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Abstract

Given a set S consisting of n points in Rd and one or two vantage points,
we study the number of orderings of S induced by measuring the distance
(for one vantage point) or the average distance (for two vantage points)
from the vantage point(s) to the points of S as the vantage points move
through Rd. With one vantage point, a theorem of Good and Tideman
[J. Combin. Theory Ser. A 23 (1977), 34–45] shows the maximum number
of orderings is a sum of unsigned Stirling numbers of the first kind. We
show that the minimum value in all dimensions is 2n − 2, achieved by
n equally spaced points on a line. We investigate special configurations
that achieve intermediate numbers of orderings in the one-dimensional
and two-dimensional cases. We also treat the case when the points are
on the sphere S2, connecting spherical and planar configurations. We
briefly consider an application using weights suggested by an application
to social choice theory. We conclude with several open problems that we
believe deserve further study.

1 Introduction

Suppose n candidates are running for office, and the position of each candidate is
measured on two independent issues. Each candidate is then assigned an ordered
pair of real numbers, with the first number measuring the candidate’s position on
the first issue, and the second number measuring the position on the second issue.
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A voter V also has positions on the issues, so V also corresponds to an ordered
pair. Thus, we now have n points in the plane (corresponding to the n candidates)
and one point V (corresponding to the voter). See Fig. 1 for an example where S
consists of five points in the plane, with a specific vantage point V.
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Figure 1: Five points in the plane, with one vantage point V. Preference order-
ing: 43521.

Of course, different voters may take different positions on the issues. Each voter
ranks the candidates from closest to farthest, using Euclidean distance. This leads
to the following problem in discrete geometry:

Problem 1.1. For a fixed set S = {P1, P2, . . . , Pn} of n points in Rd and a vantage
point V, generate an ordering of the points of S by measuring the distance from V
to each of the points of S, where Pi < Pj in the ordering precisely when d(V, Pi) <
d(V, Pj). How many distinct orderings can be produced for different vantage points
V ?

This problem is the focus of Good and Tideman [5] and Zaslavsky [11]. In 1977,
Good and Tideman determined the maximum possible number of orderings of the n
points in d dimensions. In particular, they prove the following theorem.

Theorem 1.2. Suppose n points are situated “freely” in Rd. Then the number of
orderings produced as the vantage point moves in Rd is

s(n, n) + s(n, n− 1) + · · ·+ s(n, n− d),

where s(n, k) is the (unsigned) Stirling number of the first kind.

The unsigned Stirling number s(n, k) gives the number of permutations of a
set of size n having precisely k cycles. The proof of Theorem 1.2 given in [5] is
inductive. Zaslavsky [11] gives a different proof based on hyperplane arrangements.
The connection to hyperplane arrangements arises naturally: Given two points A
and B, voters on one side of the perpendicular bisector (a hyperplane in Rd) will
prefer A to B, and voters on the other side of the hyperplane will have the opposite
preference. See Fig. 2 for an example with n = 4 in the Euclidean plane. (We ignore
voters situated on the hyperplanes; these give rise to “pseudo-orderings” in which
ties are allowed in the ranking of the candidates.)
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Figure 2: Perpendicular bisectors partition the plane into regions, each of which
corresponds to a unique ordering of S.

Remark 1.3. Our interpretation of a set of points being “freely situated” is that such
a configuration produces the maximum possible number of orderings. Zaslavsky
points out [11] that it appears to be difficult to say precisely what this condition
means geometrically. We also point out that the connection to the unsigned Stirling
numbers connects a problem with permutations (counting the number of orderings)
with a statistic associated with permutations. But it appears no direct connection
is known, i.e., we are unaware of a direct proof of Theorem 1.2 that associates
permutations to permutations.

In the plane, the formula for the maximum number of possible orderings is given
by a degree 4 polynomial.

Proposition 1.4. The maximum number of orderings for n points in the plane is

s(n, n) + s(n, n− 1) + s(n, n− 2) =
1

24

(
3n4 − 10n3 + 21n2 − 14n+ 24

)
.

A direct (non-inductive) proof of this proposition follows from Euler’s polyhedron
formula v− e+ f = 2 and an analysis of the line arrangement formed by the perpen-
dicular bisectors of all pairs of points. In this context, there is an obvious one-to-one
correspondence between orderings and regions of the plane determined by all the
perpendicular bisectors. The integer sequence generated by the formula of Prop. 1.4
appears in the online encyclopedia of integer sequences [9] (OEIS A308305). Details
concerning this approach to the derivation of the formula in Prop. 1.4 are left to the
interested reader, and similar arguments appear in our proof of Lemma 3.2.

We can compare the maximum number of regions determined by n points in the
plane from Prop. 1.4 to the maximum number of regions produced by an arbitrary
collection of

(
n
2

)
lines in the plane. Since the maximum number of regions deter-

mined by k lines in the plane is
(
k
0

)
+
(
k
1

)
+
(
k
2

)
= k2+k+2

2
, we know that

(
n
2

)
lines
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determine at most 1
8

(n4 − 2n3 + 3n2 − 2n+ 8) regions. And, while an arbitrary col-
lection of

(
n
2

)
lines in the plane produces more regions than the special collection of(

n
2

)
perpendicular bisecting lines produced in Prop. 1.4, the ratio of these two values

approaches 1 since the lead terms in these two formulas are identical. We summarize
this observation with the following corollary.

Corollary 1.5. Let M(n) be the maximum number of regions determined by the
perpendicular bisectors of n points in the plane, and let L(k) be the maximum number
of regions formed by a collection of k lines in the plane. Then

M(n)

L
((

n
2

)) → 1.

We introduce some useful notation.

Notation. 1. Let S = {P1, P2, . . . , Pn} be a configuration of n points in Rd di-
mensions. For a vantage point V, generate an ordering of the points of S
by measuring the distance from V to each of the points of S, as above. Let
aS(n, d) be the number of distinct orderings generated when we move a single
vantage point V through Rd. When there is no ambiguity about the dimension
or cardinality, we will simply write aS for the number of orderings generated.

2. Maximum and minimum: Let M(n, d) and m(n, d) be the maximum and min-
imum values of aS(n, d) over all possible S ⊂ Rd, with |S| = n. When the
dimension of our space is clear, we will simply write M(n) and m(n) for the
maximum and minimum values.

From Theorem 1.2, we know M(n, d) =
∑d

i=0 s(n, n − i), and it is obvious that
m(n, d) ≤ aS(n, d) ≤ M(n, d) for any S ⊂ Rd with |S| = n. Our interest in this
problem considers several variations, all of which are easy to motivate. We discuss
the generalizations now, along with an outline to the structure of the rest of this
paper.

Let S be a configuration of n points in d ≥ 1 dimensions. In Section 3, we focus
on two questions:

• Can we determine an exact formula for the minimum value m(n, d)?

• Various special configurations may produce values between the max and the
min. Can we fill in these gaps, i.e., for a given integer k satisfying m(n, d) <
k < M(n, d), is there a configuration S ⊂ Rd with aS(n, d) = k?

We determine the minimum m(n, d) in Theorem 2.1.

Theorem 2.1. The minimum value of aS(n, d) is m(n, d) = 2n − 2. Further, if
n 6= 4, this value is achieved if and only if the points of S are equally spaced on a
line segment. For n = 4, this value is achieved if and only if the points are on a line
with d(P1, P2) = d(P3, P4).
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This result is not surprising, but filling in the gaps between the minimum and
maximum is harder in dimensions d > 1. We show how to find configurations S in
the plane close to the minimum where the difference aS(n, 2)−m(n, 2) is small, and
other configurations close to the maximum where we control the difference M(n, 2)−
aS(n, 2). Our main tool is a “free-sum” lemma (Lemma 3.2) that allows us to compute
the number of regions formed by freely placing two configurations S and T together
in the plane. Then the number of regions determined by the points in this free sum
is completely determined by the sizes of S and T and the number of regions they
determine separately. We apply this lemma to special configurations to fill in some
of the gaps. A summary of these results appears in Cor. 3.5:

Corollary 3.5. Let n be a positive integer and let k be chosen so that

k ∈
[
m(n),

n2 − n+ 2

2

]
∪
[
M(n)− n

2
,M(n)

]
.

Then there is a planar point configuration S with aS = k.

In Section 4, we show how to convert our formulas for points in the plane to points
on a sphere. While we do not consider specific applications in this paper, we believe
problems connecting the embedding of points on various surfaces is an interesting
topic worth exploring on its own. We compute the maximum in Theorem 4.3 and
the minimum in Theorem 4.5. We conclude the section by computing the number of
regions for configurations of points corresponding to the five Platonic solids.

We introduce two generalizations in Section 5.

• When evaluating various candidates, a specific voter V may care more about
some issues than others. We model this situation by having the voter assign
non-negative real numbers (weights) to each issue to reflect that issue’s rela-
tive importance to that voter. In Section 5.1, we will reduce the problem of
computing an ordering using weighted preferences to the unweighted case by
transforming the point set S in a natural way.

• What if there are two voters who wish to create a common list of candidates?
We call this the “Yard sign problem,” where two people must decide on a
common ordering they can agree on. While this problem makes sense for any
collection of points in d dimensions, in Section 5.2 we concentrate on points in
the plane. Then, given a set S of n points in the plane and two vantage points
V1 and V2, we produce an ordering where Pi < Pj if d(V1, Pi) + d(V2, Pi) <
d(V1, Pj) + d(V2, Pj). This is equivalent to using the average distance from the
two vantage points V1 and V2 to determine the ordering of the points of S.

In general, it appears quite difficult to determine exact formulas for the maxi-
mum and minimum values in this case. Proposition 5.8 provides an upper bound
when the point set is collinear. The proof uses calculus in a novel way and the Fi-
bonacci sequence appears, but much more work is needed before we have a complete
understanding of this situation.
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There are several unsolved problems that deserve further exploration. We list
some of these in Section 6.

2 Finding the minimum

Let S ⊂ Rd with |S| = n. From Good and Tideman [5], we know the maximum
number of orderings possible is given by M(n, d) =

∑d
i=0 s(n, n− i), where s(n, k) is

the kth (unsigned) Stirling number of the first kind. We list the specific polynomials
giving the maximum in small dimensions below.

