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Abstract

Tree-like tableaux are objects in bijection with alternative or permuta-
tion tableaux. In the present work, we define and study a new subclass
of tree-like tableaux enumerated by Baxter numbers. We exhibit sim-
ple bijective links between these objects and three other combinatorial
classes: (packed or mosaic) floorplans, twisted Baxter permutations and
triples of non-intersecting lattice paths. From several (and unrelated)
works, these last objects are already known to be enumerated by Baxter
numbers, and our main contribution is to provide a unifying approach to
bijections between Baxter objects, where Baxter tree-like tableaux play
the key role. We moreover get new enumerative results about alternat-
ing twisted Baxter permutations. Finally, we define a new subfamily of
floorplans, which we call alternating floorplans, and we enumerate these
combinatorial objects.
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1 Introduction

Baxter permutations are named after the mathematician Glen Baxter [5], who in-
troduced them in 1964 (in an analysis context). They are enumerated by Baxter
numbers [29, sequence a001181], whose formula was obtained by Chung et al. [11]
(see also [30] for a combinatorial proof):

Baxn =
2

n(n+ 1)2

n∑
k=1

(
n+ 1

k − 1

)(
n+ 1

k

)(
n+ 1

k + 1

)
. (1)

Since then, it has been proved that Baxter numbers enumerate various classes of
combinatorial objects: pairs of twin binary trees [15], several kinds of standard
Young tableaux with three rows [10, 16], plane bipolar orientations [2, 6, 7, 18], and
three other classes that we shall present in more detail, as they play important parts
in our work.

The first one is the class of twisted Baxter permutations. These permutations were
defined a few years ago by Reading [27] in an algebraic context: they naturally index
bases for subalgebras of the Malvenuto-Reutenauer Hopf algebra of permutations.
Like Baxter permutations, twisted Baxter permutations may be characterized by
pattern avoidance, and West [33] proved (by a recursive bijection) that they are
enumerated by Baxter numbers. These objects are also endowed with a nice Hopf
structure, as revealed by the recent works [20, 23].

The second class we shall present here is the class of mosaic floorplans. The
notion of floorplans finds its origin in integrated circuits: a floorplan encodes the
relative positions of modules in a circuit. A mosaic floorplan may be defined as an
equivalence class of some rectangular partitions of a rectangle (called floorplans).
They were proved to be enumerated by Baxter numbers [28], and a bijection was
found with pairs of twin binary trees [34]. We introduce here combinatorial objects
that we call packed floorplans: they are canonical representatives of mosaic floorplans,
in the sense that every mosaic floorplan contains exactly one packed floorplan.

The third and last class we are interested in is a class of triples of non-intersecting
lattice paths. The Lindström-Gessel-Viennot lemma [19, 24] relates the enumeration
of non-intersecting lattice paths (NILP) to the computation of determinants of in-
teger matrices. Because of that, NILPs are ubiquitous objects that appear in many
contexts in combinatorics. The class we shall consider here is known [16] to be in
bijection with pairs of twin binary trees, see their precise definition in Section 5.

The goal of the present work is to link together these three combinatorial classes
through the use of new objects that we call Baxter tree-like tableaux. Tree-like
tableaux (TLTs) are combinatorial objects introduced in [3] as a new presentation of
alternative or permutation tableaux [26, 31], and have revealed interesting combina-
torial properties [3, 4]. Baxter TLTs are defined in a very simple way by avoidance of
patterns (a notion to be defined in Section 2) in TLTs. We mention here that Felsner
et al. also provide bijective links between combinatorial structures enumerated by
Baxter numbers in their paper [17]. But whereas their work is focused on twin binary
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trees and leads to Baxter permutations, the central objects of this present article are
Baxter TLTs and our bijections lead to twisted Baxter permutations.

The outline of the paper is as follows. Section 2 introduces our new class of
Baxter tree-like tableaux. Moreover, we recall in this section the recursive structure
of tree-like tableaux, which has already proved to be the key tool dealing with these
objects, and will be essential for the work reported here. Next, Sections 3, 4 and 5 are
respectively devoted to twisted Baxter permutations, packed floorplans and triples
of non-intersecting lattice paths: we define these three combinatorial classes and in
each case, we build a simple bijection with Baxter TLTs. In Section 6, we consider
the restriction of our construction to alternating objects. This allows us to obtain
new combinatorial results, such as the enumeration of alternating twisted Baxter
permutations (see Corollary 6.3), and to identify several enumerative questions which
remain open. A short conclusion ends the paper.

2 Baxter tree-like tableaux

We present in this section a new family of objects enumerated by Baxter numbers.
The definition of these Baxter TLTs is given in Definition 2.8, but we first need to
recall useful statements about TLTs.

2.1 Tree-like tableaux: definitions and useful tools

We refer to [3] for a detailed study of tree-like tableaux. Here, we shall only recall
the main definition and a few important properties.

Definition 2.1 (Tree-like tableau). A tree-like tableau (TLT) is a Ferrers diagram
(drawn in the English notation) where each cell is either empty or pointed (i.e.,
occupied by a point), with the following conditions:

1. the top leftmost cell of the diagram is occupied by a point, called the root point ;

2. for every non-root pointed cell c, there exists a pointed cell p either above c in
the same column, or to its left in the same row, but not both; p is called the
parent of c in the TLT;

3. every column and every row contains at least one pointed cell.

The size of a TLT is the number of pointed cells it contains.

These objects were named tree-like tableaux because of the underlying tree struc-
ture they contain: recording the parent relations between the points of a TLT indeed
produces a tree, whose root is the root point of the TLT. In this tree, every internal
(i.e., non-leaf) vertex may have either a right child (shown by a horizontal edge),
or a left child (shown by a vertical edge), or both. We refer to such trees as binary
trees (although they would more appropriately be called incomplete binary trees).
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Figure 1 (left) shows an example of a TLT, with its underlying binary tree. The
reader interested in more details about the underlying trees of TLTs may find them
in [3, 4].

Definition 2.2. A ribbon in a TLT T is a set R of cells along the southeast border
of T , that is connected (with respect to edge-adjacency), does not contain any 2× 2
square, and consists only of non-pointed cells. Moreover it is required that the
bottom leftmost cell of R is to the right of a pointed cell with no cell of T below it,
and that the top rightmost cell of R is below a pointed cell.

Figure 1 (right) shows an example of a TLT of size 20 with a ribbon indicated
by shaded cells (of magenta color).

Figure 1: Left: A tree-like tableau T of size 20, with its underlying binary tree.
Right: The same tree-like tableau T with a ribbon in T .

In the article [3] that defines TLTs, the so-called insertion procedure InsertPoint
is defined. It generates all TLTs unambiguously from the unique TLT of size 1 by
insertion of points (together with a row or column, and possibly a ribbon, of empty
cells) at the boundary edges of TLTs, that is to say at edges of their southeast border.
We refer to [3] for details about this insertion procedure, and for proofs of statements
about it in the remainder of this subsection.

The reader familiar with generating trees (as defined in [32]) may note that this
insertion procedure can also be interpreted as representing a generating tree for TLTs
(although we will not use this fact in the present article). Indeed, the main result
(Theorem 2.3) of [3] can be interpreted as follows: the infinite tree with root , where
all children of a given TLT T are the TLTs obtained by applying InsertPoint on T
at each of the boundary edges of T , is a generating tree for TLTs.

The insertion procedure on TLTs also induces a canonical labeling of the n points
of a TLT T of size n by the integers in {1, . . . , n}. It indicates the (unique) order
in which the points of T have been inserted to obtain T from the empty TLT. This
labeling is essential for the bijections that we define in Sections 3 and 4, and we
review it now. Actually, this labeling may alternatively be described as the order in
which the points of T should be removed with the procedure RemovePoint of [3] to
go from T to (the unique TLT of size 1), and this is how we define it here. This
is illustrated in Figure 2.
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T = =

1 3 5

2 6 7 9

4

8

T = T9 = , T8 = , T7 = ,

T6 = , T5 = , T4 = , T3 = , T2 = , T1 = .

Figure 2: The labeling of the points of a TLT using the procedure RemovePoint
recursively. The special points together with the associated columns (respectively
rows) are denoted in boldface (of blue color), whereas the ribbons are indicated by
shaded cells (of magenta color).

