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Abstract

We give a new cyclic sieving phenomenon for semistandard Young tabl-
eaux SSY T (λ, μ) of shape λ = (m,nb) and content μ, a (b + 2)-tuple.
We prove that (SSY T (λ, μ), 〈∂b+2〉, f(q)) exhibits the cyclic sieving phe-
nomenon, where ∂ is the jeu de taquin promotion operator and f(q) is a

modified Kostka-Foulkes polynomial K̃λ,μ(q), up to a power of q.

1 Introduction

Given a finite set X, and 〈g〉 a cyclic group of order n that acts on X, we can
consider the cardinality of the fixed point set Xgd, for a positive integer d. The triple
(X, 〈g〉, f(q)), where f(q) ∈ N[q], is said to exhibit the cyclic sieving phenomenon
(CSP) if |Xgd| = f(ωd) for all d ≥ 0, where ω is a primitive nth root of unity. The
cyclic sieving phenomenon was introduced by Reiner, Stanton and White in 2004
[15] and has been widely studied since then, in various settings (see [17] for details).

Several authors have produced CSPs for various sets of Young tableaux (see, for
instance, [2, 3, 5, 7, 10, 11, 12, 14, 16]). Candidates for cyclic sieving polynomials are
generally q-analogues of a natural counting formula (for example, the hook-length
formula for standard tableaux) and a cyclic action on standard or semistandard
tableaux is given by Schützenberger’s jeu de taquin promotion operator ∂ ([18, 19]).
One roadblock is that the order of promotion (the least positive integer that fixes all
tableaux in the set under ∂) is unknown for most shapes. There are also situations
where the order of promotion is known but the most natural cyclic sieving polynomial
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does not yield a CSP. For example, the order of promotion for staircase tableaux was
given in [13] but, so far, a CSP for staircase tableaux remains elusive.

For standard rectangular tableaux of shape λ = (ab), the order of promotion
is ab [8] and if X = SSY T (ab, k) is the set of semistandard rectangular tableaux
with entries less than or equal to k, the order of promotion on X is k. Rhoades
proved CSPs for both standard and semistandard rectangular tableaux [16]. We give
a summary of CSP results for semistandard tableaux thus far. For a list of CSPs in
other settings, see [2, Table 1].

(1) Rhoades [16] proved that (SSY T (λ, k), 〈∂〉, q−κ(λ)sλ(1, q, . . . , q
k−1)) is a CSP

triple, where λ is a rectangular partition, sλ(1, q, . . . , q
k−1) is a principal special-

ization of the Schur polynomial and κ(λ) =
∑

i(i− 1)λi.

(2) In [5], the authors showed that (SSY T (ab, γ), 〈∂d〉, q∗Kab,γ(q)) is a CSP triple,
refining Rhoades’s result. Here SSY T (ab, γ) is the set of rectangular tableaux with
fixed content γ, with γ invariant under the dth cyclic shift, where d is the frequency
of γ—the number of cyclic shifts to return γ to itself—and q∗Kab,γ(q) is a Kostka-
Foulkes polynomial up to a power of q.

(3) A CSP for semistandard hook tableaux with content μ was given in [3] where it
is shown that (SSY T ((n−m, 1m), μ), 〈∂d〉, f(q)) is a CSP triple, with cyclic sieving

polynomial f(q) =

[
nz(μ)− 1

m

]
q

. Here z(μ) is the number of non-zero entries in μ.

(4) Using the cyclic action c arising from the Uq(sln) crystal structure for semis-
tandard tableaux, Oh and Park [10] proved (SSY T (λ), 〈c〉, q−κ(λ)sλ(1, q, . . . , q

k−1))
exhibits the CSP when the length of λ is less than k and gcd(k, |λ|) = 1. The result
was extended to skew shapes in [1].

(5) In [2], the authors gave a CSP for semistandard tableaux of stretched hook
shape λ = ((a + 1)n, nb) and rectangular content μ = (na+b+1). They proved that
(SSY T ((a+ 1)n, nb), μ), 〈∂〉, f(q)) exhibits the CSP, where

f(q) =
∏

1≤i≤a

∏
1≤j≤b

[i+ j + n− 1]q
[i+ j − 1]q

= q−n(b+1
2 )K̃λ,μ(q).

Here K̃λ,μ(q) is a modified Kostka-Foulkes polynomial.