M(n, 1) =
1

2

(
n2 − n+ 2

)
M(n, 2) =

1

24

(
3n4 − 10n3 + 21n2 − 14n+ 24

)
M(n, 3) =

1

48

(
n6 − 7n5 + 23n4 − 37n3 + 48n2 − 28n+ 48

)
When n ≥ 2d, we note that M(n, d) will be a polynomial of degree 2d. This follows

from analyzing the individual terms contributing to the Stirling number s(n, n− d).
In this case, note that there are (2d−1)!!

(
n
2d

)
permutations composed of n−2d fixed

points and d transpositions, where (2d − 1)!! = (2d − 1)(2d − 3)(2d − 5) · · · 3 · 1. It
is clear this term will generate the highest power of n. (Note that s(n, 1) = (n− 1)!,
so M(n, d) is not a polynomial in n, in general.)

The situation for the minimum value is simpler. The formula does not depend on
the dimension we are working in, and the point configurations achieving the minimum
must be collinear and equally spaced, with the exception of the n = 4 case, where
we can drop the requirement on equal spacing.

Theorem 2.1. The minimum value of aS(n, d) is m(n, d) = 2n − 2. Further, if
n 6= 4, this value is achieved if and only if the points of S are equally spaced on a
line segment. For n = 4, this value is achieved if and only if the points are on a line
with d(P1, P2) = d(P3, P4).

Proof. First, we show m(n, d) ≤ 2n − 2 by computing aS(n, d) when S consists of
n equally spaced points on a line. For convenience, assume the points are placed
at the first n positive integers along the x1-axis in Rd, so P1 = (1, 0, . . . , 0), P2 =
(2, 0, . . . , 0), . . . , Pn = (n, 0, . . . , 0). Then the hyperplane corresponding to the per-
pendicular bisector of the points Pi and Pj has equation x1 = i+j

2
. These n points

determine a total of 2n − 3 perpendicular bisecting hyperplanes, namely all hyper-
planes with equations x1 = k/2, where 3 ≤ k ≤ 2n − 1. These 2n − 3 parallel
hyperplanes partition Rd into 2n − 2 parallel strips. Since we know there is a one-
to-one correspondence between orderings and regions, this shows m(n, d) ≤ 2n− 2.

Next, we show that m(n, d) ≥ 2n − 2. We will use induction on the dimension
d to accomplish this. Actually, we will prove a slightly stronger statement, namely
that if S ⊂ Rd where d ≥ 2, then aS(n, d) = 2n − 2 implies the points of S are
collinear. This will then reduce everything to the one-dimensional case.
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• d = 1. Let a1, a2, . . . , an be n real numbers, listed in increasing order. Note
that

a1 + a2 < a1 + a3 < · · · < a1 + an < a2 + an < a3 + an < · · · < an−1 + an.

This immediately implies that the n points determine at least 2n − 3 distinct
“perpendicular bisectors” (which correspond to midpoints in this case). These
midpoints partition the line into at least 2n− 2 segments, each of which corre-
sponds to a unique ordering of the points. Thus m(n, 1) ≥ 2n− 2.

• d = 2. Suppose S ⊂ R2 with aS(n, 2) ≤ 2n− 2. We will show that the points of
S must be collinear by contradiction, so we suppose the points are not collinear.
Then, by Ungar’s Theorem [10] on slopes, the n points in S determine at least
n − 1 distinct slopes. Since the slope of a segment uniquely determines the
slope of its perpendicular bisector, we conclude that there are at least n − 1
slopes among the collection of perpendicular bisectors of pairs of points of S.

Since k lines with distinct slopes give rise to 2k unbounded regions of the plane,
we conclude that the perpendicular bisectors partition the plane into at least
2n − 2 unbounded regions. But there must be at least one bounded region,
too. To see this, note that if not, then the n− 1 perpendicular bisectors would
all intersect at a common point C. It follows immediately that the points of
S lie on a circle. But n points on a circle determine at least n slopes (this is
due to Erdős and Steinberg — see [3,4]), giving rise to at least n perpendicular
bisectors. In this case, these bisectors partition R2 into at least 2n unbounded
regions, so aS(n, 2) ≥ 2n, contradicting our assumption that aS(n, 2) ≤ 2n−2.

We now know there is at least one bounded region in the partition determined
by the collection of perpendicular bisectors, giving a total of at least 2n − 1
regions, again contradicting the assumption that aS(n, 2) ≤ 2n− 2.

We conclude that if the points of S are not collinear, then aS(n, 2) > 2n− 2.

• d > 2. Let S be a collection of n points in Rd. If the points lie in some hyper-
plane, then we have aS(n, d) > 2n− 2 by the induction hypothesis. So we now
assume the points of S do not lie in any k-dimensional hyperplane for k < d.

Now project the points of S onto a 3-dimensional hyperplane H ′ in Rd such
that:

a. no two points in S are projected onto the same point in H ′, and

b. the projected points do not lie on a 2-dimensional plane.

This is always possible. Let P ′i denote the projection of Pi onto H ′. Then, by
Theorem 1.1 of [8], the points P ′1, P

′
2, . . . , P

′
n determine at least 2n− 5 different

directions. This implies that the points P1, P2, . . . , Pn in Rd also determine at
least 2n − 5 distinct directions because projection is a linear transformation,
and so it preserves parallelism. (If the directions for two vectors P ′i − P ′j and
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P ′k − P ′l are different in H ′, then the vectors Pi − Pj and Pk − Pl could not be
parallel.)

Now each direction vector Pi − Pj in Rd is the normal vector for the perpen-
dicular bisecting hyperplane determined by Pi and Pj. Hence, we must have at
least 2n−5 distinct, pairwise non-parallel, perpendicular bisecting hyperplanes
determined by the points of S in Rd. Now projecting from R3 to R2 gives us
at least 2(2n − 5) unbounded regions of R2, each corresponding to a unique
ordering of the points of S. Hence, aS(n, d) > 2n− 2.

Now assume n > 4. We must show that if S minimizes the number of regions, then
S consists of n equally spaced points on a line. By the proof of the first part of this
theorem, we know that the points of S must be collinear. As above, let a1, a2, . . . , an
be n real numbers, listed in increasing order, which represent the location of the n
points of S in R.

Now consider the first five points of S. These points determine at most ten mid-
points. Since aS(n, 1) = 2n−2, the first five points must generate only seven distinct
midpoints. But we know (as in the proof above) that the seven sums

a1 + a2 < a1 + a3 < a1 + a4 < a1 + a5 < a2 + a5 < a3 + a5 < a4 + a5

are all distinct. This tells us each of the remaining sums a2 + a3, a2 + a4, and a3 + a4
must be equal to one of the other sums already listed. It is easy to see that the only
possibilities are

a2 + a3 = a1 + a4, (1)

a2 + a4 = a1 + a5, (2)

a3 + a4 = a2 + a5. (3)

First, rewrite equation (1) as a4 − a3 = a2 − a1. Now subtracting equation (1) from
equation (2) gives a5− a4 = a4− a3, and subtracting equation (2) from equation (3)
gives a3 − a2 = a2 − a1. Putting the pieces together gives

a2 − a1 = a3 − a2 = a4 − a3 = a5 − a4,

i.e., the points are equally spaced.

Now repeat this argument for the five points a2, a3, a4, a5, a6, then a3, a4, a5, a6, a7,
continuing this process until we exhaust S. We conclude that if n > 4 and aS(n, d) =
2n− 2, then the points of S are collinear and equally spaced.

Finally, when n = 4, it is straightforward to check that a2 − a1 = a4 − a3,
but a3 − a2 need not be equal to this common value. For instance, the points
a1 = 1, a2 = 2, a3 = 4, a4 = 5 determine five distinct midpoints, and so achieve the
minimum m(4, 1) = 6 regions.

We conclude this section with some brief comments.
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A. The appearance of Ungar’s Theorem [10] and the direction theorem of Pach,
Pinchasi, and Sharir [8] provides a direct connection between our problem and
two classic problems from discrete geometry. In fact, Ungar’s remarkable proof
is featured in [1] as a model for a “book proof” in the style of Erdős. The
introduction to [8] includes more historical information about these problems,
and [6] is an excellent resource for the slope problem in the plane.

B. We can avoid using Ungar’s theorem in the d = 2 case in our proof. To see
this, note that n non-collinear points in the plane determine at least n lines,
from Erdős and Steinberg [4]. These n lines must give rise to 2n unbounded
regions, unless the lines are all parallel to each other. But this only happens if
the points are collinear.

C. When d > 2, we can avoid using the direction theorem of [8] as follows. If
S is not collinear, we can project S to R2 and get a non-collinear set of n
points in the plane. By Ungar’s theorem we can find n− 1 pairs of points that
determine distinct directions. The corresponding perpendicular bisectors in Rd

for the same set of n − 1 pairs of points determine n − 1 hyperplanes, no two
of which are parallel. Then these hyperplanes partition Rd into at least 2n− 2
regions.

D. If we insist that our point set S ⊂ Rd is not contained in any lower dimensional
hyperplanes, then the question about the minimum number of orderings is
open. This appears as Problem 6.3 in Section 6, where we list several open
problems.

3 Filling in the gaps between the maximum and the mini-
mum

In this section, we consider the problem of finding “intermediate” configurations that
produce numbers of orderings strictly between the maximum and minimum values.
This is completely straightforward in dimension 1, but is already quite difficult when
d = 2.

3.1 Points on a line

We begin with points on a line. We will show that, for all k with m(n, 1) < k <
M(n, 1), there is a point configuration Sk satisfying aSk

(n, 1) = k.

Theorem 3.1. Let n ≥ 1 be given, and let k satisfy 2n − 2 ≤ k ≤ n2−n+2
2

. Then
there is a configuration of points Sk with aSk

(n, 1) = k.

Proof. Our proof is constructive: we show how to create such a configuration by
starting with a configuration achieving the minimum value, then modifying that
configuration to increase the number of regions determined by the midpoints in a
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predictable way. As before, we represent our linear point configuration by specifying
n real numbers in increasing order. We let S0 = {1, 2, . . . , n} be our initial configura-
tion, and remark that S0 achieves the minimum value of 2n− 2. The proof proceeds
by rounds.

Round 1. In the first round, we keep the first n − 1 points fixed and we move
the last point successively to the values n + 1, then n + 2, and so on, continuing
until we reach 2n − 3. We call these configurations S

(1)
1 , S

(1)
2 , . . . , S

(1)
n−3, so S

(1)
t =

{1, 2, . . . , n − 1, n + t}, with 1 ≤ t ≤ n − 3. (The superscript indicates the round.)
We now show that each new configuration will have exactly one more midpoint than
its immediate predecessor.