Consider a TLT T of size n. We define the special point s of T as: the point at the
bottom of its column, which is rightmost among such points. (Notice that s always
exists, since the bottom row of T contains at least one point, by definition.) This
special point s gets the label n. To label the remaining n−1 points of T , we compute
from T and s another TLT T ′ of size n− 1, by removing s and some empty cells in
T . The points of T ′ are in immediate correspondence with those of T except s, so
that we may label in T the special point of T ′ with n − 1, and proceed recursively.
We will denote by (Tn = T, Tn−1 = T ′, Tn−2, . . . , T1 = ) the corresponding sequence
of TLTs (each Ti having size i).

We now explain how to build T ′ from T and s. Unless n = 1, s is not the
root point of T , and this implies that exactly one of the followings holds: either
there is no point of T above s in the same column, or there is no point of T to its
left in the same row. In the former (respectively latter) case, we define the column
(respectively row) of s to be the cells above (respectively to the left of) s in the
same column (respectively row). If there is a cell adjacent to s on its right, then
this cell is empty (by definition of s). In this case, we claim that there is a ribbon
in T to the right of s. Indeed, this is derived from the two following facts: starting
from the empty cell to the right of s, and following the southeast border of T , we
eventually meet a pointed cell p, since the last column of T contains a point; and p
has been reached from below, since otherwise s would not be the special point. We
call this set of empty cells the ribbon of s. Now, T ′ is obtained from T by removing
s, together with its column (respectively row) and its ribbon (when it exists). We
say that the TLT T ′ is the result of the procedure RemovePoint applied to T .

Observation 2.3. At each step of the above procedure, when we apply Remove-
Point, one point is removed and either a row or a column is removed. This implies
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that the size of a TLT is given by its semi-perimeter−1.

From now on, when we speak of the ribbons of T , we mean the ribbons removed
when applying iteratively the procedure RemovePoint from T until is reached.

Observation 2.4. For a TLT T and two pointed cells c and c′ with respective labels
i and j. The following assertions are equivalent:

1. c is (strictly) to the left and below c′ and i = j + 1;

2. there is a ribbon of T between c and c′.

To conclude the general properties of TLTs, we observe a property of the cells of
its ribbons.

Definition 2.5. A crossing in a TLT T is an empty (i.e., non-pointed) cell such that
there are pointed cells both above it in the same column and to its left in the same
row.

This terminology has already been introduced in [3]. The choice of the word
crossing is explained because such cells are those where two edges of the underlying
binary tree1 of T cross each other. It will be used mostly in Sections 3 and 4, but
also on a few occasions before.

Definition 2.6. Let T be a TLT of size n, and denote by (Tn = T, Tn−1, Tn−2, . . . , T1
= ) the sequence of TLTs (each Ti having size i) obtained iterating the procedure
RemovePoint starting from T . For any cell c of the ribbon removed from Ti to obtain
Ti−1, we define the label rib(c) = i. We call this the rib-label of c.

This labeling is illustrated in Figure 3. It will be used in Lemma 3.6.

Notice that there are cells with no rib-label. Indeed, we have the following char-
acterization of cells having a rib-label:

Observation 2.7. A cell has a rib-label if and only if it is a crossing.

Proof. Note that TLTs have no empty rows or columns. Therefore the definition of
ribbons ensures that if a cell c has a rib-label i then it is a crossing, more precisely
c belongs to the ribbon removed from Ti to obtain Ti−1. Conversely, considering a
crossing c and the smallest i such that the cell c belongs to Ti, we obtain that c
belongs to the ribbon removed from Ti to obtain Ti−1, hence has a rib-label (equal
to i).

1The binary trees considered in [3] are a slight modification of the ones considered in this paper.
Specifically, in the present paper, there is no vertical (respectively horizontal) edge leaving a point
of a TLT which has no point below it (respectively to its right) — see Figure 1 (left). However,
in [3], there are edges leaving such points, and which extend until the boundary of the TLT. With
these additional edges, we really “see” the crossings, wherever two edges intersect.
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Figure 3: The labeling (of blue color) and the rib-label (of magenta color) of the
TLTs of Figures 1 (left) and 2 (right).

2.2 A family of TLTs enumerated by Baxter numbers

In this work, we are interested in a family of TLTs restricted by pattern avoidance
constraints. A TLT T is said to contain the pattern · •• • if there exist two rows
and three columns in T such that the restriction of T to the 2 × 3 = 6 cells at
their intersection is equal to •• • or ••• •. We define in the same way the pattern

· ••• .

With this kind of notation, the condition that every pointed cell in a TLT does not
have pointed cells both above in the same column and to the left in the same row is
expressed by the avoidance of the pattern · ••• .

Definition 2.8 (Baxter tree-like tableau). A Baxter tree-like tableau is a TLT which

avoids (i.e., does not contain any of) the patterns · •• • and
· ••• . We shall denote by

T(k,`) the set of Baxter TLTs with k rows and ` columns and set: Tn = tk+`−1=nT(k,`)
where t denotes the disjoint union.

An immediate consequence of this definition and Observation 2.3 is that the size
of any T ∈ Tn is n.

Figure 4 shows all Baxter TLTs (T i)1≤i≤22 of size 4.

We may note (although we will not use it in this article) that the generating tree
for TLTs induced by the procedure InsertPoint, can be restricted to Baxter TLTs,
yielding a generating tree for Baxter TLTs. Indeed, the procedure RemovePoint ap-
plied to any Baxter TLT produces a Baxter TLT again (since applying RemovePoint

cannot create any occurrence of · •• • or
· ••• ).

Sections 3 to 5 describe size-preserving bijections between Baxter TLTs and fam-
ilies of objects that are known to be enumerated by Baxter numbers, hence their
name. Specifically, Section 3 (respectively 4, respectively 5) describes a bijection
denoted ΦB (respectively ΦF , respectively ΦP) between Baxter TLTs and inverses of
twisted Baxter permutations (respectively (packed) floorplans, respectively triples of
non-intersecting lattice paths). These bijections are illustrated in size 4 by Figures 8,
15 and 22 (pp. 36, 46 and 55), where each TLT T i of Figure 4 is sent to σi, F i and
πi by the bijections ΦB, ΦF and ΦP , respectively.
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T 1 = , T 2 = , T 3 = , T 4 = ,

T 5 = , T 6 = , T 7 = , T 8 = ,

T 9 = , T 10 = , T 11 = , T 12 = ,

T 13 = , T 14 = , T 15 = , T 16 = ,

T 17 = , T 18 = , T 19 = , T 20 = ,

T 21 = , T 22 = .

Figure 4: The 22 Baxter TLTs of size 4.

2.3 Tree structure and position of the points in the TLTs

This short subsection presents technical results that will be used in the study of two
bijections (the bijection between Baxter TLTs and twisted Baxter permutations, and
the bijection between Baxter TLTs and non-intersecting lattice paths). It concerns
the relation between the tree structure of Baxter TLTs and the relative placement
of their points. This subsection may be skipped for a first reading.

Proposition 2.9. Let T be a Baxter TLT. Consider the bi-partition (L,R) of the
non-root points of T , where L (respectively R) contains all points of T that are in
the left (respectively right) subtree pending from the root of the underlying tree of T .
Then all points of L are to the left and below all points of R.

Proof. The proof is by contradiction. Assume that there is a point ` ∈ L that lies to
the right of a point r of R. Among all ancestors of r (including r) in the underlying
tree of T , there is one which lies to the left of ` and above `. Indeed, all ancestors
of r are to the left of r, ` does not lie in the first row of T (since it belongs to L),
and r has at least one non-root ancestor in the first row of T (since it belongs to R).
Denote by r′ such an ancestor of r. We have then that r′ is above and to the left of
`. Among all ancestors of ` (including `), denote by `′ the one closest to the root of
T such that r′ is above and to the left of `′. This ensures that `′ cannot be the root
of T , and that together with the parent of `′, `′ and r′ form a pattern · •• • or

· ••• ,

a contradiction.
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Assuming instead that there is a point ` ∈ L that lies above of a point r of R,
we derive a contradiction in a symmetric fashion.