In this paper, we give a CSP for the set of semistandard tableaux SSY T (λ, μ) of
shape λ = (m,nb) and content μ = (μ1, . . . , μb+2), where m,n, b are positive integers.
The shape is a more general version of the stretched hook shape λ = ((a+1)n, nb) in
(5) and our content is a (b+2)-tuple whereas the content in (5) is rectangular of the
form (na+b+1). The CSP polynomial is a q-binomial coefficient, which is a modified
Kostka-Foulkes polynomial. Our CSP coincides with (5) in the case where a = 1;
that is when λ = (2n, nb) and μ = (nb+2).
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After reviewing the necessary definitions and results in Sections 2 and 3 we prove

our main result in Section 4, which is that (SSY T (λ, μ), 〈∂b+2〉, q−n(b+1
2 )K̃λ,μ(q)) is

a CSP, for λ = (m,nb), μ = (μ1, . . . , μb+2), and K̃λ,μ(q) a modified Kostka-Foulkes
polynomial.

2 Semistandard tableaux and jeu de taquin promotion

A weakly decreasing r-tuple λ = (λ1, . . . , λr) is a partition of a positive integer n if
λi ≥ 0 and

∑r
i=1 λi = n. The Young diagram of shape λ consists of n boxes in r

left-justified rows with the ith row containing λi boxes. A λ-tableau T is obtained
by filling the Young diagram with positive integers. A λ-tableau is semistandard if
the entries in its columns are strictly increasing from top to bottom and the entries
in its rows are weakly increasing from left to right. If T contains entries from the set
{1, . . . , k}, the content of T is the k-tuple μ = (μ1, . . . , μk) where μi is equal to the
number of entries equal to i in T . We will denote the set of semistandard λ-tableaux
with content μ by SSY T (λ, μ).

Example 2.1. The tableau T = 1 1 2 3 5

2 3 4

3

belongs to SSY T (λ, μ) where

λ = (5, 3, 1) and μ = (2, 2, 3, 1, 1).

Jeu de taquin promotion ([18, 19]) is a combinatorial algorithm that gives an
action on semistandard tableaux. We will use the version defined in [3], which is
the inverse of the operation used in [2]. For a semistandard tableau T with entries
in {1, . . . , k}, first replace each entry equal to k with a dot. If there is a dot in the
figure that is not contained in a continuous strip of dots in the northwest corner,
choose the westernmost dot and slide it north or west until it lands in a connected
component of dots in the northwest corner according to the following rules:

a b

•
→ • b

a
; a •

b
→ • a

b
; a b

c •
→

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a •
c b

if c ≤ b

a b

• c
if b < c.

Repeat for the remaining dots, then replace each dot with 1 and increase all other
entries by one, giving ∂(T ), which is semistandard. If T has content μ = (μ1, . . . , μk),
then ∂(T ) has content (μk, μ1, . . . , μk−1).

Example 2.2. Below is an illustration of jeu de taquin promotion.

T = 1 1 2 3

2 3 4 5

5 5

→ 1 1 2 3

2 3 4 •
• •

→ • 1 2 3

1 3 4 •
2 •

→ • • 2 3

1 1 4 •
2 3
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→ • • • 3

1 1 2 4

2 3

→ 1 1 1 4

2 2 3 5

3 4

= ∂(T )

The order of promotion of a tableau T is the least positive integer r such that
∂r(T ) = T . If a set X of semistandard tableaux is invariant under ∂, the least
positive integer r such that ∂r(T ) = T for all T ∈ X is the order of promotion on X.

3 Kostka-Foulkes polynomials

The Kostka-Foulkes polynomials, denoted Kλ,μ(q), relate Hall-Littlewood polynomi-
als to Schur polynomials (see [4] for a comprehensive overview). They generalize the
Kostka coefficients Kλμ, since Kλ,μ(1) = Kλμ, which is the number of semistandard
tableaux of shape λ and content μ. It was shown by Lascoux and Schützenberger [9]
that the Kostka-Foulkes polynomials can be found using a statistic, called charge,
which had previously been conjectured by Foulkes [6]:

Kλ,μ(q) =
∑

T∈SSY T (λ,μ)

qcharge(T ).