To see this, we note that there are 2n− 5 midpoints generated by the first n− 1
points of S

(1)
t occurring at the values i

2
, where 3 ≤ i ≤ 2n−3, as well as an additional

t + 2 midpoints formed from the pairs r and n + t, where n − (t + 2) ≤ r ≤ n − 1.
This produces a total of 2n + t − 3 midpoints, so the number of regions generated
(which are intervals here) is 2n+ t− 2.

We conclude that fixing the first n − 1 points and moving the right-most point
through the values n, n + 1, . . . , 2n − 3 produces configurations partitioning R into
exactly k intervals for 2n − 2 ≤ k ≤ 3n − 5. (The reader can check that values of t
larger than n− 3 do not introduce any additional midpoints.)

Round 2. In the second round, for 1 ≤ t ≤ n− 4, we fix the first n− 2 points, we
move the penultimate point to n + t − 1, and we move the last point to 2n. Thus
S
(2)
t = {1, 2, . . . , n−2, n+ t−1, 2n}. We now count the number of distinct midpoints:

1. If 1 ≤ i, j ≤ n − 2, then the midpoints of i and j produce a total of 2n − 7
midpoints corresponding to the values i

2
, where 3 ≤ i ≤ 2n− 5.

2. If n − (t + 3) ≤ i ≤ n − 2, then pairing the points i and n + t − 1 produces
another t+ 2 new midpoints at the values r

2
, where 2n− 4 ≤ r ≤ 2n+ t− 3.

3. If 1 ≤ i ≤ n − 2 or i = n + t − 1, then pairing i and 2n (the largest point in

S
(2)
t ) yields another n− 1 new midpoints.

These three cases give a total of 3n+ t− 6 midpoints, generating 3n+ t− 5 intervals
in our partition. We conclude that fixing the first n − 2 points and moving the
two right-most points as above produces configurations partitioning R into exactly
k intervals for 3n− 4 ≤ k ≤ 4n− 9.

We continue in this manner, adding new rounds to fill in all the gaps. This will
give us a total of n− 3 rounds that produce 1 + 2 + · · ·+ (n− 3) = M(n, 1)−m(n, 1)
distinct numbers of orderings, filling in all the gaps between the minimum and the
maximum. We summarize the procedure in Table 1.

We remark that Theorem 3.1 has an attractive reformulation as a sum-set prob-
lem.
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Table 1: Intermediate configurations that partition the reals into exactly k
disjoint intervals, for 2n − 1 ≤ k ≤ n2−n+2

2
. We set bm = m2+3m−2

2
and cm =

m2+5m+4
2

for convenience.

Round Configuration Range for t Range for k
1 {1, 2, . . . , n− 1, n + t} [1, n− 3] [2n− 1, 3n− 5]
2 {1, 2, . . . , n− 2, (n− 1) + t, 2n} [1, n− 4] [3n− 4, 4n− 9]
3 {1, 2, . . . , n−3, (n−2) + t, 2n−1, 2n} [1, n− 5] [4n− 8, 5n− 14]
...

...
...

...
m {1, 2, . . . , n−m, (n−m+1)+t, [1, n−(m+2)] [(m+1)n− bm, (m+2)n−cm]

2n−m+2, . . . , 2n−1, 2n}
...

...
...

...

n− 3 {1, 2, 3, 4 + t, 24, . . . , 2n} t = 1 k = n2−n+2
2

Sum-set Problem. Let n be given and let k satisfy 2n− 3 ≤ k ≤ n2−n
2
.

Then there is a collection of integers a1 < a2 < · · · < an such that the
number of distinct sums ai + aj (where i 6= j) is exactly k.

We also point out that, while our initial configuration is uniquely determined (up
to the position of the first point and scaling), there are many choices for our final
configuration achieving the maximum number of midpoints. We used powers of 2 in
our proof, but many other procedures will work.

3.2 Points in the plane

It is much more difficult to produce configurations with a specified number of order-
ings between the minimum and maximum in the plane. In fact, unlike the situation
described in Theorem 3.1, not every intermediate value is achievable. For example,
when n = 3, we find m(3, 2) = 4 and M(3, 2) = 6, but it is easy to check that there is
no 3-point configuration whose perpendicular bisectors determine exactly 5 regions.
When n = 4, we know m(4, 2) = 6 and M(4, 2) = 18, but it turns out that there are
no four-point configurations with 9, 11, 13, 14, or 15 regions formed by the perpen-
dicular bisectors. (We can prove that the missing values cannot be achieved by any
configuration of four points by examining a few classes of 4-point configurations. We
omit the details and note that similar arguments for n > 4 points rapidly become
unwieldy.)

When 5 ≤ n ≤ 8, a computer search was used to produce configurations with
intermediate values. But values not appearing have not been explicitly ruled out
by any mathematical arguments. Thus, the percentages given in Table 2 are lower
bounds for the actual percentages of achievable values.

Although we cannot determine exactly what values between the minimum and
maximum are achievable by specific configurations for arbitrary n, we can construct
configurations that achieve values near the minimum and also near the maximum.



A. CARBONERO ET AL.,/AUSTRALAS. J. COMBIN. 86 (1) (2023), 97–135 108

Table 2: The minimum, maximum, and percentage of achievable orderings
produced by a computer search for 3 ≤ n ≤ 8.

n 3 4 5 6 7 8
Min 4 6 8 10 12 14
Max 6 18 46 101 197 351

Percent 66.7% 61.53% 61.53% 46.74% 52.15% 58.88%

These constructions are highlighted in this section. We write aS(n),m(n), and M(n)
instead of aS(n, 2),m(n, 2), and M(n, 2) (respectively) throughout the remainder of
this section since all of our configurations are planar. When the number of points is
implicitly given, we will abbreviate this further, simply writing aS instead of aS(n).

The strategy for creating configurations that generate intermediate values for
aS(n) is straightforward. We will begin with a configuration of n points that achieves
the maximum number of orderings, then introduce generalized trapezoidal configu-
rations in Lemma 3.3 that reduce the number of regions in a predictable way. The
key idea is embedded in Lemma 3.2, which computes the number of regions in the
“free-sum” of two configurations solely in terms of the sizes of the configurations and
the number of regions each piece determines separately.

To accomplish this, we first construct a graph as follows. Let S be a finite
configuration of points in the plane, and let L(S) be the collection of perpendicular
bisectors determined by pairs of points from S. Then draw a circle large enough so
that all the points of intersection formed by the lines of L(S) are inside the circle. We
form a graph G(S) whose vertices are the intersection points of the lines of L(S) with
each other and also with the bounding circle. The edges of G(S) will be the (finite
length) line segments determined by the intersecting lines, along with the segments
formed along the bounding circle. (It is not necessary to introduce the bounding
circle, but it simplifies calculations.) See Fig. 3 for an example.

We can now state and prove a “free-sum” lemma. Suppose S and T are disjoint
point sets placed freely in the plane, so no perpendicular bisector determined by the
points of S is parallel to a perpendicular bisector determined by the points of T.
Then we can compute the number of regions for the point set S ∪ T in terms of
the original region counts for S and T and the sizes of S and T. Our tool is Euler’s
famous polyhedral formula v − e+ f = 1 applied to planar graphs (where we ignore
the unbounded region).

Lemma 3.2. Suppose S and T are disjoint point sets in the plane with |S| = s
and |T | = t. Assume that no perpendicular bisector determined by the points of S is
parallel to a perpendicular bisector determined by the points of T. Then

aS∪T = aS + aT +
1

4

(
3s2t2 + 2s3t− 5s2t+ 2st3 − 5st2 + 7st− 4

)
.

Proof. We count the number of vertices of all degrees in the graphG(S∪T ) associated
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Figure 3: The graph associated with a configuration of four (blue) points in
the plane. The vertices of the graph are shown in red.

to the configuration S∪T. We will then use Euler’s relation f = e−v+1 to compute
the number of regions in S ∪ T. We write v(S) and e(S) for the number of vertices
and edges in the graph G(S), and similarly for G(T ). We first compute the number
dk of new vertices of degree k for all k.

1. New vertices of degree 3: Note that S ∪ T has st new perpendicular bisectors
obtained by choosing one point from S and one point from T. Each of these
new lines will meet our bounding circle in 2 points. This gives us a total of
d3 = 2st new vertices of degree 3 in G(S ∪ T ).

2. New vertices of degree 4: We create new vertices of degree 4 whenever we
choose 4 points from S ∪ T not contained entirely in S or T. Then each such
subset of 4 points generates three vertices of degree 4 in G(S ∪ T ). This gives

d4 = 3s

(
t

3

)
+ 3

(
s

2

)(
t

2

)
+ 3t

(
s

3

)
new vertices of degree 4 in G(S∪T ). (Note that this calculation is valid whether
or not points selected in S or T are collinear.)

3. New vertices of degree 6: We create new vertices of degree 6 whenever we create
a new triangle using points from both S and T. There are

d6 = s

(
t

2

)
+ t

(
s

2

)
ways to create new triangles, and each such triangle gives a new vertex of
degree 6 in G(S ∪ T ).

4. New vertices of higher degree: There are no new vertices of degree k > 6 by
the definition of S ∪ T.
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Then the total number of vertices in G(S ∪ T ) is v(S) + v(T ) + d3 + d4 + d6. To find
the number of edges, we use

2e(G(S ∪ T )) = 2e(S) + 2e(T ) + 3d3 + 4d4 + 6d6.

Then

r(G(S ∪ T )) = e(S)+e(T )+(3d3+4d4+6d6)/2− (v(S)+v(T )+d3+d4+d6)+1

= (e(S)− v(S) + 1) + (e(T )− v(T ) + 1)) + (d3 + 2d4 + 4d6)/2− 1

= r(S) + r(T ) +
1

4

(
3s2t2 + 2s3t− 5s2t+ 2st3 − 5st2 + 7st− 4

)
.

When S and T are both free sets (and so achieve the maximum values possible),
we can verify that the formula given in Lemma 3.2 agrees with our formula for
M(n, 2) from Prop. 1.4. Let |S| = k and |T | = n− k. Then

aS∪T = M(k) +M(n− k) +
1

4

(
k2
(
−3n2 + 5n− 7

)
+ 2k3n− k4

+k
(
2n2 − 5n+ 7

)
n− 4

)
=

1

24

(
3n4 − 10n3 + 21n2 − 14n+ 24

)
= M(n).

