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Abstract

For any linear inequality in three variables £, we determine (if it exists)
the smallest integer R(L,Z/37) such that: for every mapping x : [1,n] —
{0,1,2}, with n > R(L,Z/37Z), there is a solution (z1,zs,r3) € [1,n)?
of £ with x(z1) + x(x2) + x(23) = 0 (mod 3). Moreover, we prove that
R(L,Z/37) = R(L,2), where R(L,2) denotes the classical 2-color Rado
number, that is, the smallest integer (provided it exists) such that for
every 2-coloring of [1,n|, with n > R(L,2), there is a monochromatic
solution of £. Thus, we get an Erdos-Ginzburg-Ziv type generalization
for all linear Diophantine inequalities in three variables having a solution
in the positive integers. We also show a number of families of linear Dio-
phantine equations in three variables £ which do not admit such Erdds-
Ginzburg-Ziv type generalization, named R(L,Z/37Z) # R(L,2). At the
end of this paper some questions are proposed.

1 Introduction

Ever since Erdés, Ginzburg, and Ziv proved their famous zero-sum theorem [11],
EGZ-type results have been widely used in mathematics. The techniques employed
in their proofs have proven to be quite useful in solving various problems. In recent
years, it has become evident that EGZ-type results continue to provide new and
interesting applications, see for instance [4, 15, 19]. In combinatorics, EGZ-type
results are used in Ramsey theory and graph theory, as evidenced by [6, 7, 8, 9]. In
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number theory, the use of zero-sum results has been fruitful and has generated its
own set of problems and research topics, exemplified by [3, 12, 13, 14, 16, 17]. In
discrete geometry, EGZ-type results are used to solve geometrical problems in finite
fields, as well as to study the minimum number of distinct distances generated by a
set of points in the Euclidean plane, see [10, 20].

In this paper we investigate colorings of sets of natural numbers. We denote
by [a,b] the interval of natural numbers {z € N : a < z < b}, and by [a, b]* the
set of vectors (z1, s, ...,xx) where x; € [a,b] for each 1 < i < k. An r-coloring
of [1,n] is a function x : [1,n] — [0, — 1]. Given an r-coloring of [1,n], a vector
(21,72, ...,75) € [1,n]* is called monochromatic if all its entries received the same
color, rainbow if all its entries received pairwise distinct colors, and zero-sum if
Zle x(z;) =0 (mod 7).

For a Diophantine system of equalities (or inequalities) in k variables £, we
denote by R(L,r) the classical r-color Rado number, that is, the smallest integer,
provided it exists, such that for every r-coloring of [1,n], with n > R(L,r), there
exists (71, Tg, ..., 7x) € [1,n]" a solution of £ which is monochromatic. Rado numbers
have been widely studied for many years (see for instance [18]). When studying the
existence of zero-sum solutions, it is common to refer to an r-coloring as a (Z/rZ)-
coloring. In this setting, Bialostocki, Bialostocki and Schaal [5] started the study of
the parameter R(L,7Z/rZ) defined as the smallest integer, provided it exists, such
that for every (Z/rZ)-coloring of [1, R(L,Z/rZ)] there exists a zero-sum solution of
L. Recently, Robertson and other authors studied the same parameter concerning
different equations or systems of equations, [21, 22, 23, 24].

We shall note that, if £ is a system of equalities (or inequalities) in k variables,
then
R(L,2) < R(L,Z/kZ) < R(L, k), (1)

where the first inequality follows since, in particular, a (Z/kZ)-coloring that uses
only colors 0 and 1 is a 2-coloring where a zero-sum solution is a monochromatic
solution; the second inequality of (1) follows since any monochromatic solution of
L in a k-coloring of [1, R(L, k)] is a zero-sum solution too. In view of the Erdés-
Ginzburg-Ziv theorem, the authors of [5] state that a system £ admits an EGZ-
generalization if R(L,2) = R(L,7Z/kZ). For example, it is not hard to see that the
system AP(3) : z +y = 2z, x < y, admits an EGZ-generalization while the Schur
equation, x 4+ y = z, does not. More precisely, we have that

9= R(AP(3),2) = R(AP(3),7/3Z) = 9,

and
b=Rx+y==22) <Rx+y==212Z/3Z) =10,

where R(AP(3),2) and R(x + y = 2,2) are respectively the well-known van der
Waerden number for 3-term arithmetic progressions concerning two colors and the
Schur number concerning two colors, while R(z +vy = z,7Z/3Z) = 10 can be found in
[21] and R(AP(3),Z/3Z) = 9 can be found in [22]. In [5] the authors consider the
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systems of inequalities

k—1
Ly E T; < Tk,
i=1

and
k-1

£2:2x1<xk, T < To < -+- < Ty,
i=1
proving that £, admits an EGZ-generalization for k prime, and £; admits an EGZ-
generalization for any k, particularly, R(L;,2) = R(Ly,Z/kZ) = k* — k+1 (see [5]).
In this paper we provide analogous results concerning any linear inequality in three
variables. More precisely, let a, b, ¢, d € Z, such that abc # 0. Then we consider,

Ly:ax+by+cz+d<O.

