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Abstract

We study a special case of the configuration model, in which almost all the
vertices of the graph have degree 2. We show that the graph has a very
peculiar and interesting behaviour; in particular, when the graph is made
up of a vast majority of vertices of degree 2 and a vanishing proportion
of vertices of higher degree, the giant component contains n(1 − o(1))
vertices, but the second component can still grow as a power of n. On the
other hand, when almost all the vertices have degree 2, except for o(n)
which have degree 1, there is no component of linear size.

1 Introduction

In this paper, we study the behaviour of random graphs in which the majority of
vertices have degree 2, but there exists a vanishing proportion of vertices of either
higher or lower degree. The study of random graphs with a prescribed degree sequence
has been a very popular topic for decades. The usual way to construct them has been
the procedure known as the configuration model, which yields a random multigraph
over n vertices with a fixed degree sequence d = (d1, d2, . . . , dn). Conditioning on
simplicity, the configuration model has uniform distribution over all the labeled graphs
with such degree sequence. In the configuration model each vertex vi, i ∈ [n] is given
di half-edges, and all the half-edges are paired uniformly at random to create the
edges of the graph. This model is very flexible, allowing for any arbitrary degree
sequence, while remaining tractable, thanks to its high level of symmetry. For these
reasons it has become widely popular, both among applied researchers trying to fit
the model to empirical degree distributions observed in real-world networks, such
as power laws, and theoretical mathematicians who were looking for a tractable
model that could exhibit a wide variety of behaviours. The study of connectivity of
random graphs with a prescribed degree sequence started with the work of Bollobás
[3] and Wormald [19], who proved that if the minimum degree is at least 3, the graph
is connected with high probability (w.h.p.), and then it was further developed by
 Luczak [16], and the author and van der Hofstad [9], who analyzed the asymptotic
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connectivity probability when vertices of lower degree are allowed. Moreover, it is
known that the configuration model, like many other random graphs, presents a
phase transition. The first investigation of this phenomenon is due to Molloy and
Reed [17], who proved that the critical point for the phase transition is identified by
limn→∞

∑n
i=1 di(di − 2)/n = 0. Above such threshold there exists w.h.p. a connected

component that contains a positive fraction of the vertices; below, instead, the size of
the largest component is determined by the highest degree vertex up to a constant,
as proved by Janson [13]. For the study of the behaviour close to criticality see the
work by Dhara et al. [5, 6] and van der Hofstad et al. [11].

Usually the situation in which vertices of degree 2 make up almost the entirety of
the graph has been left out as a boundary case that was hard to address with the
usual techniques and only orders of magnitude of component sizes have been derived
in [16]. Here, we will analyze in detail what happens under such an assumption,
showing that indeed these graphs show very peculiar properties that are rarely found
in other settings.

Notation.

All limits in this paper are taken as n→∞ unless stated otherwise. For asymptotic
statements we use the following notation:

• Given a sequence of events (An)n≥1 we say that An happens with high probability
(w.h.p.) if P(An)→ 1.

• Given two random variables X and Y we write X � Y to indicate that Y
stochastically dominates X.

• Given the random variables (Xn)n≥1, X, we write Xn
d→ X and Xn

P→ X to
denote convergence in distribution and in probability, respectively.

• For sequences of (possibly quasi-deterministic) random variables (Xn)n≥1,
(Yn)n≥1, we write Xn = O(Yn) if the sequence (Xn/Yn)n≥1 is bounded almost
surely; Xn = o(Yn) if Xn/Yn → 0 almost surely; Xn = Θ(Yn) if Xn = O(Yn)
and Yn = O(Xn) .

• Similarly, for sequences (Xn)n≥1, (Yn)n≥1 of (possibly degenerate) random
variables, we writeXn = OP(Yn) if the sequence (Xn/Yn)n≥1 is tight; Xn = oP(Yn)

if Xn/Yn
P→ 0; and Xn = ΘP(Yn) if Xn = OP(Yn) and Yn = OP(Xn).

• Poi(λ) denotes a Poisson distributed random variable with mean λ and Bin(n, p)
denotes a random variable with binomial distribution with n trials each with
probability of success p.

We will use the standard abbreviations i.i.d. for independent identically distributed
and a.s. for almost surely.
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2 Main Results

We first recall that the configuration model CMn(d) is constructed from a degree
sequence d = (d1, d2, . . . , dn) such that

∑n
i=1 di =: ` is even, giving di half-edges to

each vertex vi for any i ∈ [n] and pairing them uniformly at random to form the
edges. We consider the pairing as a sequential process, i.e., we pick one of the `
half-edges, and we pair it with another one chosen uniformly at random among the
`− 1 remaining to form an edge, then we pick another half edge and pair it with a
uniformly chosen one among the `− 3 remaining ones to build another edge, and we
iterate until all the half-edges have been paired. In this case, we allow for self-loops
and multi-edges to be present in the graph. The specific rule according to which
the new half-edge is chosen at the beginning of each new step is not relevant for
the distribution of the final outcome, something that we will exploit in many proofs.
We study separately two cases depending on whether the degree sequence allows for
vertices of degree larger than 2 and for vertices of degree 1. We always assume that
there are no vertices of degree 0 since they do not interact with the rest of the graph
and are thus uninteresting. For each j ∈ N we define Nj as the set of vertices of
degree j in d and nj as its cardinality. We write the total number of half-edges as

` := `(n) =
n∑
i=1

di =
∞∑
j=1

jnj,

and L for the set of all the half-edges. Moreover, we define the total number of
half-edges attached to vertices of degree different from 2 as

6̀=2 :=
∑
j 6=2

jnj,

and L6=2 for the set of all such half-edges. Note that if ` is even, then also 6̀=2 is even,
since 6̀=2 = `− 2n2. We study separately the two cases in which the degree sequence
allows for vertices of degree higher or lower than 2, as their behaviour is completely
different. We define the conditions under which we call a sequence of configuration
models CMn(d) a sequence of upper almost-two-regular graphs.