Our next lemma shows how to create a generalized trapezoid configuration that
will allow us to reduce the number of regions from the maximum in a predictable
way.

Lemma 3.3. [Generalized trapezoid gadget] Let U = {P1, P2, . . . , P2k} ⊂ R2 be a
collection of 2k points in the plane in free position, where k ≥ 2, with the following
exceptional pairs of parallel lines:

P1P2‖P3P4, P1P3‖P5P6, P1P4‖P7P8, · · · P1Pk‖P2k−1P2k.

Then aU = M(2k)− k + 1.

Proof. Note that, compared with a configuration that produces the maximum pos-
sible number of regions, each parallel pair reduces the number of vertices of degree
4 by 1, but does not change the number of vertices of degree 3 or 6. Then each such
parallel pair reduces the total number of vertices by 1 and the total number of edges
by 2. Since there are k − 1 parallel pairs, we have aU = M(2k)− k + 1.

We remark that the formula above remains valid when k = 1, but we will not
need this fact. When k = 2, the configuration is a trapezoid, as in Fig. 4. We now
use Lemmas 3.2 and 3.3 to get our first gap-filling result.
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A B

DC

Figure 4: Lines AB and CD are parallel, reducing the maximum number of
regions determined by the perpendicular bisectors by 1.

Theorem 3.4. Let k ≤ n
2
. Then there is an n-point planar point configuration S

with aS = M(n)− k.

Proof. Let U be a configuration of 2k+2 points with k parallel pairs, as in Lemma 3.3,
and let V be a configuration of n−2k−2 points that achieves the maximum possible
number of regions, so aV = M(n− 2k − 2). By Lemma 3.3, we know aU = M(2k +
2) − k. Now set S = U ∪ V, where U and V are placed in the plane so that no
additional incidences or parallels are produced. Then, by Lemma 3.2, we have

aS = M(2k + 2) +M(n− 2k − 2)− k + g(2k + 2, n− 2k − 2),

where g(s, t) = 1
4

(3s2t2 + 2s3t− 5s2t+ 2st3 − 5st2 + 7st− 4) is the function appear-
ing in Lemma 3.2 that gives the number of new regions in a free sum.

Then, expanding everything and simplifying, we have aS = M(n) − k. (The
calculations are straightforward, but they are easiest to do using a computer program
that handles algebra. We used Mathematica.)

Theorem 3.4 tells us that we can achieve any value near the maximum, i.e., given
a positive integer n and 0 ≤ k ≤ n

2
, there is a configuration Sk with aSk

= M(n)− k.
For region counts near the minimum, we can use Theorem 3.1. Combining these two
results gives us the next result.

Corollary 3.5. Let n be a positive integer and let k be chosen so that

k ∈
[
m(n),

n2 − n+ 2

2

]
∪
[
M(n)− n

2
,M(n)

]
.

Then there is a planar point configuration S with aS = k.
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Thus, we know there are configurations of n points whose perpendicular bisectors
form exactly k regions, where 2n− 2 ≤ k ≤ (n2 − n+ 2)/2 or

1

24

(
3n4 − 10n3 + 21n2 − 26n+ 24

)
≤ k ≤ 1

24

(
3n4 − 10n3 + 21n2 − 14n+ 24

)
.

We can also find configurations S with aS not in the ranges specified in Corol-
lary 3.5. The next two results give examples of such configurations.

Proposition 3.6. [Parallel lines gadget] Let C be a configuration consisting of m
points in free position and k · l points distributed onto l lines, each with k points
arranged so that all of the perpendicular bisectors generated are distinct and no two
are parallel. Let n = m+ kl be the total number of points of C. Then

1.

aC(n) =
(
18k2l2m2 + 12k3l3m− 30k2l2m+ 3k4l4 − 10k3l3 + 21k2l2 − 3k4l

+10k3l − 9k2l + 12klm3 − 30klm2 + 42klm− 12kl + 3m4 − 10m3

+21m2 − 14m+ 24
)
/24.

2. aC(n) = M(n)− ks(k, k− 2), where s(k, k− 2) is the unsigned Stirling number
of the first kind.

Proof. Let U be a collection of n − kl points in free position in the plane, and
let V be composed of kl points distributed on l pairwise non-parallel lines, with k
points per line, as in the statement of the proposition. Then C = U ∪ V. We know
aU(n − kl) = M(n − kl). It is straightforward to compute aV (kl) by counting the
number of vertices of degree 3, 4, and 6 in the associated graph G(V ) and using
Euler’s formula. This gives

aV (kl) =
1

24

(
3k4l4 − 10k3l3 + 21k2l2 − 3k4l + 10k3l − 9k2l − 12kl + 24

)
.

The formula for aC(n) now follows from Lemma 3.2, completing part 1.

For part 2, note that s(k, k − 2) = 2
(
k
3

)
+ 3
(
k
4

)
. The rest of the calculation is

completely straightforward.

We omit the proof of the next result, which uses Lemma 3.2 and the fact that m
points placed freely on a circle generate 2

(
m
2

)
regions (all of which are unbounded).

Proposition 3.7. [Circle gadget] Let S be a configuration consisting of n− k points
in free position and k points placed on a circle so that all of the perpendicular bisectors
generated are distinct and no two are parallel. Then

aS =
1

24

(
3n4 − 10n3 + 21n2 − 14n− 3k4 + 10k3 + 3k2 − 10k

)
.

Further, aS = M(n)−M(k) + k(k − 1).
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We can rewrite the last equation from Prop. 3.7 as M(n)−aS = M(k)−k(k−1).
Then we can interpret both sides of this equation combinatorially. The left-hand
side is the number of regions “lost” from a free configuration by placing the k points
on a circle, and the right-hand side is the number of bounded regions in a maximum
configuration of k points. The sequence M(k)−k(k−1) appears as sequence A001701
in [9], although the interpretation in terms of lost regions appears to be new. We
state this result as a corollary.

Corollary 3.8. Let S be a configuration consisting of n − k points in free position
and k points placed on a circle so that all of the perpendicular bisectors generated are
distinct and no two are parallel. Then M(n)−aS = M(k)−k(k−1), i.e., the number
of regions lost by placing k points on a circle coincides with the number of bounded
regions determined by the perpendicular bisectors in a maximum configuration of k
points.

Finally, we remark that we can combine the various configurations using the free
sum operation, filling in other sequences between the minimum and maximum. In
particular, the gadgets of Prop. 3.6 and 3.7 can be used to create configurations
that achieve values not covered in Theorem 3.4. We leave such explorations to the
interested reader.

4 Spherical configurations

We next consider a generalization from the plane to S2, the 2-sphere, where all of
our points lie on the surface of the sphere and distance is measured using geodesics.
An attractive illustration concerns the placement of cell phone towers. If n cell
towers are placed on the surface of the earth, a user can measure the distance from
their position to each tower, generating an ordering of the towers. As before, we
are concerned with the number of different orderings of those towers experienced by
various users around the earth.

We will be able to translate results for points in the plane from Section 3.2 to
the sphere, including formulas for the maximum, minimum, and known intermediary
ranges on the sphere. We also point out particular configurations that reveal how
our method of translation from the plane to the sphere would theoretically fall short
of a complete account of the achievable intermediary values on the sphere.

In this context, the perpendicular bisector determined by two points in the plane
is replaced by a bisecting great circle that divides the sphere into two hemispheres
(see Figure 5). The planar graph formed by all of the pairwise bisecting great circles
for a given set of points divides the surface of the sphere into a number of regions. As
in the plane, these regions each correspond to a unique ordering of the set of points.
We point out that every configuration of great circles on a sphere produces a graph
whose vertices are the points of intersection of the great circles. Antipodal symmetry
implies that each vertex, edge, and region of this graph has a “mirror image” in the
graph, so the number of vertices, the number of edges, and the number of regions
must each be even (see Prop. 4.6).
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Figure 5: Two points (in blue) and their bisecting great circle.

4.1 From the plane to the sphere

Rather than derive results for the sphere from scratch, we first show how embedding
a planar configuration onto a sphere affects the region count. This will allow us to
translate several results from Section 3.2 to the sphere. We will use the graph GS

generated by the perpendicular bisectors, but we do not need the bounding circle
we introduced in Section 3.2. The regions that touch that bounding circle will now
correspond to unbounded regions in the plane.

We assume the configuration S ⊂ R2 has no parallel perpendicular bisectors.
Then the construction we will use is easy to visualize. Begin with a S ⊂ R2 with
centroid A, then construct a large sphere centered at A. Now project the points of
S onto the northern hemisphere. We write S for the image of S on the sphere, and
write GS for the graph associated to the central hyperplane arrangement of bisecting
great circles of S.

Theorem 4.1. Let S ⊂ R2 be a configuration that does not generate any parallel
bisectors. Suppose the associated graph GS contains b bounded regions and u un-
bounded regions. Let S ⊂ S2 and GS be as above. Then GS contains u+ 2b distinct
regions, so S generates u+ 2b distinct orderings.

Proof. First, note that the three bisectors generated by a spherical triangle intersect
at a common point. Moreover, points on the sphere that are concyclic (lie on a
common intersection of a plane with the sphere) also behave as they do in the plane,
generating bisectors that all intersect at the center of the circle. The distinction on
the sphere is that these intersections occur twice, at antipodal points.

We may assume that the points of S all lie in the northern hemisphere with
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the equator as the bounding great circle. In this hemisphere, we will determine the
number of regions whose great circle boundaries do not touch the equator — type A
regions — and the number of regions in which the equator is a bounding great circle
— type B regions. Then every bounded region of GS corresponds to a type A region,
and every unbounded region of GS corresponds to a type B region. As great circles
intersect each other twice, all of the intersections from the planar arrangement will
be mirrored on the antipodal hemisphere, doubling the number of bounded regions
and closing the regions that were unbounded in the first hemisphere. This gives a
total of u+ 2b regions.

Note that the equator plays the same role as the large circle we used in Section 3.2
in constructing the graph of perpendicular bisectors.

Example 4.2. In Fig. 6, we see an example of a translation of a planar configuration to
a spherical configuration. In the plane, we have 5 points, 4 of which are concyclic such
that we have 2 bisectors that coincide. Placing 5 points on the sphere with these
same properties, we see that the 34 regions on the hemisphere shown correspond
to the 34 regions in the plane. Since the opposite hemisphere will be its mirror
image, there will be an additional 16 bounded regions there. Thus, this spherical
configuration gives a total of 50 achievable orderings.