We prove that £3 admits an EGZ-generalization for every set of integers {a, b, ¢, d}
such that the corresponding 2-color Rado number exists. Moreover, we determine,
in each case, such Rado numbers (see Theorem 2.2).

Note that, as we investigate linear systems, £, in three variables, to have an
EGZ-generalization means that

R(L,2) = R(L,Z/3Z),

and the parameter R(L,Z/37) is defined as the smallest integer, provided it exists,
such that for every f : [1, R(L,Z/3Z)] — {0, 1,2} there exists a zero-sum (mod 3)
solution of £ which, in this case, is either a monochromatic or a rainbow solution of
L. Therefore, the study of R(L,Z/3Z) is considered as a canonical Ramsey problem.

The paper is organized as follows. In Section 2, we find the explicit values of
R(L3,Z/37) and R(Ls3,2) (whenever L3 has solutions in the positive integers) in
terms of the coefficients of L£3. As a corollary, we get that £3 admits an EGZ-
generalization in this case. In Section 3 we provide some negative results; that
is, we exhibit families of linear equations in three variables which admit no EGZ-
generalization. In Section 4, we talk about r-regular linear equations and the families
Fi and Fzz. At the end of this section, we give some problems related with these
families.

2 The 2-color Rado numbers for L;

In this section we prove that any linear inequality on three variables, L3, for which
the corresponding 2-color Rado number exists, admits an EGZ-generalization. We
also determine the value of such Rado numbers depending on the coefficients of Ls.

We will repeatedly use the following fact.
Remark 2.1. Let A and B be integers such that A < 0. Then

A(| 2] 1)+ eozal ]
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Recall that, for integers a, b, ¢ and d, such that abc # 0,
Ls:ar+by+cz+d<0.

Theorem 2.2. Let a,b,c,d € 7Z, such that abc # 0, a < b < ¢, and define
oc=a+b+c+d. If L3 has a solution in the positive integers, then

if o <0,

1
| =% + ifo>0anda<b<c<0,

c( CJrdJJrl .
R(L3,2) = R(L3,Z/3Z) = +1 ifo>0anda<b<0<eg,

Qe
|

b+c L”C*d +1)+dJ

+1 ifc>0anda<0<b<ec.

Proof. Let {a,b,c,d} be a set of integers such that L£3 has some (integer) positive
solution. If a + b+ ¢+ d < 0 then (1,1,1) is a monochromatic solution of £3 and
so R(Ls,2) = R(L3,Z/3Z) = 1. If a+ b+ c+ d > 0, then necessarily some of the
coefficients, a, b or ¢, must be negative (otherwise, for all z,y, z positive integers,
ar +by+cz+d>a+b+c+d>0and L3 would have no solution in the positive
integers). Thus, assuming that a + b+ ¢+ d > 0, we consider three cases.

Case 1. Assume that a < b < ¢ < 0. Define kg = L_a_b_cj + 1. First note that,
sincea+b+c+d>0and —a—b—c> 0, then kg > 1. Observe now that, for any
x,y, 2 € [1,ko — 1],

ar +by+cz+d>alky—1)+blko—1)+clkg—1)+d

| +a=0

—a—b—c

:(a—l—b+c){

where the last inequality follows by taking A = a+b+c < 0 and B = d in Remark 2.1.
Then we conclude that £3 has no solution in [1,ky — 1]. On the other hand,

ak0+bk0+6k0+d:(a+b+0)<\‘ J+1>+d<0, (2)

—a—b—rc

where the inequality follows by Remark 2.1 (taking again A = a +b+ ¢ < 0 and
B = d). From (2), we conclude that (ko, ko, ko) is a solution of L3, and so any
coloring of [1, k] will contain a monochromatic (zero-sum) solution of £3. Hence,