Condition 2.1 (Upper almost-two-regular graph). We define a sequence of random
graphs as a sequence of upper almost-two-regular graphs if it is distributed as a
sequence (CMn(d))n∈N and the following conditions are satisfied as n→∞:

• `/n→ 2,

• n0, n1 = 0,

• 6̀=2 →∞.

This conditions can be described as the degree sequence having a vast majority of
vertices of degree 2 and a diverging but sublinear number of vertices of higher degree.
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As computed originally by  Luczak in [16], under strict conditions on the maximum
degree of the graph, the giant component contains almost all the vertices, but the
largest components outside of the giant are of order of magnitude Θ(n/ 6̀=2). This
shows the possibility for a supercritical random graph to have components outside
the giant of every intermediate order of magnitude between 1 and n, choosing an
appropriate asymptotic of 6̀=2. We generalize and strengthen this result in the
main theorem of this paper, which describes the asymptotic behaviour of the largest
component Cmax and the i-th largest component Ci, for every fixed i ∈ N:

Theorem 2.2. Consider a sequence (CMn(d))n≥1 that satisfies Condition 2.1. Then
as n→∞,

n− |Cmax| = OP(n/ 6̀=2), (2.1)

and for every i ≥ 2

|Ci| 6̀=2

n

d→ Yi,

where Yi is a random variable with support on R+ and cumulative distribution function

FYi(a) = P
(
Poi
(
−
∫ ∞
a

e−r/2

2r
dr
)
≤ i− 2

)
. (2.2)

By the definition we gave of the upper-almost-two-regular random graph, we know
that the random variable Dn representing the degree of a randomly chosen vertex
in CMn(d), converges in distribution to 2, which we define as the random variable
such that P(2 = 2) = 1. We know [1, 14] that, as long as the second moment of D
converges, CMn(d) is simple with non-vanishing probability, and that conditionally
on simplicity, it is a uniformly chosen simple graph with the degree sequence d. Under
these stricter conditions we can show that Theorem 2.2 holds also conditionally on
simplicity, and thus holds for a uniform simple graph with degree sequence d.

Theorem 2.3. Consider a sequence of simple graphs (C̃Mn(d))n≥1 such that for

each n, C̃Mn(d) is distributed as CMn(d) from a sequence (CMn(d))n≥1 that satisfies
Condition 2.1 and such that E[Di

n]→ 2i, i = 1, 2, 3, conditioned on simplicity. Then
as n→∞, equations (2.1)-(2.2) hold.

In light of more recent results, this stands up as a counterexample to the univer-
sality of the “no middle ground” property, i.e. that in a supercritical random graph
the connected components outside the giant are always very small, typically with the
size of the second largest component expressed as a polynomial in log n, which holds
for the most famous random graph models, as we will discuss in Section 3.

We also define the lower almost-two-regular graphs as sequences of configuration
models satisfying the following conditions as n→∞:

Condition 2.4 (Lower almost-two-regular graph). We define a sequence of random
graphs as a sequence of lower almost-two-regular graphs if it is distributed as a sequence
(CMn(d))n∈N and the following conditions are satisfied as n→∞:
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• `/n→ 2,

• n0 = 0,

• 6̀=2 = n1 →∞.

In this case we are instead considering degree sequences in which the vast majority
of vertices have degree 2, and the only other ones are a sublinear number of degree 1
vertices. In this case the behavior of the graph is radically different, as expressed in
the following theorem. We define Cj as the j-th largest cluster, then we obtain:

Theorem 2.5. Consider a sequence (CMn(d))n≥1 that satisfies Condition 2.4. Then,
for both sequences, as n→∞, for every j ∈ N

|Cj| =
2n log n1

n1

(1 + oP(1)). (2.3)

We see how this model closely resembles subcritical random graphs, with the
largest components being all very similar to each other and with no component
of linear size. The fact that the same holds for a lower-almost-two-regular graph
conditioned on simplicity is a simple corollary:

Corollary 2.6. Consider a sequence of simple graphs (C̃Mn(d))n≥1 such that for

each n, C̃Mn(d) is distributed as CMn(d) from a sequence (CMn(d))n≥1 that satisfies
Condition 2.4, conditioned on simplicity. Then (2.3) holds.

We do not investigate in this paper what happens when the vast majority of
vertices have degree 2 but there are both vertices of higher and lower degree. That
would require a very detailed case analysis depending on the relative scaling of ni for
different i as n→∞ which we think could be interesting for a future work.

3 Discussion of the results

In this section, we present some relevant consequences and some interesting observa-
tions related to our main theorems. The first interesting fact to point out is that the
upper almost-two-regular graph is a counterexample to the very general “no middle
ground” property of supercritical random graphs. It was first observed by Erdős and
Rényi [8] that the random graph G(n,m) (the uniform random graph with n vertices
and m edges), in the supercritical phase, i.e., when m > (1 + c)n/2, presents a big
gap between the largest component, which contains a positive fraction of the vertices,
and the second one, which contains ΘP(log n) vertices. Such a property has been
established to hold for a huge class of random graphs such as inhomogeneous random
graphs [4], most of the other cases of the configuration model [17] and percolation
on the Hamming graph [12]. For percolation on a large box or torus on Zd, the
second largest component in the supercritical phase is of order ΘP(log nd/(d−1)) [15].
In the case presented in this paper instead, we see from Theorem 2.2 that the upper
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almost-two-regular graph shows a clear supercritical behaviour, that is, there exists
a unique giant component, that has a clearly different structure from all the other
components and includes a positive fraction (actually, almost all) of the vertices, but
the second largest component can be of every possible order of magnitude such that
1 � |C2| � n, choosing the right scaling between n and 6̀=2. One of the possible