Several consequences of Proposition 2.9 will be useful in proving properties of our
bijections.

Corollary 2.10. Any binary tree is the underlying tree of a unique rectangular Bax-
ter TLT, that is to say a TLT with rectangular shape and which avoids the patterns
· •• • and

· ••• .

We point out that a detailed study of TLTs with rectangular shapes (or alterna-
tively of TLTs where we forget the underlying Ferrers diagram) is provided in [4],
where these objects are referred to as non-ambiguous trees.

Proof. Consider a binary tree B, and denote by B` (respectively Br) the left (respec-

tively right) subtree pending from the root of B: B = •
B` Br

. By induction

(the base case of the induction, which corresponds to a tree with just one vertex,
being clear), there are unique Baxter TLTs of rectangular shapes, denoted T` and
Tr, whose underlying trees are respectively B` and Br. We are looking for a Baxter
TLT T of rectangular shape whose underlying tree is B. Proposition 2.9 leaves us no
choice but to place all points of T` below and to the left of all points of Tr. That the
resulting TLT (shown on the left of Figure 5) has a rectangular shape is ensured by
the construction, and the avoidance of the two patterns is immediate to prove.

Figure 5 (right) shows an example of rectangular Baxter TLT associated with a
binary tree by Corollary 2.10.

Tr

Tℓ

B = and T =

Figure 5: Left: Recursive construction of a TLT with rectangular shape. Right: A bi-
nary tree B, and the unique Baxter TLT T with rectangular shape whose underlying
tree is B.

Corollary 2.11. Let T be a Baxter TLT, and B be its underlying binary tree. Denote
by B` (respectively Br) the left (respectively right) subtree pending from the root of
B. Consider the bi-partition (L,R) of the non-root points of T , where L (respectively
R) contains all points of T that are in B` (respectively Br).

We can split T with two lines V and H, uniquely defined by the following con-
ditions: V is a vertical line leaving all points of L to the left and all those of R to
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the right, and H is a horizontal line leaving all points of L below and all those of R
above.

Provided that both L and R are non-empty, V and H split T into four blocks,
having the following properties.

• The northwest block is a rectangle of empty cells, except for the north-westernmost
cell, which contains the root of T .

• The southwest block is a Baxter TLT, denoted T`, whose underlying tree is B`.

• The northeast block is a Baxter TLT, denoted Tr, whose underlying tree is Br.

• The southeast block is a Ferrers diagram, possibly empty, and contains only
crossings of T .

Proof. The existence of V and H is guaranteed by Proposition 2.9. Their uniqueness
is ensured by the fact that there are no empty rows or columns in TLTs. The
properties of the four blocks identified by V and H are immediate. We just note that
the cells in the southeast block are indeed crossings because they are all empty, have
a point of R above them, and a point of L to their left (again, because every row
and column of T contains at least one point).

3 Bijection with twisted Baxter permutations

In this section, we present a bijection ΦB between Baxter TLTs and twisted Baxter
permutations. These objects are defined in Definition 3.2, and the main result is
Theorem 3.3.

The bijection ΦB is actually the restriction of a bijection denoted φ between
(unrestricted) TLTs and (unrestricted) permutations. In Subsection 3.1, we first
define φ and then its restriction ΦB. The proofs that φ and ΦB are bijections are
then given in Subsections 3.2 and 3.3. A last subsection shows how our construction
allows us to interpret some classical statistics on the permutations (descents and
left-to-right minima) directly on the Baxter TLTs.

3.1 A bijection between Baxter TLTs and twisted Baxter permutations

Recall that TLTs are in size-preserving bijection with permutations. Indeed, [3]
provides several bijections between them. Here, we define yet another bijection
between TLTs and permutations, which is however related to the so-called code
bijection of [3] — see Proposition 3.5.

Consider a TLT T of size n. As described in Section 2, its pointed cells may
be labeled by the integers 1, . . . , n, by the insertion procedure. We now describe a
way to extend this labeling to the empty cells of T . First, every empty cell c of the
first column (respectively row) of T takes the label of the closest pointed cell above
(respectively to the left of) c in the same column (respectively row). Notice that
such a pointed cell always exists, because of the root of T . Second, we propagate
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this labeling to all empty cells of T , going from northwest to southeast, as follows.
Consider an empty cell c that has not yet been labeled. Proceeding iteratively, we
can assume that c has north, west, and northwest neighboring cells in T , and that
these have already been labeled. Denote by y, z and x their respective labels (see
Figure 6, left). We then distinguish four cases to determine the label of c:

• if there is a point above c in the same column, and a point to the left of c in
the same row (recall that such cells are called crossings, a terminology that we
will use again in Lemma 3.6), then c receives the label x;

• if there is a point above c in the same column, but no point to the left of c in
the same row, then c receives the label y;

• if there is a point to the left of c in the same row, but no point above c in the
same column, then c receives the label z;

• if there is neither a point to the left of c in the same row, nor a point above c
in the same column, then c receives the label x; in this case, it may be proved
recursively that x = y = z.

Figure 6 (right) shows an example. We shall denote by iso(c) the label associated
with the cell c, and call this the iso-label of c.

Recall that we have defined another (partial) labeling, denoted rib, in Defini-
tion 2.6 (pp. 29); note that it is defined for crossings c only, and that in general we
have iso(c) 6= rib(c).

x y

z

cell c

For T = the labeling of T is

1 1 1 7 8 11 12

1 1 1 7 9

2 4 5 1 7

3 2 4 5

3 2 10 4

6 3

Figure 6: The iso-labeling of a TLT, which defines the bijection φ. Our notational
convention in the rightmost part of this figure is that pointed cells of the TLT are
indicated by circled entries.

When all cells of T are labeled, we define φ(T ) as follows. Starting from the
bottommost cell of the first column of T , we go along its southeast border until the
rightmost cell of the first row of T is reached (that is to say, at every step, we go
one cell to the right if this is a cell of the TLT, one cell up otherwise). Then φ(T )
is just the sequence of labels that are met along this southeast border. For example,
for the TLT T of Figure 6, we have φ(T ) = 6 3 2 10 4 5 1 7 9 8 11 12.

Proposition 3.1. φ is a size-preserving bijection between TLTs and permutations.
Moreover, it sends the crossings of a TLT to the occurrences of the pattern 2+−1−2
(defined below) in the corresponding permutation.
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Proposition 3.1 will be derived in Subsection 3.2, as an immediate consequence
of Proposition 3.5 and Lemma 3.6.

We now turn to the definition of the restriction ΦB of φ, which will provide a
bijection between Baxter TLTs and inverses of twisted Baxter permutations. To
define these permutations, we review briefly the classical notions of vincular and
bivincular patterns in permutations [8].

• A (classical) pattern is simply a permutation; but for notational convenience,
we insert a dash between any two adjacent entries. An occurrence of a classical
pattern τ in a permutation σ is a subsequence of σ which is order-isomorphic
to τ .

• A vincular pattern (or dashed pattern) is a permutation in which every pair of
adjacent entries may be linked by a dash. Occurrences of a vincular pattern τ
in a permutation σ are defined like in the case of classical patterns, with the
additional restriction that two adjacent entries of τ that are not separated by
a dash must correspond to adjacent entries in σ.

• Bivincular patterns are a generalization of vincular patterns, where adjacency
constraints are allowed not only on positions but also on values.

Here, we will be interested in very simple bivincular patterns, with only one
constraint on values. Such patterns of size n can be represented as a vincular pattern
whose entries are {1, 2, . . . , n − 1} ∪ {i+}, for some i ∈ {1, 2, . . . , n − 1}. In an
occurrence of such a pattern in a permutation σ, we require that the entries of σ
corresponding to i and i+ have consecutive values (namely, that i+ corresponds to
k + 1 when i corresponds to k). The (bivincular) pattern 2+ − 1 − 2 will be of
particular interest to us, so let us rephrase: an occurrence of a 2+ − 1 − 2 pattern
in a permutation σ is a subsequence σ(i)σ(j)σ(k) of σ, with i < j < k such that
σ(j) < σ(k) and σ(i) = σ(k) + 1.