We will work withmodified Kostka-Foulkes polynomials K̃λ,μ(q), which are related

to the Kostka-Foulkes polynomials by the relation K̃λ,μ(q) = qκ(μ)Kλ,μ(q
−1), where

κ(μ) =
∑

i(i−1)μi. These can be obtained via a statistic on tableaux called cocharge,
denoted cc(T ), which we will define shortly:

K̃λ,μ(q) =
∑

T∈SSY T (λ,μ)

qcc(T ).

Given a permutation w = w1 . . . wn ∈ Sn, where Sn is the symmetric group on
n letters, define the cocharge of j in w recursively as follows:

cc(w, j) :=

⎧⎨⎩
0 if j = 1
cc(w, j − 1) + 1 if j precedes j − 1 inw
cc(w, j − 1) otherwise.

The cocharge of the word w is cc(w) =
∑n

j=1 cc(w, j) and charge(w) =
(
n
2

)− cc(w).
The content of a word w is μ = (μ1, . . . , μn), where μi records the number of entries i
in w. We can define cocharge for a word w whenever its content μ is a partition. To
do so, obtain μ1 standard subwords from w in the following way: start by selecting
the rightmost 1, then move left to find the rightmost 2 that precedes the chosen 1
and if there is not a 2 preceding the 1, loop around to the beginning of the word to
choose the rightmost 2. Continue for 3, 4, etc., until the largest entry in the word
has been selected. The selected entries, listed in the order they appear in w, form
the first standard subword w(1). Delete the entries in w(1) from w and repeat the
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process with the word consisting of the remaining entries to obtain w(2). Continue
until no entries in the word remain, forming μ1 subwords. Each of the subwords
w(i) is a permutation, and w(1), . . . , w(k) are the parts of the conjugate partition μt.
Define the cocharge of w as cc(w) =

∑μ1

i=1 cc(w
(i)).

To get the cocharge of a tableau, we work with its reading word rw(T ), which is
obtained by listing the entries of T , left to right, across the rows, starting with the
bottom row of T . Define cc(T ) = cc(rw(T )). For the cocharge of T to be well-defined,

it is necessary for the content of T to be a partition. However, K̃λ,μ = K̃λ,σμ, where
σ is a permutation and σ(μ1, . . . , μn) = (μσ(1), . . . , μσ(n)) so this does not impede the
use of cocharge to find the modified Kostka-Foulkes polynomial.

Example 3.1. Let T = 1 1 1 1 2 2 3 4

2 2 3

3 4 4

with rw(T ) = 34422311112234.

The content of w, which is the content of T , is μ = (4, 4, 3, 3). The four standard
subwords obtained from w are: w(1) = 3214, w(2) = 4213, w(3) = 4312, w(4) = 12.
Then cc(w(1)) = cc(w(1), 1)+ cc(w(1), 2)+ cc(w(1), 3)+ cc(w(1), 4) = 0+1+2+2 = 5,
cc(w(2)) = 0 + 1 + 1 + 2 = 4, cc(w(3)) = 0 + 0 + 1 + 2 = 3, cc(w(4)) = 0 + 0 = 0 so
cc(w) = 12.

4 Main result

Our aim in this section is to prove a CSP for semistandard tableaux of shape λ =
(m,nb) and content μ = (μ1, . . . , μb+2). For λ and μ so defined, let

β(λ, μ) = m− n−
b+2∑
i=1

γi, where γi =

{
μi − n if μi > n

0 otherwise.

If μi > n, at least γi = μi − n entries equal to i are forced into the last m − n
columns of T ∈ SSY T (λ, μ) and we will refer to these as forced entries. Thus∑b+2

i=1 γi is the number of entries in the last m− n columns that are fixed and there

arem−n−∑b+2
i=1 γi boxes in the lastm−n columns for which the entries can vary. The

entries remaining in the lastm−n columns of T after deleting γi entries equal to i, for
each 1 ≤ i ≤ b+2, will be called the free entries in T . Each tableau T ∈ SSY T (λ, μ)
has β(λ, μ) free entries, which belong to the set {2, . . . , b + 2}. Furthermore, since
the sum

∑b+2
i=1 γi is the same for any permutation σμ of the content, any tableau in

SSY T (λ, σμ) also has β(λ, μ) free entries.