R(L3,2) = R(L3,Z/3Z) = ky.
Case 2. Assume that a < b < 0 < ¢. Define the function

cx+dJ 1

7 — 7, z/;(:c):{_a_b
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and set k1 = (1) and ko = 1(ky). First note that, since a + b+ c+d > 0 and
—a — b > 0 then k; > 1 and, as 9 is a nondecreasing function, then 1 < k; < k.
From (1), it suffices to show that

ke < R(L3,2) (3)

and

R(L3,Z/32) < ks, (4)
To show (3), we exhibit a 2-coloring of [1,ks — 1] without a monochromatic

solution to L3. Define x; : [1,ky — 1] — {0,1} as

o [0 f1<a<h-1
A=V itk <o <ky— L.
Note that if z,y, z € [1, k; — 1], then

ar+by+cz+d>alk;—1)+blky—1)+c+d

~(a+b) { c+d

—a —

bJ+C+dZO’ (5)

where the last inequality follows by taking A = a+b < 0 and B = ¢+d in Remark 2.1.
Also, if z,y, z € [k, ko — 1], then

ar +by+cz+d>alky—1)+b(ks — 1) +cki +d

ki +d
= (a+1) r_;thﬂLckﬁrdzo, (6)

where the last inequality follows by taking A = a+b < 0 and B = ck; +d in Remark
2.1. From (5) and (6), we conclude that there is no monochromatic solution to L3
with respect to x;, which completes the proof of (3).

Now we prove (4). Let x : [1, k2] — {0, 1,2} be an arbitrary coloring, and assume
that y contains no zero-sum solutions of L3. We will use two times the first inequality
of Remark 2.1. First take A=a+b < 0 and B = c+ d to obtain

c+d
_a/_

ak1+bk1+c+d:(a+b)(L bJ+1)+C+d<0' (7)

Now, take A=a+b < 0 and B = ck; + d to obtain

ky +d
Cl+bJ+1>+ck1+d<0. (8)

—a —

ak2+bk2+ck1+d:(a+b)({

By (7) we know that (ki,kq,1) is a solution of L3 which, by assumption, cannot be
zero-sum. Suppose, since any zero-sum solution must be either rainbow or monochro-
matic, that x(1) = 0 and (k1) = 1. Next, we prove that x(k2) cannot be 0, 1 or 2.

e By (8), we know that (ka, ko, k1) is a solution of L3, and so x(ka) # x(k1) = 1.
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e Since ¢ > 0 and k; > 1 then aky+bko+c+d < aks+bko+cky+d, which together
with (8) implies that (ka, ko, 1) is a solution of L£3. Thus, x(k2) # x(1) = 0.

e Since a < 0 and ko > ki then aky + bky + c+ d < aky + bk1 + ¢ + d, which
together with (7) implies that (ks, k1, 1) is a solution of L3. Thus, x(k2) # 2.

This contradiction implies the existence of a zero-sum solution in any (Z/37Z)-coloring
of [1, k], and we have completed the proof of (4).

Case 3. Assume that a < 0 < b < ¢. Define the function
b d
broerd),

—a

$:Z—1Z, ezs(x):[

and set k3 = ¢(1) and ky = ¢(k3). First note that, since a+b+c+d > 0, then k3 > 1
and, as ¢ is a nondecreasing function, then 1 < k3 < k4. From (1), it is enough to
show that

ks < R(Ls,2) (9)

and
R(L3,7,/37) < ky. (10)

To show (9), we exhibit a 2-coloring of [1,k,; — 1] without a monochromatic
solution to L3. Define x5 : [1,ky — 1] — {0,1} as

(2) = 0 ifl<az<ks—1,
X2\E) = 1 1f]{73§£€§]€4—1

Note that if z,y, z € [1, ks — 1], then

ar+by+cz+d>alks—1)+b+c+d
a{b+c+d

J+b+c+d20, (11)

where the last inequality follows by taking A = a < 0 and B = b+c+d in Remark 2.1.
Also, if z,y, z € ks, ks — 1], then

axr +by+cz+d>a(ky — 1)+ bks + cks +d
_a{w+@@+d

—a J +b/€3+Cl{3+dZ 0, (12)

where the last inequality follows by taking A = a < 0 and B = bks + cks + d
in Remark 2.1. From (11) and (12), we conclude that there is no monochromatic
solution to L3 with respect to x2, which completes the proof of (9).

