an isometric subgraph of G/[k].

Proof. By Corollary 3.8, there is a 1–1 correspondence between the set of the blocks
of �k+1(G) and the set of vertices of G/[k]S. Two blocks of �k+1(G) are adjacent in
B(�k+1(G)) if and only if two blocks of �k+1(G) have a cut vertex 〈v〉 of �k+1(G)
in common if and only if the corresponding two vertices of G/[k]S (considered as k-
cliques of G) are contained in 〈v〉 (considered as (k+1)-cliques of G) if and only if the
corresponding two vertices of G/[k]S are adjacent in G/[k]S. Therefore, B(�k+1(G))
is isomorphic to G/[k]S. By Lemma 3.1, �k+1(G) is isomorphic to B(G/[k]). Then
B(B(G/[k])) is isomorphic to G/[k]S. By [11], B(B(G/[k])) = C(G/[k]). It follows
that C(G/[k]) is isomorphic to G/[k]S. By the definition of a separator-k-clique
graph, G/[k]S is an induced subgraph of G/[k]. Moreover, G/[k]S is isometric in
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G/[k] because G/[k] is a block graph and block graphs are distance-hereditary graphs
by [12]. �

Assume that G is a connected graph. Let e = uv be an edge of G. A vertex w
of G is said to be closer to u than to v in G if dG(w, u) < dG(w, v). Let ne(u)
be the number of vertices that are closer to u than to v in G, and ne(v) be the
number of vertices that are closer to v than to u in G. The Szeged index of G is
defined as Sz(G) =

∑
uv∈E(G)

ne(u)ne(v) [8]. The Wiener index and the Szeged index

are two closely related graph invariants. It is known [15] that W (G) ≤ Sz(G) for
any connected graph G. The Szeged-Wiener Theorem [9] states that W (G) = Sz(G)
if and only if G is a connected block graph; proofs are available in [3, 9, 14]. In
particular, W (G) = Sz(G) if G is a tree [21]. By Lemma 3.1 and Lemma 3.9, G/[k],
�k+1(G) and G/[k]S are connected block graphs, since a graph is a block graph if and
only if it is the block graph of some graph [11]. We have the following conclusion by
the Szeged-Wiener Theorem.

Corollary 3.10 Let G be a k-tree of order larger than k + 1. Then

(i) W (G/[k]) = Sz(G/[k]).

(ii) W (�k+1(G)) = Sz(�k+1(G)).

(iii) W (G/[k]S) = Sz(G/[k]S).
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