The free entries in T ∈ SSY T (λ, μ) can also be determined by considering a
multiset of elements from {2, . . . , b + 2} that are missing from the first n columns.
Each of the first n columns of T is necessarily missing one element from {1, . . . , b+2}
and the collection of these elements forms a multiset. If μi < n, then i is missing
from at least n − μi of the first n columns in any tableau, so for each i in the
multiset with μi < n, remove n − μi entries equal to i to get a multiset AT of
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elements from {2, . . . , b + 2}. The set AT consists precisely of the free elements in
T so β(λ, μ) = |AT | = n −∑

μi<n(n− μi). Let A denote the set of β(λ, μ)-element
multisets of {2, . . . , b+ 2} and define a map

φ : SSY T (λ, μ) → A where φ(T ) = AT .

Since |AT | ≤ n, for T ∈ SSY T (λ, μ), the following lemma is immediate.

Lemma 4.1. Suppose that λ = (m,nb) and μ = (μ1, . . . , μb+2). Then β(λ, μ) ≤ n.

Example 4.2. Let T = 1 1 1 1 1 1 2 4 4 4 4 6

2 2 2 3 3

3 3 4 4 4

5 5 5 5 5

6 6 6 6 6

,

where λ = (12, 54) and μ = (6, 4, 4, 7, 5, 6). Then γ1 = γ6 = 1, γ4 = 2, γ2 = γ3 = γ5 =
0 and β(λ, μ) = 3. Entries corresponding to γ1, γ4, γ6, which are forced into the top
row, are boldfaced in the tableau. The missing elements from the first five columns
of T are {4, 4, 3, 2, 2}. Since μ2, μ3 < 5 and n− μ2 = n− μ3 = 1, we remove both a
3 and a 2 to get φ(T ) = AT = {4, 4, 2}. These are the free entries in the arm of the
first row, which are not boldfaced.

We will use the following straightforward fact in the proofs that follow.

Lemma 4.3. Suppose that T is a semistandard tableau of shape λ = (m,nb) and
content μ = (μ1, . . . , μb+2). Then any row i of T , where i ≥ 2, can contain only the
entries i or i+ 1.

Lemma 4.4. Suppose that λ = (m,nb), μ = (μ1, . . . , μb+2) and that T ∈ SSY T (λ, μ).
Let σ = (2, 3 . . . , b+ 2) ∈ Sb+2. Then φ(∂(T )) = σφ(T ).

Proof. Since jeu de taquin promotion permutes the content of T , |φ(∂(T ))| = |φ(T )|
= β(λ, μ). Let fT

i denote the number of i’s in the multiset φ(T ) = AT and cTi the
number of i’s in the first n columns of T . If μi > n then fT

i = n− cTi , and if μi < n
then fT

i = n− cTi − (n− μi) = μi − cTi . Any entry i in T with 3 ≤ i ≤ b + 1 either
belongs to the first n columns below the first row or in the last m− n columns and
after jeu de taquin promotion becomes an i+ 1 that belongs to the first n columns
below the first row of ∂(T ) or in the last m− n columns of ∂(T ), respectively, so for

3 ≤ i ≤ b+ 1, cTi = c
∂(T )
i+1 , which yields fT

i = f
∂(T )
i+1 .

Entries equal to 2 belong to either the first or second row of the tableau. Those
below the first row or in the last m − n columns move to boxes below the first row
or in the last m − n columns and become 3’s under jeu de taquin promotion. Any
of the first n columns that contains a 2 in the first row contains a b + 2 in the last
row. If there are also (b+2)’s in row b+1 with 1’s above them in the first row, these
are moved first by jeu de taquin promotion. Since the top entry in the column in
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this case is equal to 1, then for some i the ith row contains the entry i while the row
beneath it contains the entry i+2. Jeu de taquin promotion then commences in the
following way, beginning with the leftmost column that contains a b+2 in row b+1:

1 1

2 2
...

...

i i

i+1 i+2
...

...

b+1 •

→ 1 1

2 2
...

...

i i

i+1 •
...

...

b+1 b+1

→ 1 1

2 2
...

...

i i

• i+1
...

...

b+1 b+1

The jeu de taquin promotion path then moves left across row i + 1 to the first
column without a dot and north to the first row, replacing a 1 with a dot. Promotion
behaves in the same way for all remaining columns that contain a b + 2 in the last
row and a 1 in the top row. For columns that contain (b + 2)’s in the last row and
entries equal to 2 in the first row, it is now the case that for the leftmost such column,
any entry i in the column has an i − 1 immediately to its left. Thus, jeu de taquin
promotion slides the box in the last row directly to row one, which moves the 2 into
the second row. Each remaining b+ 2 in row b+ 1 behaves in the same way, sliding
each remaining 2 into the second row. It follows that cT2 = c

∂(T )
3 so fT

i = f
∂(T )
i+1 for

2 ≤ i ≤ b+ 1.