Now we prove (10). Let x : [1,k4] — {0,1,2} be an arbitrary coloring, and
assume that y contains no zero-sum solution of £5. We will use two times the first
inequality of Remark 2.1. First take A =a <0 and B = b+ ¢+ d to obtain

b+c+d

—a

a%+b+c+d:a({ J+1>+b+c+d<& (13)
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Now take A =a < 0 and B = (b+ ¢)k; + d to obtain
(b+ c)ks +d

—a

ak4+bk3+ck‘3+d:a({ J+1>+(b+c)k3+d<0 (14)
By (13) we know that (k3, 1, 1) is a solution of £3 which, by assumption, cannot be
zero-sum. Suppose, without loss of generality, that x(1) = 0 and x(k3) = 1. Next,
we prove that x(k4) cannot be 0, 1 or 2.

e By (14), we know that (ky, k3, k3) is a solution of L3, and so x(k4) # x(k3) = 1.

e Since ¢ > b > 0 and k3 > 1 then aky + b+ c+ d < aky + bks + cks + d,
which together with (14) implies that (k4,1,1) is a solution of L£3. Thus,

x(ka) # x(1) = 0.

e Since ¢ > 0 and k3 > 1 then aky + bk3 + ¢ + d < akys + bks + cks + d, which
together with (14) implies that (kq4, k3, 1) is a solution of L£3. Thus, x(k4) # 2.

This contradiction implies the existence of a zero-sum solution in any (Z/3Z)-coloring
of [1, k4], and we have completed the proof of (10). O

As an immediate consequence of Theorem 2.2 we conclude the following.

Corollary 2.3. Let a,b,c,d € Z, such that abc # 0. If L3 : ax +by+cz+d < 0 has
a solution in the positive integers, then L3 admits an EGZ-generalization.

3 Negative results

In this section we exhibit different families of linear equations in three variables
that admit no EGZ-generalization. In other words, we study equations, £, where
R(L,2) # R(L,Z/37Z). Naturally, we focus our attention on equations such that
both R(L,2) and R(L,Z/3Z) exist. Although Rado’s Theorem characterizes the
equations £ such that R(L,?2) exists, there is a small number of families of equations
where the value R(L,2) is explicitly known; see [18], [1]. In this section we develop
some ideas to compare R(L,2) and R(L,Z/3Z) for some equations, and then we get
some applications to show that £ does not admit an EGZ-generalization.

Theorem 3.1. Let a,b, c,d be integers where a,b,c are odd and d is even, such that
both R (az + by + cz = 4,2) and R(ax + by + cz = d, Z/3Z) exist. Then

2
d
2R (ax +by+cz = 5,2) < R(ax + by + cz = d,Z/37Z).
Proof. Abbreviate writing R := R (ax + by + cz = £,2). Let xo : [1, R—1] — {0,1}

be a coloring such that ax +by+cz = g has no monochromatic solution with respect
to xo. Define

n if n is even
X - [1,2R—1] _>{071a2}a X(n): { ;CO (2) 1fn18 Odd
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To prove the claim of the theorem, it is enough to show that ax + by + cz = d has no
zero-sum solution with respect to x. Let (zo, yo, 20) be a solution of ax + by +cz = d.
Since d is even and a, b, ¢ are odd, we have that either the three entries of (o, yo, 20)
are even or exactly one of the entries is even.

First assume that the three entries of (x,y, z) are even. Then x(z¢) = xo (%0),
X(%) = Xo (%0) and x(z0) = Xo (%0), since ax + by + cz = ‘2—1 has no monochromatic
solution with respect to yo, (%0, 2, %0) is not monochromatic and does not contain
the color 2. Therefore (¢, yo, 20) is no zero-sum solution with respect to x.

Now assume that exactly one of the entries of (z,y, z) is even; without loss of
generality assume that zg is even. Then x(zo) = xo0 (%), x(y0) = 2 and x(20) = 2.

This means that (xo, yo, 20) is not a zero-sum solutions with respect to x. O

The next result is an immediate corollary of Theorem 3.1.

Corollary 3.2. Let L be the equation ax+by+cz = 0, and assume that R(L,7/37)
exists. Then L admits no EGZ-generalization if a, b and ¢ are odd integers.

Also Theorem 3.1 provides some applications for non-homogeneous linear equa-
tions.

Corollary 3.3. Let d be a negative even integer. Then the equation x +y — z = d
admits no EGZ-generalization.

Proof. From [18, Thm. 9.14], we have that
Rlx+y—2=4d,2)=5—4d,

and

|

R(x+y—z: ,2) =5H—2d.