τ Occurrences of τ in σ
3− 1− 2 6 3 4, 6 3 5, 6 2 4, 6 2 5, 6 4 5, 10 4 5, 10 4 7, 10 4 9, 10 4 8,

10 5 7, 10 5 9, 10 5 8, 10 1 7, 10 1 9, 10 1 8, 10 7 9, 10 7 8
3− 12 6 4 5, 10 4 5, 10 1 7, 10 7 9
2+ − 1− 2 6 3 5, 6 2 5, 6 4 5, 10 4 9, 10 5 9, 10 1 9, 10 7 9
2+ − 12 6 4 5, 10 7 9

Figure 7: Occurrences of several patterns in σ = 6 3 2 10 4 5 1 7 9 8 11 12.

For example, consider the classical pattern 3− 1− 2, the vincular pattern 3− 12,
and the bivincular patterns 2+ − 1 − 2 and 2+ − 12. Their occurrences in σ =
6 3 2 10 4 5 1 7 9 8 11 12 are summarized in Figure 7. Notice that this permutation
σ satisfies σ = φ(T ), where T is the TLT of Figure 6.

We are now in a position to define twisted Baxter permutations.
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Definition 3.2 (Twisted Baxter permutations). A twisted Baxter permutation is a
permutation σ which avoids the two vincular patterns 2−41−3 and 3−41−2 (i.e.,
such that none of these patterns has any occurrence in σ). We denote by Bn the set
of inverses of twisted Baxter permutations of size n.

Figure 8 lists all permutations of B4.

σ1 =1234, σ2 =1243, σ3 =1324, σ4 =1342, σ5 =1423, σ6 =1432,
σ7 =2134, σ8 =2143, σ9 =2314, σ10=2341, σ11=2413, σ12=2431,
σ13=3124, σ14=3214, σ15=3241, σ16=3421, σ17=4123, σ18=4132,
σ19=4213, σ20=4231, σ21=4312, σ22=4321.

Figure 8: The 22 permutations of B4.

There are several bijective proofs in the literature that |Bn| = Baxn for all n, or
more precisely that (some symmetry of) twisted Baxter permutations are enumerated
by Baxter numbers (defined in (1)). See [22] for a recursive bijection between Baxter
permutations and permutations avoiding 2− 14− 3 and 3− 14− 2 (whose reverses
are twisted Baxter permutations), or [20, 33] for more recent bijections between
Baxter permutations and twisted Baxter permutations. In these articles, the pattern-
avoiding families of permutations are defined by the avoidance barred patterns rather
than by excluded dashed patterns; but in each case the equivalence between both
descriptions is easily proved, with simple arguments similar to those in the proof of
Observation 3.7 below.

Let us denote by ΦB the restriction of the bijection φ to the set of Baxter TLTs.

Figure 9 shows an example of a Baxter TLT T with the corresponding permuta-
tion ΦB(T ).

1 1 1 1 3 4 4 4 4 4 4 4 4 15 23

1 1 1 1 3 5 5 5 14 16 16 16 16 4 15

1 1 1 1 3 5 5 5 14 17 17 17 24 16 4

1 1 1 1 3 5 5 5 14 18 20 21

1 1 1 1 3 6 8 19 5 14 18 20

1 1 1 1 3 6 8 22 19 5 14

1 1 1 1 3 7 6

2 9 9 9 1 3 7

2 10 10 12

2 11 13 10

2 11 13 10 12 9 1 3 7 6 8 22 19 5 14 18 20 21 17 24 16 4 15 23

Figure 9: A Baxter TLT T (circled entries represent pointed cells), its labeling by
iso(·), and the permutation ΦB(T ).
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Theorem 3.3. For any n, ΦB is a bijection between Tn and Bn.

Moreover, for any Baxter TLT T and for σ = ΦB(T ), ΦB sends the crossings
of T to the occurrences of the pattern 2+ − 1 − 2 in σ, the points in the leftmost
column of T to the left-to-right minima of σ, and the row (respectively columns)
of T to the descents (respectively ascents) of σ, via the row-extremal (respectively
column-extremal) points of T . (For the definitions of these notions, we refer to
Subsection 3.4.)

We will prove Theorem 3.3 in the following subsections. More precisely, it follows
from the combination of Proposition 3.8, Lemma 3.6, Proposition 3.11, Corollary 3.12
and Corollary 3.14.

3.2 Proof of Proposition 3.1

Here, we prove Proposition 3.1, stating that φ is a size-preserving bijection between
TLTs and permutations. In fact, Proposition 3.1 simply puts together Proposition 3.5
and Lemma 3.6 below. To prove these statements, we start with a useful lemma.

Lemma 3.4. Let T be a TLT of size n+1 and T ′ be the TLT of size n obtained from
T according to the procedure RemovePoint (defined in Section 2), i.e. T ′ is obtained
from T by deletion of the special point s of T with its row (respectively column) and
ribbon (if it exists). Let σ = φ(T ) and σ′ = φ(T ′). Then the deletion of n + 1 in σ
gives σ′. Moreover, n+ 1 is located at the j-th position in σ where j is the number of
cells (including s itself) along the border of T that are located at the southwest of s.

Proof. That n+ 1 is located at the j-th position in σ is clear by definition of φ. To
prove that σ and σ′ coincide up to the deletion of n+ 1 in σ, let us examine how the
labeling of all the cells of T (except s) is related to the labeling of all the cells of T ′.

Consider first the row (respectively column) of empty cells to the left of s (respec-
tively above s). The rules defining the labeling of T ensure that each such cell has
the same label as the one immediately above it (respectively immediately to its left).
As a consequence, all cells of T (except s) that are neither in the row (respectively
column) nor in the ribbon of s have the same label in T as in T ′. The only labels yet
to determine are those of the cells of the ribbon of s, when it exists. Because there
are no empty rows or columns, such a cell is always a crossing, hence it has the same
label as its northwest neighboring cell.

Whether or not the ribbon of s exists, we can now compare the labelings of T
and T ′. And it follows immediately that, up to n + 1 which corresponds to s, the
sequence of integers defining σ that is read along the southeast border of T is the
same as the sequence read along southeast border of T ′, i.e., is σ′.

In the following, we denote by Φ1 the code bijection of [3, Theorem 3.4] between
TLTs and permutations.

Proposition 3.5. For any TLT T , denoting by τ the permutation such that Φ1(T ) =
τ−1, we have τ = φ(T ).
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Proof. The proof is by induction on the size of T . The base case of the induction is
clear. Let T be a TLT of size n + 1 and T ′ be the TLT of size n obtained from T
by deletion of the special point s of T with its row (respectively column) and ribbon
(if it exists). Consider the permutations σ = φ(T ), σ′ = φ(T ′), τ = Φ1(T )−1 and
τ ′ = Φ1(T

′)−1. By induction hypothesis, σ′ = τ ′. Moreover, by Lemma 3.4, σ is
obtained from σ′ by insertion of n + 1 at position j, where j is the number of cells
along the border of T that are located at the southwest of s. From the definition of
Φ1 in [3], we have similarly that τ is obtained from τ ′ by insertion of n + 1 at the
same position j. We deduce that σ = τ , concluding the proof.

It was proved in [3, Section 3.2] that their bijection Φ1 sends crossings to oc-
currences of 2 − 31. Taking into account the inverse symmetry that appears in
Proposition 3.5, this statement is translated into the following lemma (whose proof
we provide, as a warm-up for the next subsection).

Lemma 3.6. The crossings of any TLT T are in one-to-one correspondence with
the occurrences of the pattern 2+ − 1− 2 in σ = φ(T ).
Under this correspondence, for any crossing c, the value of σ to which 1 is mapped
is iso(c) defined in Subsection 3.1 and the value of σ to which 2+ is mapped is rib(c)
defined in Definition 2.6 (pp. 29).

Proof. The proof is by induction on the size of T , the base case of the induction
being clear. Let T be a TLT of size n + 1 and T ′ be the TLT of size n obtained
from T by deletion of the special point s of T with its row (respectively column) and
ribbon (if it exists).

The crossings of T are partitioned into two categories: the crossings of T ′ and
the cells of the ribbon of s. As explained in Observation 2.7, note that all the cells
of the ribbon of s are crossings.