Figure 6: A configuration of 5 points (with 4 concyclic points and one pair of
coinciding bisectors) in the plane, replicated on the sphere.

This formula not only allows us to determine the number of orderings generated
by particular spherical configurations, but also will make it possible to fill in gaps
between the maximum and minimum on the sphere using only our data from the
plane. In the next section, we apply this result to determine the maximum, minimum,
and intermediate ranges on the sphere.
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4.2 Maximum, minimum, and gap filling

The maximum number of orderings that can be obtained from a configuration of
n points on the sphere is given by another degree 4 polynomial, presented in the
next theorem, originally found by Cover [2] in 1967. These maximum values for
n ≥ 2 points appear as sequence A087645 in the OEIS [9]. Our proof uses Proposi-
tion 1.4 and Theorem 4.1, but we note that a proof using Euler’s polyhedra formula
is straightforward.

Theorem 4.3. The maximum number of orderings that can be obtained from an
arrangement of n > 1 points on the surface of the sphere is

1

12
(3n4 − 10n3 + 9n2 − 2n+ 24).

Proof. Consider a set S of n points in the plane that generate the maximum number
of achievable orderings. The

(
n
2

)
distinct bisectors each generate two unbounded

regions, meaning there are 2
(
n
2

)
unbounded regions and M(n, 2) − 2

(
n
2

)
bounded

regions.

Now form the configuration S ⊂ S2. Then, by Theorem 4.1, S contains u +
2b regions, where u and b are the numbers of unbounded and bounded regions,
respectively, in S. Thus,

u+ 2b = 2

(
n

2

)
+ 2

[
M(n, 2)− 2

(
n

2

)]
= n(n− 1) + 2

[
1

24

(
3n4 − 10n3 + 21n2 − 14n+ 24

)
− n(n− 1)

]
=

1

12
(3n4 − 10n3 + 9n2 − 2n+ 24).

We now turn our attention to the minimum. The following lemma translates
results about concyclic arrangements of points in the plane to concyclic arrangements
on the sphere.

Lemma 4.4. An arrangement of concyclic points on the sphere gives the same num-
ber of orderings as that arrangement would in the plane.

Proof. In the plane, n concyclic points generate bisectors that intersect at the center
of the circle. Such a configuration creates only unbounded regions in the plane, pre-
cisely twice the number of distinct perpendicular bisectors created. On the sphere,
the bisecting great circles formed by the n points will still all intersect at the center
of that circle, creating two regions (from antipodal symmetry) for each distinct per-
pendicular bisector. Thus, a given concyclic arrangement gives the same number of
regions on the sphere as in the plane.
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The next result establishes the minimum number of regions achievable on a
sphere, achieved by a concyclic arrangement of n points equally spaced on a cir-
cle.

Theorem 4.5. Let n > 4. Then the minimum number of orderings that can be
obtained from an arrangement of n points on the sphere is 2n, occurring precisely
when the points are equally spaced concyclically on the sphere.

Proof. Let S ⊂ S2 be our collection of n points on the sphere. First, by Lemma 4.4,
we know that n points spaced equally on the equator of a sphere generate precisely
2n orders. It remains to show that this is the minimum possible, i.e., the number
of regions is greater for other spherical configurations. To see this, first suppose S
does not lie on a circle, but the bisecting great circles generated by S produce at
most 2n regions. Then the points of S are not coplanar (considered as a subset
of R3), so, by Theorem 1.1 of [8], these points determine at least 2n − 5 distinct
directions in R3. Each such direction determines a unique normal vector direction
for the perpendicular bisecting plane. All of these bisecting planes pass through the
center of the sphere (because the points lie on that sphere), so the point configuration
generates at least 2n − 5 distinct great circles on the sphere. This gives us at least
4n− 10 regions, since each new great circle adds a minimum of two new regions.

Now 2n < 4n−10 whenever n > 5, so, if n > 5, the points of S must be concyclic
on the sphere. It remains to show that they are also equally spaced on that circle.
For a given bisecting great circle C, let α(C) denote the number of distinct pairs of
points of S with bisecting great circle C. It is clear that 1 ≤ α(C) ≤ bn

2
c.

Let C denote the collection of all the bisecting great circles. Then an incidence
count shows ∑

C∈C

α(C) =

(
n

2

)
since every pair of points produces a great circle. Thus, |C| will be minimized when
α(C) = bn

2
c for all C ∈ C, i.e., when α(C) is as large as possible. But this occurs

only when the points of S are equally spaced on a circle.

Finally, when n = 5, the reader can check that configurations S which are either
non-concyclic or cyclic with non-evenly spaced points produce more than 10 regions.

When n = 4, the minimum number of regions created is still 2n = 8. To create
eight regions, the four points must be concyclic so that all of the great circles will
intersect at the same pair of antipodal points. But the points need not be evenly
spaced since rectangles also minimize the number of distinct great circles. This situ-
ation is completely analogous to the minimum value in the plane (see Theorem 2.1),
where the n = 4 case is also exceptional.

For the remainder of this section, we focus on filling in the gaps between the
maximum and minimum values on the sphere. The next proposition guarantees that
odd numbers of orderings are not achievable by any spherical configurations.
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Proposition 4.6. Any arrangement of n > 1 points on a sphere generates an even
number of orderings.

Proof. Given n > 1 points and all of their pairwise bisecting great circles on the
sphere, divide the sphere along one of these great circles so that it is separated into
two hemispheres. Since both hemispheres are bounded by this great circle, each
hemisphere contains only bounded regions. Then antipodal symmetry implies that
the total number of regions on this sphere (and so, the number of orderings generated)
is twice the number of regions found on one of these hemispheres, and therefore is
always even.

We can use ideas similar to those given in the proof of Theorem 3.1 to get a
similar gap-filling result for the sphere. To accomplish this, convert a given linear
configuration to a concyclic one that lives on a sphere. We leave the details of this
argument to the interested reader.

Proposition 4.7. With a configuration of n > 3 concyclic points on the sphere, 2k
orderings are achievable for all k such that n ≤ k ≤

(
n
2

)
.

As in the plane, it is probably not possible to determine the ranges of achievable
orderings as a function of n in general. We offer one last result in this direction,
however, to add another interval of known achievable numbers of orderings on the
sphere.

Proposition 4.8. With n ≥ 5 points on a sphere, for every t such that (n − 1) ≤
t ≤

(
n−1
2

)
, there is a spherical configuration that achieves 2nt orderings consisting of

n− 1 concyclic points and 1 additional point not on that circle.

Proof. Let t be chosen with (n − 1) ≤ t ≤
(
n−1
2

)
. By Lemma 4.4, we can find a

circular arrangement of n − 1 points which divide the surface of the sphere into 2t
regions. Starting with one of these arrangements, the addition of an nth point that
is not concyclic with the others generates n− 1 new, distinct, bisecting great circles,
none of which contain the center of the circle formed by the concyclic points (i.e.,
one of the two intersection points of all great circles generated strictly by the n− 1
concyclic points). Then each of the n−1 new great circles passes through each of the
2t existing regions created by the bisecting great circles of the n−1 concyclic points.
This means that each existing region will be divided into n new regions, yielding a
total of 2nt regions.

We remark that embedding other planar configurations that achieve intermediate
values (in the manner of Props. 3.7 and 3.6, for instance) will produce other gap-
filling results on the sphere.

4.3 Configurations with antipodal pairs

Our main results treating spherical configurations thus far have been obtained by
embedding planar configurations onto a hemisphere of a sphere. But this does not
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address all possible configurations. For example, the six vertices of a regular octahe-
dron generate nine reflection planes, and these planes divide the octahedron into 48
triangular regions. The regions, which correspond to the 48 elements of the symmetry
group of the octahedron (the Coxeter group S4×Z2) are identical to the regions gen-
erated by the perpendicular bisectors for pairs of vertices. Hence, this arrangement
of six points generates 48 orderings of those points, with each ordering corresponding
to one of the regions (also called cells) in the hyperplane arrangement. See Fig. 7
for the spherical regions determined by the octahedron, and see Example 4.11 for an
investigation of all the Platonic solids

Figure 7: A regular octahedron is an antiprism with a triangular base. The
formula from Thm. 4.10 gives 48 regions, and each region corresponds to an
element of the Coxeter group B3

∼= S4 × Z2. See Example 4.11 for more infor-
mation about the Platonic solids.

To begin to scratch the surface of the possibilities involving antipodal pairs, we
present one final result in this section. This result concerns “doubled” maximal
configurations of the form S∪ (−S), where −S is the image of S under the antipodal
map (also called central inversion) in S2. For points P and Q on the sphere, we
write cP,Q for the perpendicular bisecting great circle determined by P and Q. We
also use P ′ and Q′ to denote the antipodes of P and Q, respectively We will need the
following lemma, which follows immediately from the fact that the antipodal map
fixes all bisecting great circles.

Lemma 4.9. Suppose P and Q are points on the surface of a sphere, and let cP,Q be
the perpendicular bisecting great circle determined by P and Q. Then cP,Q = cP ′,Q′ .
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Theorem 4.10. Let S ⊂ S2 be a collection of n points contained in some hemisphere
of S2 that produce the maximum number of regions on a sphere, and let T = S∪(−S)
be the doubled configuration of 2n points (with n ≥ 3). Then the number of regions
formed is

1

3

(
3n4 − 4n3 + n+ 6

)
.

Proof. To derive the formula, we will first count the number of vertices of degree
4, 6, and 8 (the only degrees possible for this configuration) in the (planar) graph
formed by the intersections of all the perpendicular bisecting great circles on the
sphere. We will then use Euler’s formula to compute the number of regions formed
by this central hyperplane arrangement.

Let v4, v6, and v8 be the number of vertices of degrees 4, 6, and 8. Then it
immediately follows from Euler that the number of regions is

R = 2 + v4 + 2v6 + 3v8.

We will now compute v4, v6, and v8.

1. Degree 4 vertices: A vertex of degree 4 can only arise when we choose four distinct
points from T. We consider several ways this can happen.

(a) All four points are in S. Label the four points P1, P2, P3, P4 and note that
there are three distinct pairings of the four points, each of which produces two
antipodal vertices of degree 4: c1,2∩ c3,4, c1,3∩ c2,4, and c1,4∩ c2,3. (We write ci,j
instead of the more cumbersome cPi,Pj

throughout this proof.)