Figure 1: Two samples of the Configuration model over 10000 vertices with
n2 = 9970, n3 = 30. It is easy to observe that the graph is mostly made by
long linear sections.

reasons for this phenomenon is the one-dimensional nature of the graph. We can
observe that the local weak limit of the graph is Z, i.e., the neighbourhood of a
uniformly chosen vertex resembles w.h.p. a straight path up to any finite distance
(see Figure 1). The reasons for which a large second component in a supercritical
graph is unlikely is that large sets tend to have large boundaries, and thus are hard to
separate from the giant component. In a one-dimensional model instead, connected
sets with large boundaries are impossible to achieve, and thus it is relatively easy to
separate even quite large components from the giant.

The lower almost-two-regular graph instead, shows clear signs of being a subcritical
graph, i.e., the largest component is in no way “special”, but the k largest components
are almost indistinguishable for every fixed k. Still, also in this case we see the peculiar
nature of this model, as the size of the largest component is in no way determined by
the highest degree up to a constant or at most a logarithmic term, as it is in most
cases, like G(n,m) [7], the Random Intersection Graph [2] or many instances of the
Configuration Model [13] but we see that the largest component can be of any order
of magnitude such that 1� |Cmax| � n in a subcritical graph with highest degree
equal to 2.
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4 Proof of Theorem 2.2

In this section, we prove the main results about the upper almost-2-regular graph,
both seen as a multigraph, as summarized in Theorem 2.2, and conditioned on
simplicty as in Theorem 2.3. Our proof will consist of two main steps: first, we prove
that w.h.p. all the connected components except the giant are cycles (i.e. components
that contain only vertices of degree 2), second, we find the distribution of the size of
the largest cycle component in the graph. The first proof uses an argument similar
to the one presented by  Luczak in [16] and by Pittel and Wormald in [18], by which
the configuration model after the removal of the vertices of degree 2 is equivalent
to a configuration model with a different degree sequence. The second instead will
require the use of enumerative combinatorics to find the probability of having cycles
of a given length. In order to understand the large-scale structure of CMn(d), we
define the notion of kernel of the graph, adapted from [16].

Definition 4.1 (Kernel of the Configuration Model). We define the kernel K(CMn(d))
of the configuration model as the graph obtained from CMn(d) after running the fol-
lowing algorithm:

Initialize Sample CMn(d).

Step At every step, choose a vertex vi such that di = 2 according to any
arbitrary rule and remove it from CMn(d). If vi has a self loop, do
nothing more, else pair the two half-edges which had been paired with
the half-edges of vi, even if this procedure would create a self loop or a
multi-edge.

Terminate Stop the process when there are no more vertices of degree 2.

From the definition, it follows that K(CMn(d)) is a multigraph with a degree
sequence d′ such that, defining n′i as the number of vertices of degree i in d′, we have
n′2 = 0, n′i = ni for all i 6= 2. Moreover, in the next lemma we prove that K(CMn(d))
is distributed as CMn−n2(d

′).

Lemma 4.2. Consider the graph CMn(d) with any arbitrary degree sequence d and
its kernel K(CMn(d)). Then

K(CMn(d))
d
= CMn−n2(d

′),

where d′ is such that n′2 = 0, n′i = ni for all i 6= 2.

Proof. We show that however we choose a half-edge e1 in L 6=2, e1 is paired in
K(CMn(d)) with another half-edge e2 chosen uniformly in L 6=2. We do so through an
algorithm that sequentially builds CMn(d). Define the time variable of the algorithm
as a pair (i, j), i ≥ 1, j ≥ −1, and the sets of unexplored half-edges at any time,
U(i, j). We describe in the following pseudocode how the algorithm can sample

the edge set of K(CMn(d)) as a set of pairs of half edges ({e1(i), e2(i)})
`6=2/2
i=1 , while

building CMn(d) at the same time.
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Initialize Set i = 1, j = −1. Set U(1,−1) = L .

Step (a) If L6=2 ∩ U(i,−1) = ∅, pair the remaining half-edges in U(i,−1)
uniformly at random and terminate the algorithm.

Else, choose e ∈ L 6=2 ∩ U(i,−1) according to any arbitrary rule.
Set j = 0, U(i, 0) = U(i,−1) \ {e1} and e1(i) = e

(b) Choose a half-edge e′ uniformly at random in U(i, j) and pair it
with e

(c) If e′ ∈ L6=2, then fix e2(i) = e′ (i.e.,{e, e′} is an edge of the kernel),
increase i by 1, set j = −1 and U(i + 1,−1) = U(i, j) \ {e′}. Go
back to Step (a).

Else, set e equal to the other half-edge e′′ incident to the same
vertex as e′. Increase j by 1 and set U(i, j + 1) = U(i, j) \ {e′, e′′}.
Go back to Step (b).

This algorithm produces the edge set of K(CMn(d)) as the set of all the couples
{e1(i), e2(i)}, since every time a half edge e1(i) is paired with a vertex v of degree
2, such vertex is removed, and e1(i) is paired with the other half-edge connected
to v, exactly as in the construction of K(CMn(d)). Moreover, every time the edge
e′ is chosen uniformly over U(i, j), and consequently, conditioning on e′ ∈ L6=2, its
distribution is uniform over the set

U(i, j) ∩L 6=2 = L 6=2 \
(
{e1(i)} ∪

⋃
h<i

{e1(h), e2(h)}
)
.