Consider σ = φ(T ) and σ′ = φ(T ′). From Lemma 3.4, σ′ may be described as σ
from which n + 1 has been deleted. Hence, the occurrences of 2+ − 1 − 2 in σ are
also partitioned into two categories: the occurrences of 2+ − 1 − 2 in σ′ and those
where 2+ is mapped to n+ 1.

By induction, it follows that the crossings of T ′ are mapped to the occurrences
of 2+ − 1− 2 in σ′. The assertion about the values is readily checked, since for any
such crossing c of T ′, iso(c) (respectively rib(c)) is the same in T and in T ′.

Consider now a crossing of T which is a cell of the ribbon of s. Recall that the
label of s is n+ 1. Observe now that the pointed cell located at the right extremity
of the ribbon of s is the special point s′ of T ′, whose label is therefore n. From these
observations, it is now clear that the occurrences of 2+ − 1− 2 where 2+ is mapped
to n + 1 are in one-to-one correspondence with the cells of the ribbon of s. In this
case, the assertion about the values follows immediately by definition of iso(·) and
rib(·).
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3.3 Proof of Theorem 3.3

We now study the restriction ΦB of φ to Baxter TLTs, which we claim provides a
bijection with inverses of twisted Baxter permutations. We start with the following
observation relative to patterns in inverses of twisted Baxter permutations.

Observation 3.7. The permutations of Bn may alternatively be characterized as
the permutations of size n avoiding the patterns 2+ − 1− 3− 2 and 2+ − 3− 1− 2,
or equivalently the patterns 3− 14− 2 and 3− 41− 2, i.e.,

Bn = Avn(2+ − 1− 3− 2, 2+ − 3− 1− 2) = Avn(3− 14− 2, 3− 41− 2).

Proof. When taking the inverse, the adjacency constraints in a vincular pattern are
turned into constraints that two elements should have consecutive values (which
can be represented by a bivincular pattern). This proves the first statement of
Observation 3.7.

The second statement of Observation 3.7 is proved using classical arguments of
permutation patterns analysis. We prove that a permutation σ contains a pattern
3− 14− 2 if and only if it contains a pattern 2+ − 1− 3− 2, the case of 3− 41− 2
and 2+ − 3− 1− 2 being similar.

Suppose that σ contains a pattern 3− 14− 2 where the 2 is mapped to the entry
i and the 3 is mapped to the entry j of σ. We consider the integers in the interval
{i, . . . , j}. They stand in σ either to the left or to the right of the subpattern 14,
with j to the left and i to the right. Thus, considering these integers in decreasing
order, there exist two consecutive of them, k and (k+1) with i ≤ k < j, which stand
as: (k + 1) . . . 14 . . . k. This gives a pattern 2+ − 1− 3− 2.

Conversely, if σ contains a pattern 2+ − 1− 3− 2, we consider the entries in the
subword 1− 3. They are either strictly greater than 2+ or smaller than 2, thus there
are two of them which are at adjacent positions and form a pattern 2+− 13− 2 and
hence 3− 14− 2.

Now we come to the proof of the first statement in Theorem 3.3 (i.e., bijectivity),
which is a direct consequence of the following assertion.

Proposition 3.8. Let σ be a permutation, of size n, and T be the TLT defined by
T = φ−1(σ). Then σ ∈ Bn if and only if T ∈ Tn.

Proof. The key point is Lemma 3.6. Let σ and T be as in the statement of the
proposition, and consider the sequence of TLTs (Tn = T, Tn−1 = T ′, Tn−2, . . . , T1 =

) defined in Section 2.

We first prove that if σ contains a pattern 2+ − 3− 1− 2 or 2+ − 1− 3− 2, then

T contains a pattern
· ••• or · •• • . For this purpose, we consider the occurrence of

one of the patterns 2+ − 3− 1− 2 and 2+ − 1− 3− 2 in σ such that the value j of
the “2+” is maximal among all possibilities, and such that the value k of the “3” is
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minimal among these occurrences. Thus there is a ribbon R from j (the “2+”) to
j− 1 (the “2”). Moreover, as observed in [3] (Section 3), the ribbon R is exactly the
same in Tj and Tk−1: the minimality of k ensures that no cell were added during the
construction of T between steps j and k. Finally, the letter k is between letters j
and j − 1 in σ, thus the pointed cell labeled by k is in Tk either to the South or to

the East of a crossing which belongs to R. This gives a pattern
· ••• or · •• • in T .

Conversely, we prove that if T contains a pattern
· ••• or · •• • , then σ contains

a pattern 2+ − 3 − 1 − 2 or 2+ − 1 − 3 − 2. We consider the smallest i such that

Ti contains a pattern
· ••• or · •• • . The south-easternmost point of this pattern in

Ti is the special point si of Ti (because Ti−1 avoids the two patterns). Moreover,
it is to the South or to the East of a crossing of Ti, which we denote by c. Let us
denote by σi = φ(Ti). We claim that σi contains a 2+ − 3− 1− 2 or 2+ − 1− 3− 2
pattern. Indeed, such a pattern can be identified using Lemma 3.6. More precisely,
it is enough consider the entries of σi corresponding to the following cells of Ti: the
pointed cell labeled iso(c) (which corresponds to the “1” in the pattern), si (which
is the“3”) and the two extremities of the ribbon of c (which are the “2+” and “2”).
To conclude, Lemma 3.4 implies that σi is a pattern of σ, so that σ also contains a
2+ − 3− 1− 2 or 2+ − 1− 3− 2 pattern.

3.4 ΦB and classical permutation statistics

As we have seen with Lemma 3.6, for a (not necessarily Baxter) TLT T , the occur-
rences of the pattern 2+ − 1− 2 in φ(T ) can be interpreted directly on T . For other
(more classical!) permutation statistics, we also have intepretations directly on the
TLTs, in the Baxter case. We describe here these interpretations for the descents
and the left-to-right minima. Once these interpretations are proved, the proof of
Theorem 3.3 will be concluded.

3.4.1 Descents

Recall that a descent (respectively ascent) of a permutation σ is a pair of consecutive
elements σ(i)σ(i+ 1) such that σ(i) > σ(i+ 1) (respectively σ(i) < σ(i+ 1)).

Our notational convention in Figures 10 to 13 is that x or represents a pointed

cell, is a region of empty cells, is a region of pointed and/or empty cells,

and is a region of cells containing at least a point. Note that some regions
contain only empty cells because of the excluded patterns that define Baxter TLTs.

Lemma 3.9. Let T be a Baxter TLT. Let c be a (pointed or empty) cell of T that
does not belong to the first column (respectively row) and without any pointed cell
below it (respectively to its right). Denote by a the iso-label of c and by b the iso-label
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of the cell 2 immediately to the left of (respectively above) c. Then ba (respectively
ab) is a factor3 of σ = ΦB(T ).

Proof. If c is the bottommost (respectively rightmost) cell in its column (respectively
row), then the claim immediately holds by definition of ΦB. Otherwise, we prove in
the following that the cell immediately below (respectively to the right) of c satisfies
the same conditions as c, induction giving then the conclusion.

Suppose that c does not belong to the first column and has no pointed cell below
it. Consider the cell on the row just below c, denoted c′. Note that our assumptions
ensure that c′ is empty. Two cases may occur, as shown on Figure 10 (left): either
there is no pointed cell to the left of c′, or there is at least one. In the first case, c′

has no pointed cell below it, is labeled by a and the cell to its left by b, so that we
can proceed inductively, and obtain that ba is a factor of σ. In the second case, let
us first notice that there is at least a point above c′ (since the column of c′ contains
at least a point). This implies that there is no point to the right of c′ in its row (or
otherwise, we would obtain a pattern · •• • , with a point above c′ and two points to
the left and right of c′). This also implies that the label of c′ is b (by the first case
of the rule for the propagation of the iso-label). The cell above c′ is nothing but our
original cell c, so it is labeled by a. We can therefore apply our inductive statement
on c′, obtaining that ba is a factor of σ.