This produces a total of 6
(
n
4

)
vertices of degree 4. Further, Lemma 4.9 ensures

that the bisecting great circles produced from pairs of points in −S coincide
with the corresponding bisecting great circles produced by choosing pairs of
points from S. Thus, this case also accounts for choosing four points from −S.

(b) Three points are in S and one is in −S. There are two cases to consider de-
pending on whether the point chosen from −S is the antipode of one of the
points chosen from S. (We also remark that subsets of four points where three
are chosen from −S and one is chosen from S are also counted in this case, by
Lemma 4.9.)

Case 1: No two points from our set of four points are antipodal. Write
P1, P2, P3, P

′
4 for the four points. There are

(
n
4

)
ways to select the four indices,

and four ways to choose the index of the point in −S. For a given subset of
indices, this gives 12 pairings, each of which produces two antipodal vertices
of degree 4, but these can be paired off using Lemma 4.9. For instance, the
pairing c1,2 ∩ c3,4′ coincides with the pairing c1,2 ∩ c3′,4.
Then this case gives a total of 12

(
n
4

)
vertices of degree 4.

Case 2: The point chosen from −S is antipodal to one of the points chosen
from S. This time, we write P1, P2, P3, P

′
1 for the four points, where P ′1 is
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antipodal to P1. There are
(
n
3

)
ways to choose the indices and three ways to

pick the antipode, but several of these 12 pairings do not produce new vertices
of degree 4. For example, the pairing of the form c1,2 ∩ c1′,3 is identical to the
pairing c1,2 ∩ c1,3′ (by Lemma 4.9), which corresponds to a vertex of degree 6.

The only pairings that produce vertices of degree 4 are c1,1′ ∩ c2,3, c2,2′ ∩ c1,3,
and c3,3′ ∩ c1,2. We conclude that there are 6

(
n
3

)
vertices of degree 4 in this

case.

(c) Two points are chosen from S and two from −S. This time, we separate into
three cases.

Case 1: The two points from −S are the antipodes of the two points from S.
We write P1, P2, P

′
1, P

′
2 for the four points and note that these four points form

a rectangle. This produces two antipodal vertices of degree 8 (counted below),
but no vertices of degree 4.

Case 2: One point from −S is antipodal to one point in S. There are
(
n
3

)
ways

to choose the indices and three ways to select the point whose antipode appears.
(Lemma 4.9 tells us the sets {P1, P

′
1, P2, P

′
3} and {P1, P

′
1, P

′
2, P3} will produce

identical bisecting great circles.) Then the count is completely analogous to
case 2 above, where we considered sets of the form {P1, P2, P3, P

′
1}. This case

yields another 6
(
n
3

)
vertices of degree 4.

Case 3: No antipodal pairs are chosen. Then we write P1, P2, P
′
3, P

′
4 for the

four points. The reader can check that the only pairings that produce new
vertices of degree 4 are the following:

c1,2′ ∩ c3,4′ c1,3′ ∩ c2,4′ c1,4′ ∩ c2,3′

All other pairings produced will coincide with pairings produced in the first
case (where all four points were selected from S) or with one of these three
pairings. Then this case produces 6

(
n
4

)
vertices of degree 4.

2. Vertices of degree 6: This time, we select three points from S ∪ (−S). There are
two cases.

Case 1: The three points are in S. Then there are
(
n
3

)
ways to select the points,

and each selection produces two antipodal vertices of degree 6.

Case 2: Two of the points are in S, and one is in −S. In this case, we have
(
n
3

)
ways to select the points and three ways to choose the index corresponding to the
point in −S. This gives 6

(
n
3

)
vertices of degree 6.

3. Vertices of degree 8: Vertices of degree 8 are only produced by collections of four
points of the form P,Q, P ′, Q′, where P,Q ∈ S. Each such set gives two antipodal
vertices of degree 8.
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Putting all of this together gives

v4 = 24

(
n

4

)
+ 12

(
n

3

)
.

v6 = 8

(
n

3

)
v8 = 2

(
n

2

)
Then the number of regions is 2 + v4 + 2v6 + 3v8 = 1

3
(3n4 − 4n3 + n+ 6) .

We can check the formula given in Theorem 4.10 with a regular octahedron. In
this case, we set S to be an equilateral triangle of suitable size so that S∪(−S) forms
the vertices of a regular octahedron. Then, by the theorem, we can determine the
number of regions generated by evaluating the above formula at n = 3. This gives
a total of 48 regions, which agrees with the size of the Coxeter group associated
with the octahedron. See Fig. 7. In fact, we can say a little more in the case when
|S| = 3. By Theorem 4.10, the number of regions of any doubled triangle is 48, so
the octahedron formed by a scalene triangle living in one hemisphere of S2 gives the
same number of regions as the regular octahedron.

Example 4.11. Platonic solids. It is an interesting exercise to determine the number of
regions the bisecting great circles determine for point configurations that correspond
to the vertices of the Platonic solids. In general, the planes of reflection for these
solids divide the solids into cells that are in one-to-one correspondence with the
elements of the corresponding Coxeter symmetry group. Each reflection plane for a
solid will be a bisecting great circle for some pair of vertices of the solid.

But the converse is not true, in general. For the tetrahedron and octahedron,
every bisecting great circle arises from a reflection plane for the solid. However,
this is false for the other three Platonic solids. For the cube, icosahedron, and
dodecahedron, choosing two antipodal points will generate a bisecting great circle
that is not a reflection plane for the solid. These “additional” great circles will double
the number of regions in these cases, compared with the number of elements of the
corresponding Coxeter group.

In Fig. 8, for each solid, we show how each face is decomposed into regions by the
bisecting great circles. Fig. 9 shows the icosahedron and the dodecahedron embedded
on spheres, with the mirror lines of symmetry. The region counts are given in Table 3.
We also point out that there are precisely n2 distinct perpendicular bisecting great
circles for the doubled configurations of Theorem 4.10. For the octahedron, these
correspond to the nine reflection planes of symmetry.

Finally, we remark that a doubled free point set on a sphere produces approx-
imately one-fourth of the maximum number of regions 2n points can produce on
a sphere. This follows from dividing the formula given in Theorem 4.10 by the
maximum (for 2n points) given in Theorem 4.3.
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Table 3: For n = 4, 6, 8, 12, or 20 points on a sphere, we list the minimum
and maximum number of regions possible, along with the number of regions
the bisecting great circles of pairs of vertices determine for each Platonic solid.
The number of regions is equal to the size of the corresponding symmetry group
for the tetrahedron and the octahedron, and is twice the size of the symmetry
group for the other Platonic solids.

n Min Platonic solid # Max
4 8 Tetrahedron 24 24
6 12 Octahedron 48 172
8 16 Cube 96 646
12 24 Icosahedron 240 3852
20 40 Dodecahedron 240 33632

5 Generalizations

Recall that voter preference lists were the original motivation for the discrete geom-
etry problems considered here. In this section, we explore two generalizations: an
application to weighted preferences where a voter assigns real numbers as weights to
issues to reflect their relative importance to that voter, and a version of the planar
point problem where the ordering is determined by the average distance from a pair
of vantage points. We begin with the weighted version of our problem, and remark
that all of our configurations will be linear or planar in this section.

5.1 Weighted preference lists

If a voter cares more about one issue than another, it is easy to modify our approach
to produce a preference list, as before. For example, if the voter cares twice as much
about the issue represented on the x-axis than the issue represented on the y-axis,
then a hypothetical voter situated at the origin will prefer a candidate at (1, 2) over
a candidate at (2, 1), for instance.

We are interested in how the weighted preferences determine an ordering of the
candidates associated with our vantage point. A straightforward approach to this
problem is to simply replace each point (xk, yk) in our set S with (wxxk, wyyk), where
wx and wy are positive reals corresponding to the relative weights of the two issues.
This dilatation will transform the arrangement of perpendicular bisectors, but will
not change the number of regions. See Fig. 10. In Prop. 5.1, we show that this
operation has the effect of replacing the standard Euclidean distance formula with a
weighted version:

dw((a, b), (xk, yk)) =
√
w2

x(xk − a)2 + w2
y(yk − b)2.
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Figure 8: From the left: One face of the tetrahedron (or octahedron), the cube,
the icosahedron, and the dodecahedron, divided into regions by the bisecting
great circles. The red segments correspond to great circles determined by pairs
of antipodal points. For the cube, icosahedron, and dodecahedron, these do not
correspond to any reflections for that solid. Antipodal bisecting great circles
do not appear for the tetrahedron. For the octahedron, bisecting great circles
arising from pairs of antipodal vertices do correspond to reflections for the
octahedron.

Proposition 5.1. Let P1 = (x1, y1), P2 = (x2, y2), and V = (a, b) be three points in
the plane, and assume the respective axes have weights wx and wy. Let

dw((a, b), (xk, yk)) =
√
w2

x(xk − a)2 + w2
y(yk − b)2

and write Pk = (wxxk, wyyk). Then dw(V, P1) < dw(V, P2) if and only if d(V, P1) <
d(V, P2).

Proof. Suppose (a, b) is equidistant between (x1, y1) and (x2, y2) using weighted dis-
tance. Then we know√

w2
x(x1 − a)2 + w2

y(y1 − b)2 =
√
w2

x(x2 − a)2 + w2
y(y2 − b)2.

From this equation, we can see that√
(wxx1 − wxa)2 + (wyy1 − wyb)2 =

√
(wxx2 − wxa)2 + (wyy2 − wyb)2,

which tells us that (a, b) is equidistant from the points (wxx1, wyy1) and (wxx2, wyy2)
using the standard Euclidean distance.
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Figure 9: The reflection planes for the icosahedron and dodecahedron coincide,
and divide the sphere into 120 regions. The number of regions determined by
the bisecting great circles of all pairs of points is 240.

Corollary 5.2. Let S ⊂ R2 be a finite set and let V ∈ R2 be a vantage point. If the
axes have weights wx and wy, then we can determine the preference order for V by
replacing each (xk, yk) ∈ S with (wxxk, wyyk) and counting the regions determined
using the standard, unweighted distance formula.