From this we obtain that the pairing ({e1(i), e2(i)})
`6=2/2
i=1 is a uniform pairing over

L6=2, and thus K(CMn(d))
d
= CMn−n2(d

′).

We next define the usual exploration process of the configuration model (see e.g.
[17, Section 1]) that we are going to use multiple times in the paper.

Definition 4.3 (Exploration of the Configuration Model). At each time t, we define
the sets of half-edges {At,Dt,Nt} (the active, dead and neutral sets), and run the
following process:

Initalize Pick a vertex v ∈ [n] according to any arbitrary (deterministic or stochas-
tic) rule and set all its half-edges as active. Set all the other half-edges
as neutral.

Step At each step t, pick a half-edge e1(t) in At uniformly at random, and pair
it with another half-edge e2(t) chosen uniformly at random in At ∪Nt.
Set e1(t), e2(t) as dead.
If e2(t) ∈ Nt, then find the vertex v(e2(t)) incident to e2(t) and activate
all its other half-edges.

Terminate If At = ∅, terminate the process.
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We use this algorithm to compute the number of vertices that are contained in
cycle components; the same proof works for both the lower and upper almost-two
regular random graphs:

Proposition 4.4. Consider a sequence satisfying Condition 2.1 or 2.4. Define C(n)
as the number of vertices of CMn(d) in cycle components. Then

lim
t→∞

lim
n→∞

P(C(n) ≥ tn2/ 6̀=2) = 0.

Proof. We run the exploration process described in Definition 4.3 starting from a
uniformly chosen vertex of degree 2. We run the process until the first of the two
following stopping times:

T6=2 = min{t : e2(t) ∈ L6=2}, TC = min{t : e2(t) ∈ At}.

It is impossible that T6=2 = TC because for every t ≤ T6=2, At ∩L6=2 = ∅. Moreover,
v is in a cycle component, if and only if TC < T 6=2. We know that for every
t ≤ min{T6=2, TC}, |At| = 2 and |L 6=2 ∩Nt| = 6̀=2. Consequently we have, for every
t ≥ 1

P(T6=2 = t | min{T6=2, TC} > t− 1) = 6̀=2P(TC = t | min{T6=2, TC} > t− 1),

so that
P(T6=2 = t, TC > T6=2) = 6̀=2P(TC = t, T6=2 > TC),

and thus

P(T6=2 > TC) =
∑
t≥1

P(min{T6=2, TC} = t)P(T6=2 > TC | min{T6=2, TC} = t)

=
∑
t≥1

P(min{T6=2, TC} = t)
1

6̀=2 + 1
=

1

6̀=2 + 1
.

Consequently,

E[C(n)] =
∑
v∈N2

P(v is in a cycle component) = n2P(T6=2 > TC) =
n2

6̀=2 + 1
.

We thus write, by the first moment method,

P(C(n) > tn2/ 6̀=2) ≤
n2

6̀=2 + 1
6̀=2

tn2

<
1

t
,

and the claim follows.

We can now prove that under Condition 2.1, the largest component contains
w.h.p. all the vertices of degree at least 3, and is of size n− oP(n).

Proposition 4.5. Consider a sequence CMn(d) that satisfies Condition 2.1. Then
as n→∞,

lim
t→∞

lim
n→∞

P(n− |Cmax| ≥ tn2/ 6̀=2) = 0.

Moreover, [n] \ Cmax contains only vertices of degree 2 w.h.p.
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Proof. Every two vertices v, w such that dv, dw 6= 2 are in the same component in
CMn(d) if and only if they are in the same component in K(CMn(d)). Thus, if
K(CMn(d)) is connected, there exists a component C̃ of CMn(d) such that [n] \ C̃
contains only vertices of degree 2. We will show that said component exists and takes
up the vast majority of the graph w.h.p.

By Lemma 4.2, K(CMn(d)) is distributed as CMn−n2(d
′), where d′ has minimum

degree at least 3. Consequently, CMn−n2(d
′) is connected w.h.p. by the main theorem

of [19]. If K(CMn(d)) is connected, the number of vertices outside the largest
component is thus at most the number of vertices in cycle components. We thus
write, for every t ≥ 1

P(n− |Cmax| > tn2/ 6̀=2) ≤ P(C(n) > tn2/ 6̀=2) + P(K(CMn(d)) is disconnected)

<
1

t
+ o(1).

This is enough to complete the proof of (2.1). In order to prove (2.2), we need to
analyze the distribution of the number and size of the cycle components.

From the previous analysis we see that w.h.p. all the components outside the
giant are cycles, and that

]vertices in cycle components = OP

( n2

6̀=2

)
.

We know that if we remove the giant from a configuration model, the rest of
the graph is distributed as a configuration model with the degree sequence of the
remaining vertices. By Proposition 4.5 in this case what is left is w.h.p. a random
2-regular graph.

In a random 2-regular graph, we know that |Cmax|/n converges in distribution to
a random variable with no points with positive mass. Thus, we expect the second
largest component of CMn(d) (i.e. w.h.p. its largest cycle component) to be of size
OP

(
n2

6̀=2

)
and to have a random size. To prove this we analyse the distribution of

the number of cycle components that are larger than an2/ 6̀=2 for any fixed constant
a ∈ (0,∞).

Define Cn(k) as the number of cycle components of size k in CMn(d). We will
next analyse the random variables

S(a)
n (k) :=


0 if k ≤ an2/ 6̀=2,

k∑
j=an2/ 6̀=2

Cn(j) if k > an2/ 6̀=2.
(4.1)

In particular we are interested in proving the following proposition, from which we
can deduce (2.2):
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Proposition 4.6. Consider a sequence CMn(d) satisfying 6̀=2 →∞ and ` 6=2/`→ 0

and the associated processes (S
(a)
n (k))k>0 as defined in (4.1). Then for every a < t <∞

S(a)
n (tn2/ 6̀=2)

d→ Poi
(∫ t

a

λ(r)dr
)
,

where λ(t) =
e−t/2

2t
.