In the case where c does not belong to the first row and has no pointed cell to its
right, we proceed similarly, distinguishing cases as shown on Figure 10 (right).

b a

b a

b a

b

b

a

b

a

b

a b

Figure 10: Proof of Lemma 3.9 when c has no pointed cell below it (left), and when
c has no pointed cell to its right (right).

Definition 3.10. A point of a Baxter TLT is column-extremal (respectively row-
extremal) if it does not belong to the first column (respectively row) and there is no
pointed cell below it (respectively to its right).

The column-ancestor (respectively row-ancestor) of a column-extremal (respec-
tively row-extremal) point x is the parent of the topmost (respectively leftmost)
point in the column (respectively row) of x.

2Note that this cell exists, because of our assumption that c does not belong to the first column
(respectively row).

3As in words, a factor in a permutation is a sequence of symbols which appear consecutively.
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Figure 11 illustrates this definition in general. For a specific example, in Fig-
ure 9, the point 7 (respectively 21) is row-extremal and column-extremal, its column-
ancestor is 3 (respectively 20) and its row-ancestor is 6 (respectively 17).

In Definition 3.10, note that the topmost (respectively leftmost) point in the
column (respectively row) of x is not the root of the TLT, since x does not belong to
the first column (respectively row). This ensures that it has a parent so that column-
and row-ancestors are well defined. Note also that the column-ancestor (respectively
row-ancestor) of a column-extremal (respectively row-extremal) point x is located in
a column to the left of x (respectively in a row above x).

y

x y x

y

x

y

x

Figure 11: The column-ancestor (respectively row-ancestor) y of a column-extremal
(respectively row-extremal) point x in a Baxter TLT, with the special case where x
is the only point in its column (respectively row) shown on the right.

Proposition 3.11. In a Baxter TLT T , consider a column-extremal (respectively
row-extremal) point x and its column-ancestor (respectively row-ancestor) y. Denote
by a the label of x and by b the label of y. Then ba (respectively ab) is a factor of
σ = ΦB(T ) and forms an ascent (respectively descent) in σ.

Proof. First, we will see that the cell immediately to the left of (respectively above)
x has iso-label b. Lemma 3.9 will then ensure that ba (respectively ab) is a factor
of σ. The claim we actually prove is a bit more general: it states that all the cells
in the rectangle extending from y to the cell immediately to the left of (respectively
above) x have iso-label b. (See Figures 12 and 13.)

Assume that x is a column-extremal point and that y is its column-ancestor, and
consider the rectangle extending from y to the cell immediately to the left of x. This
case is illustrated in Figure 12. For the cells of the top row of this rectangle, our
claim follows easily from the third case defining the propagation of the iso-labels,
since such cells have no point of T above them (or a pattern · •• • would be created).
It is just as easy for the cells of the leftmost column of this rectangle, for which the
second case of the propagation rule applies, since they have no point of T to their

left (or a pattern
· ••• would be created). For the remaining cells of this rectangle,

the last case of propagation rule applies, all together proving our claim.

The case where x is a row-extremal point and y is its row-ancestor is handled
similarly, as shown by Figure 13.
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Finally, the parent of any point x in an TLT has a label smaller than the one of
x, and so do all ancestors of x. This proves that ba (respectively ab) is an ascent
(respectively descent) of σ.

b

a

. . . b

.

.

.

b

.

.

.

. . .

.

.

.

b

b . . . b b a. . . b b a

Figure 12: Propagation of the iso-label of the column-ancestor of a column-extremal
point, in all possible configurations.

b

a

.

.

.

b

. . . b

.

.

.

.

.

.

. . . b

b

.

.

.

b

b

a

.

.

.

b b

a

Figure 13: Propagation of the iso-label of the row-ancestor of a row-extremal point,
in all possible configurations.

Corollary 3.12. For a Baxter TLT T , all the ascents and descents of σ = ΦB(T )
are those described in Proposition 3.11.

Proof. Denote by n the common size of T and σ. From Definition 2.8, T has in
total n + 1 rows and columns, so that there are n − 1 distinct pairs (x, y) where x
is a column-extremal (respectively row-extremal) point and y is its column-ancestor
(respectively row-ancestor). Proposition 3.11 then gives n − 1 distinct factors of
length 2 in σ, which are either ascents or descents as described in Proposition 3.11,
so that the ascents and descents of σ are completely described.

3.4.2 Left-to-right minima

Recall that a left-to-right minimum of a permutation σ is an element σ(i) such that
σ(j) > σ(i) for all j < i.

Proposition 3.13. Let T be a Baxter TLT, and denote by T` and Tr the Baxter
TLTs defined in Corollary 2.11 (pp.32). Let σ = ΦB(T ), and decompose σ around
its minimum value as σ = σ`1σr. The permutations ΦB(T`) and ΦB(Tr) are order-
isomorphic to the sequences σ` and σr respectively.
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Proof. The claim obviously holds when T` or Tr is empty, so assume they are not.

Notice first that the points of T` (respectively Tr) may be equipped with two
different labelings: one labeling is inherited from the labeling of the TLT T , and
one is its own labeling as TLTs. These are not identical, but by construction, they
are “order-isomorphic” (that is to say, the comparison between the labels of any two
points is the same in both labelings).

Now, both labelings may be propagated following the rules of propagation of the
iso-labeling, yielding two order-isomorphic labelings of the cells of T` (respectively
Tr).

To conclude, it is enough to prove that σ` (respectively σr) is the word that is
read along the southeast border of T` (respectively Tr), in the iso-labeling propagated
from the original labeling of T . And this claim holds because all cells in the southeast
block identified by Corollary 2.11 are crossings, and because the iso-labels of crossings
are inherited following northeast-southwest diagonals.

Corollary 3.14. Let T be a Baxter TLT, and let σ = ΦB(T ). The left-to-right
minima of σ are the labels of the points of the leftmost column of T .

Proof. It follows easily from Proposition 3.13 by induction.

Given T , denote by T` and Tr the Baxter TLTs defined in Corollary 2.11. De-
compose also σ as σ`1σr like in the statement of Proposition 3.13. The claim clearly
holds when T` is empty: indeed, the only point of T in the first column is the root
of T , labeled by 1, and σ starts with 1. If T` is not empty, the left-to-right minimal
of σ are those of σ` and 1. Induction ensures that the left-to-right minima of σ` are
the labels of the points in its first column. And 1 is the label of the root of T , which
is the only point in the first column of T that is not in the first column of T`.

4 Bijection with packed floorplans

This section is dedicated to combinatorial objects that we call packed floorplans
(PFP). These are new objects, but they are strongly and bijectively connected to
mosaic floorplans, which have already been studied [1, 28, 34]. As a consequence,
PFPs are enumerated by Baxter numbers. The aim of this section is to construct a
simple size-preserving bijection ΦF between PFPs and Baxter TLTs.

We first give the definition of PFPs (postponing to the Appendix the proof that
they can be seen as canonical representatives of the previously studied mosaic floor-
plans). The construction of ΦF is presented in Subsection 4.1, as well as the con-
struction of ΨF , later shown to be the inverse of ΦF . Even if the definition of ΦF

is simple, the proof that it is indeed a bijection is rather technical. It requires a
few more properties of TLTs and PFPs, which are presented in Subsection 4.2. This
allows to prove that ΦF and ΨF are well-defined (in Subsection 4.3) and inverses of
each other, implying that ΦF is indeed a bijection (Subsection 4.4).



J.-C. AVAL ET AL. / AUSTRALAS. J. COMBIN. 86 (1) (2023), 24–75 45

Definition 4.1 (Packed floorplans). A packed floorplan (PFP) of size (k, `) is a
partition of a k× ` rectangle (i.e. a rectangle of height k and width `) into k+ `− 1
rectangular tiles whose sides have integer lengths, and such that the pattern is
avoided, meaning that: for every pair of tiles (t1, t2), denoting (x1, y1) the coordinates
of the bottom rightmost corner of t1 and (x2, y2) those of the top leftmost corner of
t2, it is not possible to have both x1 ≤ x2 and y1 ≥ y2.

The set of packed floorplans of size (k, `) will be denoted by F(k,`), and we set:
Fn = tk+`−1=nF(k,`).

(a) Five packed floorplans.

(b) These seven are not packed floorplans.