We also note that a similar approach will work in higher dimensions. If a voter
assigns weights to d ≥ 2 different issues and each candidate corresponds to a point
P = (x1, x2, . . . , xd) in Rd, then incorporating the weights simply transforms P to
(w1x1, w2x2, . . . , wdxd). Then apply the Euclidean distance formula in Rd to the trans-
formed coordinates to generate an ordering of the candidates as in the corollary.

By Prop. 5.1, the procedure given in Cor. 5.2 is equivalent to keeping the point
set S (and V ) unchanged, but using the distance function dw. This is the point of
our last result concerning weighted preferences.

Proposition 5.3. Let S = {P1, P2, . . . , Pn}, where Pi = (xi, yi), be a collection of n
points in the plane, and let wx be the weight given to the x-axis, and wy be the weight
given to the y-axis. For each pair of points Pi and Pj, define a line l(i, j) as follows:

w2
x(xj − xi)x+ w2

y(yj − yi)y =
1

2

(
w2

x(x2j − x2i ) + w2
y(y

2
j − y2i )

)
.

Then the regions created by these lines determine the weighted preference order of
the vantage point.

Proof. This follows by setting the weighted distance between the point (x, y) and Pi
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Figure 10: Left: Unweighted configuration. Right: The same configuration,
but with wx = 2 and wy = 1. The equation for the lines in the weighted picture
on the right are given in Prop. 5.3.

equal to the weighted distance between (x, y) and Pj (as in the proof of 5.1), then
simplifying. We omit the algebraic details.

The lines separating the plane in Prop. 5.3 are not perpendicular bisectors. In
particular, while the midpoint (

xi+xj

2
,
yi+yj

2
) is on our line, the slope of this line is

−
w2

y(yj − yi)
w2

x((xj − xi)
, and so is not perpendicular to the line joining (xi, yi) and (xj, yj).

5.2 Two vantage points

Our final generalization concerns increasing the number of vantage points from one
to two. As before, we are given n points in Rd, but we now have vantage points
V1 and V2. As motivation, suppose that two people with non-identical views wish
to construct a single ordered list they can both agree on. One way to do this is
to measure the average distance from V1 and V2 to each of the points in S, then
order the points from closest to farthest, using the average distance. (Although our
ordering is determined by the average distance from the two vantage points, we will
use the sum of those distances throughout the remainder of this section. These two
approaches are obviously equivalent.)

Table 4 gives the results of a computer search for the minimum and maximum
values for the number of orderings produced by moving two vantage points around
the plane when S ⊂ R2. (We point out that it took approximately 12 computers
around 48 hours running in parallel to find 680 distinct orderings for six-point con-
figurations.)
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Table 4: Two vantage points for planar configurations: The results of a com-
puter search for the minimum and maximum values for the number of regions
produced using two moving vantage points for S ⊂ R2. Note that the maxi-
mum is equal to n! for n ≤ 5. The minimum values correspond to points equally
spaced on a line — see the values for bn in Table 5.

n 2 3 4 5 6 7 8 9 10

Min 2 4 8 16 30 54 94 160 268
Max 2 6 24 120 ≥ 680 ? ? ? ?

5.2.1 The 1-dimensional case.

In this subsection, we are given a collection of points S ⊂ R, along with two vantage
points V1, V2 ∈ R. We write S = {P1, P2, . . . , Pn} ⊂ R and we assume the points are
listed in increasing order, so P1 < P2 < · · · < Pn, and our two vantage points are
ordered so that V1 < V2.

We begin with a complete description of the possible orderings that can be gen-
erated in dimension 1. We will show that allowing a second vantage point does not
increase the number of possible orderings, provided we ignore all orderings that pro-
duce ties. To complete this argument, we will need to understand how ties can be
produced. Ties can happen in two distinct ways, described in the next lemma.

Lemma 5.4. Suppose the four points Pi, Pj, V1, V2 are collinear, placed on a number
line, and Pi and Pj are tied in the ordering produced by average distance from two
vantage points V1 and V2. Assume Pi < Pj and V1 < V2. Then either

1. V1 < Pi < Pj < V2, or

2. Pi < V1 < V2 < Pj and the midpoints of V1V2 and P1P2 coincide, i.e., V1+V2 =
Pi + Pj.

Proof. First, note that if V1 < Pi < V2, then d(V1, Pi) + d(V2, Pi) = d(V1, V2). Thus,
if condition 1 is satisfied, then Pi and Pj will be tied. If condition 2 is satisfied, then
d(V1, Pi) + d(V2, Pi) = V1 + V2 − 2Pi and d(V1, Pj) + d(V2, Pj) = 2Pj − V1 − V2. But

V1 + V2 − 2Pi = 2Pj − V1 − V2 if and only if V1 + V2 = Pi + Pj,

i.e., when the points are ordered Pi < V1 < V2 < Pj, a tie will be produced precisely
when the midpoints of V1V2 and P1P2 coincide.

It remains to show that configurations not satisfying 1 or 2 do not produce ties.
By the above argument, if the points are ordered Pi < V1 < V2 < Pj (this is the
ordering in condition 2), ties are only produced when the midpoints coincide. There
are two potential orders of the four points V1, V2, Pi, and Pj that we consider, up to
symmetry.
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a. Suppose V1 < Pi < V2 < Pj. Then d(V1, Pi) + d(V2, Pi) = d(V1, V2) < d(V1, Pj)
< d(V1, Pj) + d(V2, Pj), so Pi will precede Pj in the ordering generated. (The
case Pi < V1 < Pj < V2 is handled by a symmetric argument.)

b. Suppose V1 < V2 < Pi < Pj. Then Pi will again precede Pj, so no ties will be
produced. (The argument for the case Pi < Pj < V1 < V2 is symmetric.)

By placing the two vantage points close together, it is clear that any ordering of
the points that is achievable with one vantage point on the line is also achievable in
the 2-vantage point case. If we avoid configurations with ties, the converse is true.
This is the point of the next theorem, which is the main result in this section.

Theorem 5.5. Suppose V1, V2, P1, P2, . . . , Pn ∈ R with P1 < P2 < · · · < Pn, with
vantage points V1 < V2, and let σ be the ordering of these points generated by average
distance from the two vantage points. We assume there are no ties in σ. Then the
ordering σ can also be achieved using a single vantage point.

Proof. Since there are no ties, Lemma 5.4 implies that the interval [V1, V2] contains
at most one point Pi from our set. We set V = 1

2
(V1 + V2), i.e., the midpoint of the

segment V1V2. We will show that the ordering produced by the single vantage point
V is identical to the order produced by two vantage points V1 and V2. We consider
two cases.

• No Pi satisfies V1 < Pi < V2. Then it is straightforward to show d(V, P ) =
1
2
(d(V1, P ) + d(V2, P )) for all points P in our set. This immediately gives us

identical orders.

• There is a unique index k such that V1 < Pk < V2. By the argument given in
the first case, we know d(V, Pi) = 1

2
(d(V1, Pi) + d(V2, Pi)) for all points Pi with

i 6= k. Further, the point Pk will be ranked first in both the single vantage
point and the 2-vantage point cases. To see this, first note that if i 6= k, then
d(V, Pk) < 1

2
d(V1, V2) < d(V, Pi). This tells us that Pk will be listed first in the

order produced using the single vantage point V.

But Pk will also be listed first using our two vantage points since d(V1, Pk) +
d(V2, Pk) = d(V1, V2), but d(V1, Pi) + d(V2, Pi) > d(V1, V2) for all i 6= k. So,
again, the two orders will be identical.

The following corollary follows immediately from Theorems 3.1 and 5.5.

Corollary 5.6. Let k be an integer with 2n − 2 ≤ k ≤ 1
2
(n2 − n + 2). Then there

is a configuration S ⊂ R such that the number of distinct orderings (with no ties)
produced by two vantage points on the line is k.
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5.2.2 Planar configurations

When S ⊂ R2, it becomes much more difficult to determine maximum and minimum
values for the number of different orderings produced as the two vantage points move
about the plane. If we draw perpendicular bisectors as in the single vantage point
case, it is clear that an ordering of S produced by the single vantage point V can
also be achieved in the 2-vantage point problem by placing the two vantage points
V1 and V2 in the same region that V occupies. But, unlike the situation when all the
points are collinear (including the vantage points) as in Section 5.2.1, we can achieve
more orderings with two vantage points than we could with one when all the points
are free to move about the plane.

In this section, we restrict to the case where the points of S lie on a line in
R2. Even with this restriction, it seems difficult to find the maximum and minimum
values for the number of orderings generated. See Table 5 for the number of orderings
produced with two vantage points when the points of S are collinear. In this case,
we further distinguish two cases: configurations with the points equally spaced on a
line, and configurations where the spacing of the collinear points is unrestricted.

Table 5: Two vantage points in the plane for collinear configurations: an is
the number of orderings produced when the n points are collinear; bn is the
number of orderings when the points are collinear and equally spaced. In
general, an ≤ 2n−1 and bn ≤ 2Fn+2−2n, where Fk is the kth Fibonacci number.
See Propositions 5.7 and 5.8.

n 1 2 3 4 5 6 7 8 9 10

an 1 2 4 8 16 32 63 or 64 ? ? ?
bn 1 2 4 8 16 30 54 94 160 268

-4 -2 2 4
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1

2

3

Figure 11: The vantage points are (−1, 0) and (1, 0), and the points of S
are equally spaced on the line segment. The order is generated by expanding
ellipses, with foci at the vantage points, shown in red.

When S ⊂ R2, we can visualize the orderings produced when we use the average
distance to the two vantage points by drawing a series of expanding ellipses, each
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with foci fixed at the two vantage points. To get an order for S, simply record the
order that the points of S are hit as the ellipses expand. See Fig. 11 for an example.

Proposition 5.7. Let S be a collection of n points on a line in R2. Then the number
of orderings produced using average distance to two vantage points in the plane is at
most 2n−1.

Proof. Fix two vantage points V1 and V2 in the plane, and suppose Pi precedes Pj in
the ordering generated, where 1 ≤ i < j ≤ n. (The other case is handled similarly.)
Suppose k is between i and j, so i < k < j. We will show that Pk precedes Pj in
the ordering. This will ensure that the permutation of the points of S generated will
have the property that, for all 1 ≤ k ≤ n, the point Pk can only appear after either
Pk−1 or Pk+1 appears (unless Pk appears first). Then an elementary combinatorial
argument shows that the number of sequences satisfying this condition is 2n−1.