Proof. We prove the result through the method of moments. We define the factorial
moments

(S(a)
n (tn2/ 6̀=2))h = S(a)

n (tn2/ 6̀=2)
(
S(a)
n (tn2/ 6̀=2)− 1

)
· · ·
(
S(a)
n (tn2/ 6̀=2)− h+ 1

)
.

To prove the Poisson convergence we need to prove that

E[(S(a)
n (tn2/ 6̀=2))h]→

(∫ t

a

λ(r)dr
)h
,

for every t > a; h ∈ N (see e.g. [10, Section 2.1]). We define, for every j ≤ n2,

C(j) :=

(
N2

j

)
,

i.e., C(j) is the set of all possible sets of vertices that can be arranged in a cycle of
length j. Given an element A ∈ C(j), we define CA as the event that the vertices in
A form a cycle and ICA

as its indicator variable. We now write

E[(S(a)
n (tn2/ 6̀=2))h] =

∑
j1,...,jh∈[an2/ 6̀=2...tn2/ 6̀=2]

∑∗

A1∈C(j1),...,Ah∈C(jh)

E[ICA1
· · · ICAh

],

where
∑∗

indicates sum over distinct elements, that is, that we cannot have Aa = Ab
for any a 6= b, a, b ≤ j.

We need to prove that

max
j1,...,jh∈[an2/` 6=2...tn2/ 6̀=2]

∑∗

A1∈C(j1),...,Ah∈C(jh)

E[ICA1
· · · ICAh

]
( n2

6̀=2

)h
(4.2)

− λ(j1n2/ 6̀=2)λ(j2n2/ 6̀=2) · · ·λ(jhn2/ 6̀=2)→ 0.

We rewrite it as

∑∗

A1∈C(j1),...,Ah∈C(jh)

E[ICA1
· · · ICAh

]

=
∑

A1∈C(j1)

· · ·
∑

Ah−1∈C(jh−1)\{A1,...,Ah−2}

E[ICA1
· · · ICAh−1

] (4.3)

×
∑

Ah∈C(jh)\{A1,...,Ah−1}

E[ICAh
| CA1 , . . . , CAh−1

].
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We note immediately that, if there exist distinct i, g ≤ h such that Ai ∩Al 6= ∅, then
ICAi

ICAg
= 0 deterministically. Consequently, we can restrict the sum to the case in

which the sets A1, . . . , Ah are all mutually disjoint. Define mi :=
∑i−1

l=1 jl, that is, as
the number of vertices used to create the first i− 1 cycles, all of which have degree
2. We note that for all 1 ≤ i ≤ h, as long as Ai does not overlap with any of the
previous sets, E[ICAi

| CA1 , . . . , CAi−1
] is the probability that the vertices in Ai form a

cycle component in a configuration model CMn−mi
(d̃), with d̃ satisfying ñ2 = n2−mi

and ñl = nk for all k 6= 2, where ñk is the number of vertices of degree k in d̃. We
further note that d̃ does not depend on the precise choice of A1, . . . , Ai−1, as long as
Ag ∈ C(jg) for every g. Thus, for all possible disjoint collections A1, . . . , Ah, for every
i ≤ h,

E[ICAi
| CA1 , . . . , CAi−1

]

=
2ji − 2

`− 2mi − 1

2ji − 4

`− 2mi − 3
· · · 2

`− 2mi − 2ji + 3

1

`− 2mi − 2ji + 1

= 2ji−1(ji − 1)!

ji−1∏
g=0

1

`− 2mi − 2g − 1
.

There exists
(
n2−mi

ji

)
distinct choices for Ai that do not overlap with any Ak for any

k < i, so we obtain∑
Ai∈C(ji)

E[ICAi
| CA1 , . . . , CAi−1

] =

(
n2 −mi

ji

)
2ji−1(ji − 1)!

ji−1∏
g=0

1

`− 2mi − 2g − 1

=
1

2ji

ji−1∏
g=0

2(n2 −mi − g)

`− 2mi − 2g − 1
.

We use that, for every g ≥ 0,

2(n2 −mi − g)

`− 2mi − 2g − 1
≤ 2n2

`− 1
.

For a lower bound we write, recalling that mi + g ≤ ht`/ 6̀=2, for all i ≤ h, g ≤ j1 − 1

2n2

`
− 2(n2 −mi − g)

`− 2mi − 2g − 1
≤ 2n2

`
− 2n2 − 2(mi + g + 1)

`− 2(mi + g + 1)

=
2n2(`− 2(mi + g + 1))− `(2n2 − 2(mi + g + 1))

`(`− 2(mi + g + 1))

=
2(mi + g + 1)(`− 2n2)

`2(1− o(1))
≤ ht

`
.

Thus we obtain that
ji−1∏
g=0

2(n2 −mi − g)

`− 2mi − 2g − 1
≥
(2n2 − ht

`

)ji
=
(

1− 6̀=2 + ht

`

)ji
=
(

1− 6̀=2 + ht

`

) `
` 6=2+ht

ji( 6̀=2+ht)

`
,
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and

ji−1∏
g=0

2(n2 −mi − g)

`− 2mi − 2g − 1
≤
( 2n2

`− 1

)ji
=
(

1− 6̀=2 − 1

`− 1

)ji
=
(

1− 6̀=2 − 1

`− 1

) `−1
` 6=2−1

ji( 6̀=2−1)

`−1
.