On the other hand, Theorem 3.1 leads to
d
2R (x—i—y—z: 5,2) <Rx+y—=z=d,Z/3Z).
Hence

d
R(:v—i—y—z:d,Z/?)Z)22R($+y—z:§,2>

= 2(5 — 2d)
>5H—4d
=Rx+y—2=4d,2). O

Corollary 3.4. Let d be a positive integer congruent to 6,8 or O modulo 10. Then
the equation v +y — z = d admits no EGZ-generalization.
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Proof. On the one hand, we have from [18, Thm. 9.15] that

Rx+y—2=d,2)=d— {g—‘ +1,

d d
R —z==2==— 1.
<x+y z 2,) 5 |7—‘+

On the other hand, Theorem 3.1 leads to
d
2R (x—l—y—z: 5,2) <Rx+y—=z=4d,Z/3Z).

and

Ut ola,

Thus, since d is congruent to 6,8 or 0 modulo 10, we get that

d
R(:v—i—y—z:d,Z/?)Z)22R($+y—z:§,2>

4 Other directions

A linear homogenous equation is called r-reqular if every r-coloring of N contains
a monochromatic solution of it (equivalently, an equation L is called r-regular if
R(L,r) exist). A linear homogenous equation is called regular if it is r-regular for
all positive integers r. Denote by JF,. the family of linear homogenous equations
which are r-regular. For equations on k > 3 variables, Rado completely determined
Fo: it is the set of equations, Zle c;x; = 0 for which there exist 4,5 € {1,...,k}
such that ¢; < 0 and ¢; > 0 (see, for instance [18]). For other values of r € Z™,
the family F, is not characterized. Rado’s Single Equation Theorem states that a
linear homogenous equation on k > 2 variables, Zle c;ix; = 0 (¢;’s are non-zero
integers), is regular if and only if there exists a non-empty D C {1, ..., k} such that
ZdeD cq = 0. Naturally, .1 C F, for all r € Z". In his Ph.D. dissertation,
Rado conjectured that, for all » € Z, there are equations that are r-regular but not
(r + 1)-regular. This conjecture was solved by Alexeev and Tsimerman in 2010 [2],
where they confirm that F..; C F,.. For any k € N, define F7,7 to be the family of
linear homogeneous equations in k variables, £, for which R(L,Z/kZ) exist. By (1)
we know that
F3 C Fzz C Fo.

We will show that
Fs & Fussz- (15)
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For all n € N, denote by ordy(n) the maximum m € Z such that 2™ divides n. First
note that the equation x + 2y — 4z = 0 is not in JF3 since the coloring

0 ifordy(n) =0 mod 3,
x:N—{0,1,2}, x(n)=4¢ 1 ifordy(n) =1 mod 3,
2 ifordy(n) =2 mod 3.

has no monochromatic solution of it. The next proposition implies that z+2y—4z =0
is in F7/3z and therefore (15) holds.

Proposition 4.1. The equation x+2y—4z = 0 satisfies R(z+2y—4z = 0,Z/3Z) = 8.

Proof. Let L be the equation x + 2y — 4z = 0. First we show that R(L,Z/3Z) > 8.
Let x : [1,8] — {0, 1,2} be a coloring. We assume that there is no zero-sum solution
of £ with respect to y, and we will get a contradiction. Assume without loss of
generality that x(1) = 0. Since (2,1, 1) is a solution of £, x(2) # 0; assume without
loss of generality that x(2) = 1. Note that (2, 3,2), (4,2,2) and (4,4, 3) are solutions
of £. Thus either x(3) = 0 and x(4) = 2, or x(3) = 2 and x(4) = 0. Notice that
(6,3,3) and (4,6,4) are solutions of £ so x(6) = 1. Since (6,5,4) and (2,5, 3) are
solutions of £, we get x(5) = 1. For any value of x(8), we obtain a zero-sum solution
inasmuch as (8,2,3), (4,8,5) and (8,6,5) are solutions of £ and this is the desired
contradiction.

On the other hand, R(L,Z/3Z) > 7 since there is no zero-sum solution with
respect to the coloring

0 ifne{l,4,7}
VLT {012}, x(m)={ 1 ifne {256}
2 ifn=23,

and this completes the proof. O]

From the previous discussion, we know that F3 C F7z/37 € F». A natural question
arises from this chain.

Problem 1. Is it true that Fz37 C Fa?

From (1) we know that 7, C Fzz for all £ > 3. Thus it would be interesting
to know if there are k € N such that equality is achieved.

Problem 2. For all k > 3, Fj, C Fz/1z2.?

Finally we know that F, C F7z/,z and F, C Fj—; for all & > 3. However we do
not know whether there is a relation between F;_; and Fz /7.

Problem 3. For all k > 3, Fzuz C Fr—1?
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