Figure 14: Some examples and counterexamples of PFPs.

Some examples and counter-examples of PFPs are provided by Figure 14, and
Figure 15 shows all the packed floorplans of size 4. These PFPs are new combinatorial
objects, but they are in size-preserving bijection with mosaic floorplans [1]. Indeed,
as shown in the Appendix (see Proposition A.1), mosaic floorplans are equivalence
classes of objects, and PFPs are canonical representatives of mosaic floorplans.

4.1 Defining the applications ΦF and ΨF

We shall construct an application ΦF : Tn → Fn (postponing the proof that the image
set is indeed Fn to Subsection 4.3). More precisely, we define ΦF : T(k,`) → F(k,`),
for all k, `. All that is needed to define ΦF is the numbering of the points of TLTs
induced by the procedure RemovePoint, and reviewed in Section 2.

Let us consider T ∈ T(k,`). As noticed earlier, T contains n = k + ` − 1 points.
These may be labeled by the integers in {1, . . . , n} according to the insertion proce-
dure of [3], as explained in Section 2. We shall construct ΦF(T ) as follows.

We start from a rectangular k × ` box. We identify the unit cells of this box
with the cells of T . For each label j = n, . . . , 1, we iteratively add a tile, the largest
possible, whose top leftmost cell c is the one containing the point labeled by j in
T (this tile is also said to have label j). To build this largest possible tile, we only
have to draw two segments: one vertical and one horizontal, each starting from the
cell c and going respectively to the South and to the East. We denote the result by
ΦF(T ). See Figure 16 for an example.

Similarly, we can number the tiles of any PFP F , and use this numbering to
define an application ΨF : Fn → Tn (postponing again the proof that the image set
is indeed Tn to Subsection 4.3).
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F 1 = , F 2 = , F 3 = , F 4 = ,

F 5 = , F 6 = , F 7 = , F 8 = ,

F 9 = , F 10 = , F 11 = , F 12 = ,

F 13 = , F 14 = , F 15 = , F 16 = ,

F 17 = , F 18 = , F 19 = , F 20 = ,

F 21 = , F 22 = .

Figure 15: The 22 packed floorplans of size 4.

T = =
1 4 5 8

2 3 6

7

and ΦF(T ) =

Figure 16: The bijection ΦF .

Definition 4.2. Let F ∈ Fn. We define the tile-order of F as the labeling of the
tiles obtained in the following way. We label the tiles from n to 1. After assigning
the labels n, . . . , k + 1, we label with k the tile which is the rightmost among the
unlabeled tiles whose bottom border does not touch any unlabeled tile (equivalently,
its bottom border touches only labeled tiles or the bottom border of the bounding
rectangle).

The notion of tile-order is illustrated in Figure 17 (left).

Let F ∈ Fn. We associate to each tile a label k ∈ {1, . . . , n} using the tile-order,
and we will construct a TLT T = ΨF(F ) with the pointed cells at the same positions
as the northwest corners of the tiles of F . Let us denote by U the object under
construction. We start with U = ∅, and for k = 1, . . . , n:

1. we add a pointed cell to U at the same position as the northwest corner of the
tile labeled by k in F ;



J.-C. AVAL ET AL. / AUSTRALAS. J. COMBIN. 86 (1) (2023), 24–75 47

Figure 17: A PFP F with its tile-order, and its image under ΨF .

2. we complete in such a way that the shape of U is still a Ferrers diagram (that
is we add empty cells to the northwest of the added pointed cell);

3. if the pointed cell labeled k is to the left of the pointed cell labeled k − 1, we
place a ribbon from k to k − 1.

After dealing with n, we let T := U . This construction is illustrated in Figure 17
(right).

Our goal in the rest of this section is to prove Theorem 4.3 below. An essential
step in its proof will be to show that the labeling of the points of a Baxter TLT and
the tile-order of the corresponding PFP are essentially the same (see Lemma 4.11).

Theorem 4.3. For any n, ΦF is a bijection between Tn and Fn, whose inverse is ΨF .

4.2 Some properties of packed floorplans

Some properties of PFPs follow easily from Definition 4.1. We first introduce nota-
tion. A T-junction in a PFP F is a point where the sides of the tiles of F intersect
in one of the following configurations: , , and . A segment of a PFP F
is a union of sides of tiles of F which forms a (either horizontal or vertical) segment
and which is maximal for this condition. Figure 18 shows a PFP and its segments.
A segment which is not a side of the bounding rectangle is called internal.

All the horizontal segments of this PFP are (from bottom to top)
[(0, 0), (2, 0)], [(0, 1), (2, 1)], [(1, 2), (2, 2)], [(0, 3), (2, 3)] and [(0, 4), (2, 4)].
All its vertical segments are (from left to right) [(0, 0), (0, 4)], [(1, 1), (1, 3)]
and [(2, 0), (2, 4)].

Figure 18: A PFP of size (4, 2) and its segments.

Observation 4.4. Let F be a PFP.

(i) Every corner of any of the tiles of F either is a corner of the bounding rectangle
of F or forms a T-junction.

(ii) Every horizontal (respectively vertical) line of integer coordinate included in
the bounding rectangle of F contains exactly one segment of F .
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(iii) Every horizontal (respectively vertical) line of integer coordinate included in
the bounding rectangle of F (except the bottom (respectively right) boundary
of the bounding rectangle of F ) contains the top left corner of at least one tile
of F .

Proof. For the first item, assume there exists a corner of a tile which neither is a
corner of the bounding rectangle of F nor forms a T-junction. So, at this corner,
either two or four tiles meet. In the first (respectively second) case, there exists then

two tiles t and t′ placed as
t

t
′

, up to rotation (respectively
t

t
′

). In both

cases, we derive a contradiction. For the first case, t creates an inner corner in t′,
hence t′ is not of rectangular shape. In the second case, the pair of tiles (t′, t) forms
an occurrence of the pattern , which should be avoided.

We prove the second item in two steps. First, we show that each line contains at
most one segment. This is clearly true for the boundaries of the bounding rectangle,
which are obviously segments themselves. Consider an internal line, that is to say
a line which is not a boundary of the bounding rectangle, and assume it contains
at least 2 segments s and s′. If s and s′ lie on the same horizontal (respectively
vertical) line, with s to the left of (respectively above) s′, then because of (i) the

right (respectively bottom) end of s is a T-junction (respectively ) and the

left (respectively top) end of s′ is a T-junction (respectively ). Consider the

tile t whose bottom right corner is the right (respectively bottom) end of s, and the
tile t′ whose top left corner is the left (respectively top) end of s′. The pair (t, t′)
forms a pattern , a contradiction.

Next, we show that a PFP F of size (k, `) contains exactly k + ` + 2 segments.
Since this is also the number of lines considered in (ii), it follows from our first
step that each of them contains exactly one segment. Denote by nc (respectively
nt, nj, ns) the number of corners of tiles (respectively of tiles, of T-junctions, of
segments) of F . Each tile having 4 corners, we have 4nt = nc. Also, from item (i),
and since there are exactly two corners of tiles at any T-junction, nc = 2nj + 4. It
follows that nj + 2 = 2nt. On the other end, every horizontal (respectively vertical)

internal segment connects T-junctions of the form and (respectively

and ). And every T-junction is an end of a segment. It follows that nj is twice
the number of internal segments, which is ns− 4 taking into account the boundaries
of the bounding rectangle of F . So, nj = 2(ns − 4). Combining this equality with
nj + 2 = 2nt obtained earlier gives nt = (ns − 4) + 1 = ns − 3. Since F is a PFP
of size (k, `), it contains nt = k + ` − 1 tiles, and it follows that ns = k + ` + 2 as
wanted.

Finally, the third item follows easily from the second one. Indeed, every line as in
(iii) contains one segment. If this segment is horizontal (respectively vertical), then
it is the support of the top (respectively left) side of at least one tile t, so it contains
the top left corner of t.
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Next we derive a property on the (tree) structure of packed floorplans. From now
on we will use the term corner for “top leftmost corner” (i.e., northwest corner).

Lemma 4.5. Let F be a PFP. The set of (top leftmost) corners of the tiles of F
has a tree structure: for any corner c (different from the top leftmost corner of the
bounding box), there exists another corner c′ either above c or to its left, but not both.