We thus write

− ji 6̀=2

`− 1
(1 + o(1)) ≤ log

(
2ji

∑
Ai∈C(ji)

E[ICAi
| CA1 , . . . , CAi−1

]
)

≤ −ji( 6̀=2 + ht)

`
(1 + o(1)),

where the o(1) term is independent of ji. We can thus conclude that

max
ji∈[an2/` 6=2...tn2/` 6=2]

max
A1,...,Ai−1

∣∣∣2ji ∑
Ai∈C(ji)

E[ICAi
| CA1 , . . . , CAi−1

]− e−ji`6=2/`
∣∣∣→ 0.

Recall that
e−ji 6̀=2/(2n2)

2ji
= λ(ji 6̀=2/n2)

6̀=2

n2

.

We thus obtain,

max
ji∈[an2/` 6=2...tn2/` 6=2]

max
A1,...,Ai−1

∣∣∣ ∑
Ai∈C(ji)

E[ICAi
| CA1 , . . . , CAi−1

]
n2

6̀=2

− λ(ji 6̀=2/n2)
∣∣∣→ 0.

(4.4)
Iterating the substitution of (4.4) in (4.3) for all the other ji, i < h, we obtain (4.2).
By the uniform convergence we obtain∑
j1,...,jh∈[an2/` 6=2...tn2/` 6=2]

∑∗

A1∈C(j1),...,Ah∈C(jh)

E[ICA1
· · · ICAh

]

=
(
6̀=2

n2

)h
(1+o(1))

∑∗

j1,...,jh∈{an2/` 6=2;tn2/` 6=2}

λ(j1 6̀=2/n2) · · ·λ(jh 6̀=2/n2)

→
(∫ t

a

λ(r)dr
)h
.

This, by the method of moments, yields the claim.

We next prove that, if we assume convergence of the third moment of the degree
distribution, the same limit in distribution for the number of large components holds
even if we condition on the graph being simple.



L. FEDERICO / AUSTRALAS. J. COMBIN. 86 (1) (2023), 76–96 89

Proposition 4.7. Consider a sequence CMn(d) satisfying 6̀=2 →∞ and ` 6=2/`→ 0

and E[Di
n] → 2i, i = 1, 2, 3 and the associated processes (S

(a)
n (k))k>0 as defined in

(4.1). Then, for every a < t <∞

(S(a)
n (tn2/ 6̀=2) | CMn(d) is simple)

d→ Poi
(∫ t

a

λ(r)dr
)
.

Proof. We again use the method of factorial moments, in particular we need to prove
that, for each t > a, h ∈ N,

E[(S(a)
n (tn2/` 6=2))h | CMn(d) is simple] =

E[(S
(a)
n (tn2/ 6̀=2))hI{CMn(d) is simple}]

P(CMn(d) is simple)

→
(∫ t

a

λ(r)dr
)h
,

(4.5)

We know by the results in [1, Theorem 1.1] that

P(CMn(d) is simple)→ exp
{
− E[22]− E[2]

2
− (E[22]− E[2])2

4

}
= e−1. (4.6)

We rewrite the expression in the numerator on the left-hand side of (4.5) as

E[(S(a)
n (tn2/ 6̀=2))hI{CMn(d) is simple}]

=
∑

j1,...,jh∈[an2/ 6̀=2...tn2/ 6̀=2]

∑∗

A1∈C(j1),...,Ah∈C(jh)

E[ICA1
· · · ICAh

I{CMn(d) is simple}].

We now compute

∑
j1,...,jh∈

[an2/ 6̀=2...tn2/ 6̀=2]

∑∗

A1∈C(j1),...,Ah∈C(jh)

E[ICA1
· · · ICAh

]E[I{CMn(d) is simple | CA1 , . . . , CAh
].

(4.7)

Conditionally on CA1 , . . . , CAh
, as long as A1, . . . , Ah are all disjoint and thus

ICA1
· · · ICAh

is not 0 almost surely, the probability that CMn(d) is simple is the same

as the probability that a random graph ĈMn(d, j1, . . . , jh1), whose degree sequence is
obtained from the original one by removing the j1 + j2 + · · ·+ jh vertices of degree 2
appearing in CA1 , . . . , CAh

is simple. This is because for CA1 , . . . , CAh
to happen, it is

necessary that no self-loops or multi-edges appear among the vertices in A1, . . . , Ah.
We note that j1 + j2 + · · ·+ jh ≤ htn2/ 6̀=2. We define D̃n as the degree of a uniformly
chosen vertex from the degree sequence d̃ obtained removing htn2/` 6=2 vertices from d.

We obtain that for the degree D′n of a uniformly chosen vertex in ĈMn(d, j1, . . . , jh1),
Dn � D′n � D̃n, where the relation � indicates stochastic domination. Since

htn2/ 6̀=2 = o(n), it follows that D′
d→ 2, and E[D′]→ 2, E[D′2]→ 4 and E[D′3]→ 8,

uniformly in j1, j2, . . . , jh1 and thus, by [1, Theorem 1.1]

lim
n→∞

max
j1,...,jh∈[an2/` 6=2...tn2/ 6̀=2]

|P(ĈMn(d, j1, . . . , jh1) is simple)− e−1| = O(1/`).
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Substituting this result in (4.7) and applying Proposition 4.6 we obtain

E[(S(a)
n (tn2/ 6̀=2))hI{CMn(d) is simple}]→ e−1

(∫ t

a

λ(r)dr
)h
.

From this using (4.6) we obtain (4.5) and the claim follows by the method of moments.

We now put together the results obtained in this section to prove Theorems 2.2
and 2.3.

Proof of Theorem 2.2. Proposition 4.5 directly implies (2.1), so what we are left to
prove is (2.2).