Since β(λ, μ) =

b+2∑
i=2

f
∂(T )
i = f

∂(T )
2 +

b+1∑
i=2

fT
i and β(λ, μ) =

b+2∑
i=2

fT
i = fT

b+2 +

b+1∑
i=2

fT
i ,

we have f
∂(T )
2 = fT

b+2 and the result follows.

The following lemma shows that if λ = (m,nb) and T ∈ SSY T (λ, μ) has fixed
content μ = (μ1, . . . , μb+2), then T is uniquely determined by its free entries. It
follows that the map φ : SSY T (λ, μ) → A is a bijection.

Lemma 4.5. Let λ = (m,nb), μ = (μ1, . . . , μb+2) and let T ∈ SSY T (λ, μ). Then T
is uniquely determined by the multiset AT .

Proof. For each i with μi < n, add n− μi elements i to AT to produce an n-element
multiset X. Since T is semistandard, listing the elements of X in weakly decreasing
order completely determines the entries in {1, . . . , b+ 2} that are missing from each
of the first n columns of T . The complement of the kth element in the multiset gives
the kth column of T . The remaining entries in T , determined from μ, appear in
weakly increasing order in the first row of T .

Since jeu de taquin promotion permutes the content of a tableau, the content
of T and ∂b+2(T ) are equal so ∂b+2 : SSY T (λ, μ) → SSY T (λ, μ) for λ = (m,nb)
and μ = (μ1, . . . , μb+2). By Lemma 4.4, if T ∈ SSY T (λ, μ) and σ = (2, . . . , b+2)
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then φ(∂(b+2)j(T )) = σjφ(T ). Thus φ(∂(b+2)(b+1)(T )) = σb+1φ(T ) = φ(T ) so
∂(b+2)(b+1)(T ) = T . If 1 ≤ j < b + 1 satisfies ∂(b+2)j(T ) = T for all T , then
σjφ(T ) = φ(T ) for all T , which is not possible, so we have the following lemma.

Lemma 4.6. Let λ = (m,nb) and μ = (μ1, . . . , μb+2). The order of promotion on
SSY T (λ, μ) under the cyclic action of ∂b+2 is equal to b+ 1.

For a positive integer n, let [n]q =
qn − 1

q − 1
and [n]q! = [n]q[n − 1]q · · · [1]q. The

q-binomial coefficients are defined by

[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
. To prove our CSP, we

will use the bijection φ and invoke the following theorem due to Reiner, Stanton and
White.

Theorem 4.7. (Reiner, Stanton and White [15]) Let X be the set of k-element mul-
tisets of {1, 2, . . . , n}, let C = Z/nZ act on X via the permutation θ = (1, 2, . . . , n)

and let f(q) =

[
n+ k − 1

k

]
q

. Then (X,C, f(q)) exhibits the cyclic sieving phe-

nomenon.

Theorem 4.8. Let λ = (m,nb), μ = (μ1, . . . , μb+2), let C = Z/(b + 1)Z act on

SSY T (λ, μ) via ∂b+2 and let f(q) =

[
b+ β(λ, μ)
β(λ, μ)

]
q

. Then (SSY T (λ, μ), C, f(q))

exhibits the cyclic sieving phenomenon.

Proof. Adjust the map φ by decrementing each of the entries in φ(T ) to get ψ :
SSY T (λ, μ) → B, where B is the set of β(λ, μ)-element multisets of {1, . . . , b + 1}.
Let θ = (1, 2, . . . , n). By Lemma 4.4, ψ(∂b+2(T )) = θ(ψ(T )) and ψ(∂(b+2)j(T )) =
θj(ψ(T )).

We have ψ(b+2)j(T ) = T if and only if ψ(∂(b+2)j(T )) = ψ(T ), which, by the above,
yields θj(ψ(T )) = ψ(T ). But, by Theorem 4.7, |Bθj | = f(ωj), where ω is a primitive
(b+ 1)-th root of unity. The result now follows.