To see this, choose an ellipse with foci V1 and V2 where Pj is on the boundary of
the ellipse. Then Pi must be in the interior of the ellipse (since Pi precedes Pj in the
ordering). Thus, the line segment Pi, Pj is entirely contained in the convex hull of
the ellipse, since the segment and hull are both convex sets. Then Pk will also be in
the interior of the ellipse for all k satisfying i < k < j, so Pk will precede Pj in our
ordering.

We now treat the case where the points are equally spaced on the segment. We
further simplify our procedure by fixing the two vantage points and allowing the
points of S to move using planar isometries and dilations. This will be our approach
throughout the remainder of this section. This reverses our usual procedure of fixing
S and moving V1 and V2, but it is easy to show that these two approaches are
equivalent.

Now fix the vantage points at (−1, 0) and (1, 0), then choose two points P1 =
(x1, y1) and Pn = (xn, yn) in the plane — these will be the endpoints of our line
segment. Then, if the points are equally spaced, we have

Pk =

(
(n− k − 1)x1 + kxn

n− 1
,
(n− k − 1)y1 + kyn

n− 1

)
.

Note that this approach depends on the values of five parameters: the x and y
coordinates of the two endpoints, and the number of points n. Different orderings
will be produced as we vary the two endpoints of the line segment. This is consistent
with our standard approach, where the five parameters are the coordinates of the
two vantage points, in addition to n.

We let cn be the number of binary sequences of length n that have the property
that consecutive 0’s and consecutive 1’s cannot both appear except at the beginning
or the end of the sequence. For instance, the binary sequence 11011101000 is good,
but 10001100 is bad. This integer sequence can be obtained from the integer se-
quence A000126 in [9] by doubling every term in A000126, yielding the closed form
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formula for cn = 2(Fn+2−n), where Fk is the kth Fibonacci number. The next propo-
sition shows that these binary sequences provide an upper bound for the number of
orderings for equally spaced points on a line for the 2-vantage point problem.

Proposition 5.8. Let bn be the number of orderings possible with two vantage points
in the plane, where the points are collinear, with points equally spaced. Then bn ≤
cn−1.

Proof. The proof uses calculus. First, given a permutation of length n, we create a
binary sequence of 0’s and 1’s of length n − 1 by recording the up-down sequence.
For example, given the permutation 546732891, we get 01100110 (where 0 records a
decrease and 1 records an increase).

Now an ellipse with foci located at (−1, 0) and (1, 0) has equation
x2

t2
+

y2

t2 − 1
=1,

where the parameter t corresponds to the positive x-intercept of the ellipse. We
assume the line containing S has slope m and intercept b, where b,m > 0. (We can
reflect over the x-axis to get b > 0, if needed. If m < 0, then we modify the argument
given below, swapping the 0’s and 1’s.)

We will show that the up-down binary sequence has the property that consecutive
0’s can never occur except (possibly) at the beginning or the end of the sequence.
First, we find the intersection of the ellipse and the line y = mx + b. Here are the
x-values of the two intersection points:

x1 =
−
√

4b2m2 − 4 (b2 − t2 + 1)
(
m2 − 1

t2
+ 1
)
− 2bm

2
(
m2 − 1

t2
+ 1
)

x2 =

√
4b2m2 − 4 (b2 − t2 + 1)

(
m2 − 1

t2
+ 1
)
− 2bm

2
(
m2 − 1

t2
+ 1
)

To determine whether we can get consecutive 0’s in an associated permutation, we
compute the derivatives dx

dt
at each of the intersection points. Note that dx

dt
> 0 when

x = x2 and dx
dt
< 0 at x = x1. (See Figure 12.) Adding these derivatives gives

dx

dt
(x1) +

dx

dt
(x2) =

4bmt

((m2 + 1) t2 − 1)2
.

But this is positive for m, b > 0. This implies that the vertical line x = x2 is moving
to the right faster than the vertical line x = x1 is moving to the left. Thus, it is
not possible for the sequence to have consecutive 0’s in the interior of the associated
permutation.

Finally, if b = 0, then dx
dt

(x1) + dx
dt

(x2) = 0, so the vertical lines are moving at
the same speed. In this case, the above argument remains valid; in fact, in this case,
consecutive 0’s and consecutive 1’s can only occur at the beginning or end of the
sequence.

Finally, if b > 0 and m < 0, then the same argument will produce the same
conclusion, where 0′s and 1′s are swapped.
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In Fig. 12, we show the vertical lines through the intersection points of the line
y = mx+ b and the expanding ellipses with foci (−1, 0) and (1, 0).

x2x1
-3 -2 -1 1 2 3

0.5

1.0

1.5

2.0

2.5

Figure 12: As the ellipse expands, the vertical line x = x2 moves to the right
faster than the line x = x1 moves to the left.

We conclude this section with a few comments.

• Assuming b,m > 0, an analysis of the second derivative of g(t) = x2(t)/x1(t)
indicates that g(t) has a unique maximum. It follows that the runs of 1’s
trapped between two 0’s forms a unimodal sequence. This restricts the number
of possible permutations, so it is certainly true that the bound cn−1 = 2Fn+2−
2n is too big. It should be possible to get a better bound taking advantage of
unimodality. But this effect does not appear for n ≤ 10: the first ten values
given for bn in Table 5 coincide with the first ten values of cn = 2Fn+2 − 2n.

• Another approach to the 2-vantage point problem in the plane uses hyperbolas.
In this formulation, we return to the original set-up of the 2-vantage point
problem: S is fixed and the vantage points move. Suppose V1 and V2 are the
vantage points, then fix V1 and let V2 move. Choose two points P1, P2 ∈ S.
When V2 satisfies the equation d(V1, P1) + d(V2, P1) = d(V1, P2) + d(V2, P2), we
note that P1 and P2 will be tied in the order.

Now rewrite this equation as follows:

d(V2, P1)− d(V2, P2) = d(V1, P2)− d(V1, P1).

But d(V1, P2) − d(V1, P1) is a constant since V1, P1, and P2 are all fixed. So
we are interested in the points V2 where d(V2, P1) − d(V2, P2) = c for some
constant c. The points that satisfy this equation form a hyperbola since the
difference of the distances from V2 to two fixed points is constant. But the
regions determined by the hyperbolas that arise do not have the same properties
as the hyperplane arrangements associated with perpendicular bisectors. In
particular, it is possible for distinct regions to give the same order.
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6 Problems and conjectures

We list several open problems that we believe deserve further study.

1. Gap filling: Given an integer k satisfying m(n, d) ≤ k ≤ M(n, d), we say that
k is achievable if there is a configuration S ⊂ Rd of n points so that the total
number of orderings of the n points is exactly k, where the vantage point moves
through Rd. When d = 1, we know that there are configurations that achieve
k orderings for any k between the minimum and the maximum. This is false
in dimensions d > 1, however.

Problem 6.1. Given n, d > 1, find all k so that k is achievable by an n-point
configuration in Rd.

It is probably hopeless to answer Problem 6.1 completely. Partial results along
the lines of Cor. 3.5 should be possible; indeed, Theorem 3.1 holds in all di-
mensions. We also point out that the percentage of achievable values between
the minimum and maximum from Table 2 shows that more than half of all
possible values are achieved when n ≤ 8. It would be interesting to determine
bounds for limit points for the sequence of achievable percentages in the plane:

Problem 6.2. Let rn be the percentage of values between m(n, 2) and M(n, 2)
that can be achieved by a configuration of n points in the plane. Find upper
and lower bounds for rn. In particular, does rn have a non-zero limit point?

2. Minimum values: By Theorem 2.1, we know the minimum value m(n, d) =
2n − 2 holds in Rd for all d > 1. But the configuration that achieves the
minimum in Rd is 1-dimensional. Determining the minimum when we restrict to
configurations whose affine spans are d-dimensional should be worth pursuing.

Problem 6.3. Given n, d > 1, find the minimum number of orderings possible
for S ⊂ Rd assuming the affine span of S is Rd.

For instance, in the plane, if S consists of the n vertices of a regular n-gon,
then aS(n, 2) = 2n, and it is easy to show this is best possible for configurations
that span a plane. We would expect highly symmetric configurations to achieve
values at or near the minimum in higher dimensions, too.

3. Two vantage points: When we have two vantage points, we know very little
when d > 1.

Problem 6.4. (a) Let m2(n) and M2(n) be the minimum and maximum val-
ues for the number of orderings of an n-point set which are possible when
two vantage points are allowed to move about the plane. Determine m2(n)
and M2(n).

(b) Determine asymptotic bounds for m2(n) and M2(n). Is it true that both
m2(n) and M2(n) grow exponentially?
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By Prop. 5.8, we know that m2(n) ≤ τn+2, but this is an exponential upper
bound on the minimum number of orderings, where τ is the golden mean. We
have essentially no information about the maximum in this case.

4. More vantage points: When we allow two vantage points, more orderings are
possible than with one (except for linear configurations). How many vantage
points do we need to ensure that every ordering of the points of S can be
realized by some placement of the vantage points?

Problem 6.5. Let S ⊂ Rd with |S| = n, and let v(n, d) be the smallest number
of vantage points so that the number of orderings of S is n!, where the v(n, d)
vantage points are free to move about Rd. Determine v(n, d).

If S ⊂ Rd with S = {P1, P2, . . . , Pn}, then it should be possible to add ai
vantage points at (or near) Pi so that a specified ordering of S can be achieved.
One possible method for attacking this problem uses the fact that the Euclidean
distance matrix (where the (i, j) entry di,j = d(Pi, Pj)) is invertible [7]. We
can then solve a system of equations in the ai to achieve a specified order of
S. The ai may not be integers however, and they also may not be positive.
But modifying this procedure may produce positive integer solutions for any
desired order.

5. Spherical arrangements: When a configuration S ⊂ S2 of points on the sphere
is contained in a hemisphere and also produces the maximum number of regions
on a sphere, Theorem 4.10 gives a formula allowing us to determine the number
of regions of the ‘doubled’ configuration S ∪ (−S). (This is the configuration
consisting of S and the antipodes of each point of S.) The formula depends on
the size of S. Can this be generalized to other ‘doubled’ configurations?

Problem 6.6. Let S ⊂ S2 be a collection of points contained in an open
hemisphere of S2, and let S ∪ (−S) be the configuration obtained from S by
adding in all the antipodal points of S. Is there a formula depending only on
the size of S and the number of regions determined by S for the number of
regions determined by S ∪ (−S)?
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