Define C Cycle

i−1 as the (i− 1)-th largest cycle component. By Proposition 4.5

lim
n→∞

P(C Cycle

i−1 = Ci) = 1.

By Proposition 4.6, for any a ∈ (0,∞),

lim
n→∞

P(|C Cycle

i−1 | ≤ an2/ 6̀=2) ≤ lim
t→∞

lim
n→∞

P(S(a)
n (tn2/ 6̀=2) ≤ i− 2)

= lim
t→∞

P
(
Poi
(∫ t

a

λ(r)dr
)
≤ i− 2

)
. (4.8)

For the matching lower bound we write, using Proposition 4.4,

lim
n→∞

P(|C Cycle

i−1 | ≤ an2/ 6̀=2) ≥ lim
t→∞

lim
n→∞

P(S(a)
n (tn2/ 6̀=2) ≤ i− 2)

− lim
t→∞

lim
n→∞

P(C(n) ≥ tn2/ 6̀=2) (4.9)

= lim
t→∞

P
(
Poi
(∫ t

a

λ(r)dr
)
≤ i− 2

)
+ o(1).

Combining (4.8) and (4.9) and the fact that n2 = n(1− o(1)), the claim follows.

Proof of Theorem 2.3. From Proposition 4.5 and (4.6) we obtain:

lim
t→∞

lim
n→∞

P(n− |Cmax| ≥ tn2/ 6̀=2 | CMn(d) is simple)

≤ lim
t→∞

lim
n→∞

P(n− |Cmax| ≥ tn2/ 6̀=2)

P(CMn(d) is simple)
→ 0.

(4.10)

This concludes the proof that (2.1) holds, and furthermore from it follows that,

lim
n→∞

P(C Cycle

i−1 = Ci | CMn(d) is simple) = 1.

By Proposition 4.7, for any a ∈ (0,∞),

lim
n→∞

P(|C Cycle

i−1 | ≤ an2/ 6̀=2 | CMn(d) is simple)

≤ lim
t→∞

lim
n→∞

P(S(a)
n (tn2/ 6̀=2) ≤ i− 2 | CMn(d) is simple) (4.11)

= lim
t→∞

P
(
Poi
(∫ t

a

λ(r)dr
)
≤ i− 2

)
.
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For the matching lower bound we write, using (4.10) and Proposition 4.4,

lim
n→∞

P(|C Cycle

i−1 | ≤ an2/ 6̀=2 | CMn(d) is simple)

≥ lim
t→∞

lim
n→∞

P(S(a)
n (tn2/ 6̀=2) ≤ i− 2 | CMn(d) is simple)

− lim
t→∞

lim
n→∞

P(C(n) ≥ tn2/ 6̀=2 | CMn(d) is simple) (4.12)

= lim
t→∞

P
(
Poi
(∫ t

a

λ(r)dr
)
≤ i− 2

)
+ o(1).

Combining (4.11) and (4.12) and the fact that n2 = n(1− o(1)), the claim follows.

5 Proof of Theorem 2.5

In this section we analyze the lower almost-2-regular graph, and prove Theorem 2.5.
Since Condition 2.4 allow only for vertices of degree 1 and 2, we know that all the
components in CMn(d) are either paths (components made of 2 vertices of degree 1
connected by vertices of degree 2) or cycles. Here we consider a vertex of degree 2
with a self-loop as a cycle of length 1, and a pair of double edges between a pair of
vertices of degree 2 is considered to be a cycle of length 2. Thus

|Cmax| = max{|C Cycle

max |, |C Line

max|},

where C Cycle
max is the largest cycle component and C Line

max is the largest path component.
Moreover, define C Line

j as the j-th largest path component.

We next prove that the size of the largest path components concentrates and it is
w.h.p. larger than that of C Cycle

max , which we can estimate using Proposition 4.4.

Lemma 5.1. Consider CMn(d) satisfying Conditions 2.4. Then, for every j ∈ N,

n1|C Line
j |

n log n1

P→ 2.

Proof. We start by proving the upper bound. For every α ∈ (0,∞) we define

N(1, α) := ]{v ∈ N1 : |C (v)| > αn log(n1)/n1},

where for every v ∈ [n], C (v) is the connected component that contains v. To
find bounds on N(1, α) we run the exploration from Definition 4.3 starting from a
uniformly chosen vertex v ∈ N1. Since there are no vertices of degree larger than 2, at
every step t, |At| ∈ {0, 1}, and the exploration of C (v) ends as soon as e2(t) ∈ L 6=2,
i.e., the first time the exploration finds another vertex of degree 1. Thus, the only
way the process can survive up to time αn log(n1)/n1 is that e2(t) /∈ L6=2, for all
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t ≤ αn log(n1)/n1. We write the probability for this to happen as

πα := P(|C (v)| > αn log(n1)/n1) =

αn log(n1)/n1∏
t=0

( 2(n2 − t)
`− 2t− 1

)
=

αn log(n1)/n1∏
k=0

(
1− n1 − 1

`− 2t− 1

)
.

We bound this quantity by

πα ≤
(

1− n1 − 1

`

)αn log(n1)/n1

= e−α logn1/2(1+o(1))

πα ≥
(

1− n1 − 1

`− 2αn log(n1)/n1

)αn log(n1)/n1

= e−α logn1/2(1+o(1)).

Consequently,

E[N(1, α)] =
∑
v∈N1

P(|C (v)| > αn log(n1)/n1)

= n1πα = n1e
−α logn1/2(1+o(1)) = n

(2−α+o(1))/2(1+o(1))
1 .

(5.1)

By the first moment method,

P
(n1|C Line

max|
n log n1

≥ α
)
≤ E[N(1, α)]/2,

so that, for every ε > 0,

lim
n→∞

P
(n1|C Line

max|
n log n1

≥ 2 + ε
)

= 0.