We will now examine the relationship between the cyclic sieving polynomial in
Theorem 4.8 and the modified Kostka-Foulkes polynomial K̃λ,μ. To do so, we work
with plane partitions to get a nice formula for cocharge in the case where λ = (m,nb)
and μ = (μ1, . . . , μb+2).

A plane partition is an array π = (πij)i,j≥1 of nonnegative integers such that
π has finitely many nonzero entries and is weakly decreasing in rows and columns.
If

∑
πij = n, we write |π| = n and say that π is a plane partition of n. We can

adjust the bijection φ between SSY T (λ, μ) and the set of β(λ, μ)-element multisets
of {2, . . . , b+2} by subtracting two from each of the entries in φ(T ) and reversing the
order to get a bijection between SSY T (λ, μ) and the set of one-row plane partitions
π = (π1, . . . , πβ(λ,μ)) with π1 ≤ b and β(λ, μ) columns; we will denote the image of T
under this bijection by πT .
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Theorem 4.9. Let λ = (m,nb), let μ = (μ1, . . . , μb+2) be a partition of m+ nb and

let T ∈ SSY T (λ, μ). Then cc(rw(T )) = |πT | + n

(
b+ 1

2

)
, where |πT | is the sum of

the entries in πT .

Proof. We will consider the contribution of a given entry i in the tableau to the
cocharge. An entry i copies the cocharge contribution of i− 1 in its subword if i− 1
precedes i in its subword (an (i − 1, i) pairing) and it increases cocharge otherwise
(an (i, i− 1) pairing).

If an entry i belongs to row i, each of the entries 1, . . . , i− 1 appear above it in
the same column so i pairs with an i−1 in a row above it, giving associated subword
w = · · · i(i−1) · · ·321. Thus, every entry i in row i contributes i−1 to the cocharge.

Any entry i in row one, where i ≥ 2, pairs as (i− 1, i) in the associated subword
so copies the cocharge of i − 1. Any subword containing a forced entry consists
entirely of forced entries. Since there are μ1−n forced 1’s, there are μ1−n subwords
consisting of all forced entries, and these are of the form w = 12 · · · i, so each forced
entry contributes zero to the cocharge.

If i− 1 belongs to one of the first n columns, it either belongs to row i− 1 or to
row i− 2. If i is a free entry in row one, it cannot pair with a forced entry i− 1 and,
if it pairs with an entry i− 1 in row i− 2 or with a free entry i− 1 in row one, this
forces an entry i in row i − 1. It would then follow that i − 1 pairs with an entry i
in the row beneath it, instead of the i in the first row. Thus each free entry i in row
one pairs with an i− 1 in row i− 1, creating an (i− 1, i) pairing in the subword so
copies the contribution of i − 1 to the cocharge. Thus each free entry i in row one
contributes i− 2 to the cocharge.

Finally, we will show that entries i+1 in row i contribute i−1 to the cocharge. If
i+1 pairs with an i in the same row, this yields an (i, i+1) pairing in the subword so
i+1 contributes the same value to cocharge as i, which is i−1. If i+1 pairs with a free
entry i in row one this yields an (i+1, i) pairing in the subword so that i+1 increases
the contribution of the free entry, giving a contribution of i−1. The last case is when
i+1 pairs with an i in row i−1 creating an (i, i−1) pairing in the subword so increasing
the contribution of i−1 by one. By induction, i−1 contributes i−2 to the cocharge
so i+ 1 contributes i − 1 to cocharge. It follows that all entries in row i contribute

i− 1 to the cocharge so cc(rw(T )) = |πT |+ n

b+1∑
i=1

(i− 1) = |πT |+ n

(
b+ 1

2

)
.

Corollary 4.10. Let λ = (m,nb), μ = (μ1, . . . , μb+2) and f(q) =

[
b+ β(λ, μ)
β(λ, μ)

]
q

.

Then f(q) = q−n(b+1
2 )K̃λ,μ(q).

Proof. Denoting SSY T (λ, μ) by SSY T , the result follows from Lemma 4.9 since

K̃λ,μ(q) =
∑

T∈SSY T

qcc(rw(T )) = qn(
b+1
2 )

∑
T∈SSY T

q|πT |
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= qn(
b+1
2 )

∑
π=(π1,...,πβ(λ,μ))

π1≤b

q|π| = qn(
b+1
2 )

[
b+ β(λ, μ)
β(λ, μ)

]
q

,

by [20, I.3.19] (see also [21, §7.21]).
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