Next we prove a sharp lower bound on the size of |C Line
j | for every j ≥ 1. Using

the Chebyshev inequality we write

P
(
|C Line

j | ≤ αn log n1

n1

)
= P(N(1, α) ≤ 2j) ≤ E[N(1, α)2]− E[N(1, α)]2

(E[N(1, α)]− 2j)2
. (5.2)

By (5.1), we know that for every α < 2, E[N(1, α)]→∞. Thus, it is enough to prove
that for every α < 2,

E[N(1, α)2]

E[N(1, α)]2
→ 1.

We write

E[N(1, α)2] =
∑

v,w∈N1

P(|C (v)|, |C (w)| > αn log(n1)/n1)

=
∑
v∈N1

P(|C (v)| > αn log(n1)/n1)

+
∑

v,w∈N1,v 6=w

(
P(|C (v)|, |C (w)| ≥ αn log(n1)/n1,C (v) 6= C (w))

+ P(|C (v)| ≥ αn log(n1)/n1,C (v) = C (w))
)
.

(5.3)
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We know that for every v ∈ N1, almost surely |(N1 ∩ C (v)) \ {v}| = 1, so that,∑
v,w∈N1,v 6=w

P(|C (v)| ≥ αn log(n1)/n1,C (v) = C (w))

=
∑
v∈N1

E[|(N1 ∩ C (v)) \ {v}|I{|C (v)|≥αn log(n1)/n1}]

=
∑
v∈N1

P(|C (v)| > αn log(n1)/n1) = παn1.

(5.4)

To bound the probability that v and w are in distinct large components, we now
run two copies of the exploration process from Definition 4.3, starting from two
different vertices v and w in N1. We first explore starting from v, and we let the
exploration run up to time αn log(n1)/n1. If the exploration has survived, then we
know that |C (v)| > αn log(n1)/n1, and that Aαn log(n1)/n1 = {e′} for some half-edge
e′ /∈ L6=2. In this case, we start running a new exploration from w. We know that
|C (w)| > αn log(n1)/n1, C (w) 6= C (v) if the exploration starting from w survives up
to time αn log(n1)/n1 finding neither e′ nor any half-edge in L 6=2.

We bound this probability by

αn log(n1)/n1∏
k=0

(
1− n1 − 2

`− 2k − 2αn log(n1)/n1

)
≤

αn log(n1)/n1∏
k=0

(
1− n1 − 1

`− 2k − 1

)
= πα,

so that

P(|C (v)|, |C (w)| ≥ αn log(n1)/n1,C (v) 6= C (w)) ≤ π2
α. (5.5)

We thus obtain, substituting (5.1), (5.4) and (5.5) into (5.3)

E[N(1, α)2] ≤ 2παn1 + π2
αn1(n1 − 1).

We further compute, recalling that n1πα = E[N(1, α)],

E[N(1, α)2] ≤ 2E[N(1, α)] + E[N(1, α)]2.

If α = 2− ε, then, by (5.1), E[N(1, α)]→∞, so we obtain

E[N(1, α)2] = E[N(1, α)]2(1 + o(1)).

Consequently, by (5.2), for every j ≥ 1,

lim
n→∞

P
(n1|C Line

j |
n log n1

≤ 2− ε
)

= lim
n→∞

P(N(1, 2− ε) ≤ 2j) = 0.

We can now finally prove Theorem 2.5.



L. FEDERICO / AUSTRALAS. J. COMBIN. 86 (1) (2023), 76–96 94

Proof of Theorem 2.5. By Lemma 5.1, for every α < 2, j ∈ N,

lim
n→∞

P
(
|Cj| ≥

αn log n1

n1

)
≥ lim

n→∞
P
(
|C Line

j | ≥ αn log n1

n1

)
= 1.

On the other hand, by Proposition 4.4 and Lemma 5.1, for every α > 2, j ∈ N,

lim
n→∞

P
(
|Cj| ≥

αn log n1

n1

)
≤ lim

n→∞

(
P
(
|C Line

max| ≥
αn log n1

n1

)
+ P

(
|C Cycle

max | ≥
αn log n1

n1

))
= 0.

By the upper and lower bound, we obtain the claim.

From Theorem 2.5, using the fact that CMn(d) is simple with non-vanishing
probability, we obtain Corollary 2.6

Proof of Corollary 2.6. Under Condition 2.4 we obtain that, recalling that D is the

distribution of the degree of a uniformly chosen random vertex, D
d→ 2 and further

E[D]→ E[2] = 2, E[D2]→ E[22] = 4. From this follows (see e.g [14], [1]) that

P(CMn(d) is simple)→ exp
{
− E[22]− E[2]

2
− (E[22]− E[2])2

4

}
= e−1.

From this, and Theorem 2.5, it follows that for every j ∈ N and ε > 0:

P
(
|Cj| ≥

(2 + ε)n log n1

n1

∨ |Cj| ≤
(2− ε)n log n1

n1

| CMn(d) is simple
)

≤
P
(
|Cj| ≥

(2 + ε)n log n1

n1

∨ |Cj| ≤
(2− ε)n log n1

n1

)
P(CMn(d) is simple)

→ 0.

Acknowledgments

The work in this paper is supported by the Netherlands Organisation for Scientific
Research (NWO) through Gravitation-grant NETWORKS-024.002.003 and by the
European Research Council (ERC) through Starting Grant Random Graph, Geometry
and Convergence 639046.



L. FEDERICO / AUSTRALAS. J. COMBIN. 86 (1) (2023), 76–96 95

References

[1] O. Angel, R. van der Hofstad and C. Holmgren, Limit laws for self-
loops and multiple edges in the configuration model, Annales de l’Institut Henri
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