Proof. Let us consider the corner c of a tile t, different from the top leftmost tile of
F . By Observation 4.4 (i), the corner c has to be either a or a . In the
first case, the tile above t with common left side has its corner above c. If there
were a corner c1 to the left of c, then there would exist another segment supported
by the same line as the top edge of c, in contradiction with Observation 4.4 (ii).
This proves our statement in the first case, and a symmetric argument applies to the
second case.

4.3 ΦF and ΨF are well-defined

Proving that ΦF is indeed an application from T(k,`) to F(k,`) actually does not require
the above properties of PFPs. However, we make use of them in proving the “inverse
statement” that ΨF is an application from F(k,`) to T(k,`).

Proposition 4.6. The mapping ΦF : T(k,`) → F(k,`) is well-defined.

Proof. Let T ∈ T(k,`). Applying the above described construction, we obtain a tiling
of a k × ` rectangle by n = k + ` − 1 tiles. So, to check that the mapping ΦF is
well-defined, we are just left with checking that at each step the tile we construct is
actually of rectangular shape, and that the pattern is avoided.

First assume that some tile is not of rectangular shape, i.e., has an inside corner
(note that it has to be an inside southeast corner because the tiles are added the
largest possible). Denote by q the point of T in the top leftmost corner of this tile,
c the point of T that creates the inside corner, and p the parent of c in T (see
Figure 19(a)). Denoting (X(z), Y (z)) the Cartesian coordinates of any point z, this
means that either X(c) = X(p) and Y (c) < Y (p), or Y (c) = Y (p) and X(c) > X(p).
In the former (respectively latter) case, we claim that Y (q) < Y (p) (respectively
X(p) < X(q)). Indeed, assuming the contrary, the insertion procedure of [3] would
insert the points q, p, and c in this order, contradicting that c is an inside corner of
a tile. From these inequalities, we deduce that the points q, p, and c form a pattern
· ••• (respectively · •• • ) contradicting that T ∈ T(k,`).

Suppose now that there are two tiles t1 and t2 that form a pattern . Let
us choose this pair such that the distance between the bottom rightmost corner of
t1 and the top leftmost corner of t2 is minimal. By construction, there is a point
c of T in the top leftmost corner of t2. Also, because t1 is constructed as large as
possible, there is a point q (respectively u) of T immediately outside t1 along its
bottom (respectively right) border (see Figure 19(b)).
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c

p

q

(a) Y (q) < Y (p), or c would not
be an inside corner.

c

p
q

ut1

t2

(b) Y (q) < Y (p), or (t1, t2) would
not be minimal.

Figure 19: Illustrating the proof by contradiction that ΦF (T ) ∈ F(k,`).

Denote by p the parent of c in T . We have X(c) = X(p) and Y (c) < Y (p), or
Y (c) = Y (p) and X(c) > X(p). In the former (respectively latter) case, assume that
Y (p) ≤ Y (q) (respectively X(p) ≥ X(u)). Then t1 and the tile whose top leftmost
corner is p would form a pattern , contradicting the minimality of (t1, t2). Hence,
we have Y (p) > Y (q) (respectively X(p) < X(u)), so that p, q, c (respectively p, u, c)

form a pattern
· ••• (respectively · •• • ), contradicting that T ∈ T(k,`).

Proposition 4.7. For any F ∈ Fn, ΨF(F ) is in Tn.

Before proving this proposition, we start with an observation.

Observation 4.8. In the computation of ΨF(F ), after dealing with the tiles labeled
1 to j, the latest pointed cell added (i.e., the pointed cell with label j for the tile-
order) is the rightmost among the pointed cell without any cell below it.

Proof. Recall the construction of ΨF from Subsection 4.1. Given the insertion of
ribbons in the last item of this construction, a straightforward induction allows to
prove the claimed observation.

Proof of Proposition 4.7. Let F ∈ Fn, and T := ΨF(F ). By construction, the shape
of T is a Ferrers diagram. Because the position of the pointed cells in T corresponds
to the position of the corners in F , Lemma 4.5 implies that any pointed cell (with
the exception of the root) has either a pointed cell above it or to its left but not both.
Observation 4.4(iii) implies that any row or column contains at least one pointed
cell. Since the sizes clearly match, T is a TLT of size n.

To conclude the proof, it is enough to show that if T contains · •• • or
· ••• , then F

contains . So, assume T contains
· ••• (the other case being similar). Consider an

occurrence of
· ••• in T where the distance between the two vertically aligned points

of this occurrence is minimal. This implies that the topmost of these two points
(denoted p) is the parent of the bottommost one (denoted c). By assumption, we
know that there exists a point q to the left of p and c, which lies vertically between
these two points. Consider the topmost q among all such points. Denote by t1 the
tile of F whose bottom side is supported by the same segment as the top side of the
tile containing q. And denote by t2 the tile containing c. This situation is displayed
in Figure 20. Then, t1 and t2 form a pattern (since the right side of t1 needs to
be to the left of p).
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c

p
q

t1

t2

Figure 20: Proof of Proposition 4.7: if T contains a forbidden pattern then F also
does.

4.4 Concluding the proof that ΦF is a bijection

Recall that we defined an order (called tile-order) on the tiles of PFPs in Subsec-
tion 4.1. A key step in proving Theorem 4.3 will be to show that this order coincides
with the labeling of the points of the corresponding TLT. To this effect, it is useful
to give an alternative description (called point-order) of the labeling of the pointed
cells in a (Baxter) TLT, which is easily seen to be equivalent to the one given in
Section 2.

Definition 4.9. Let T ∈ Tn. We define the point-order of T as follows. We label
the pointed cells from n to 1. After assigning the labels n, . . . , k + 1, we label with
k the point which is the rightmost among those with no cells below it. If there is a
cell to its right, we consider the ribbon of cells up to encountering a pointed cell, and
we declare all cells of this ribbon “dead”. And in any case, we also declare “dead”
the newly labeled pointed cell, and its empty row or column. Dead cells should
be ignored (i.e., treated as if they did not exist) in later iterations of this labeling
procedure.

We start with a simple but useful observation on the labels in TLTs.

Observation 4.10. For a given pointed cell c with label j, any pointed cell c′ which
is weakly to the right and below c has a label j′ > j.

We can now turn to the proof (with the following two lemmas) that point-order
and tile-order coincide.

Lemma 4.11. Let T ∈ Tn and F = ΦF(T ). When identifying the pointed cells of T
and the corners of the tiles of F , the point-order of T coincides with the tile-order of
F .

Proof. We shall prove the following statement by induction on k from n to 1:

In the computation of F = ΦF(T ), after dealing with the points of T
having point-labels n, . . . k+1, the tile associated with the point of T with
point-label k is the rightmost among the unlabeled tiles whose bottom
border does not touch any unlabeled tile.
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Indeed, this ensures that at each step k, the point of T with point-label k corresponds
to the tile of F with tile-label k, and therefore proves the lemma.

We first prove our claim in the case k = n. When the tile associated with the
point of T having point-label n is added, by maximality of the added tile, it reaches
the bottom-right corner of the bounding rectangle of F , which obviously implies our
claim.

We next examine the case k = n− 1 (as preparation for the generic case). First
observe that the point of T of point-label n − 1 cannot lie above and to the left of
the point of label n (see hatched area in Figure 21, left), or the corresponding tile
would not be of rectangular shape, contradicting Proposition 4.6. We distinguish
two subcases depending on whether this point is above and to the right of the point
of label n (case (a)), or to the left and below it (case (b), both displayed in Figure 21,
left).

n

(a)

(b)

n

n− 1

x

k

Figure 21: Proof of Lemma 4.11.

In case (a), the tile associated with the point of point-label n− 1 being maximal,
it reaches the topright corner of the tile labeled n, and therefore is the rightmost
among the unlabeled tiles whose bottom border does not touch any unlabeled tile.

In case (b) (and this is illustrated by Figure 21, middle), we want to make sure
that there does not exist any point of T , located above and to the right of the point
of label n, and whose tile reaches the topright corner of the tile labeled n. Indeed,
only such a point could give rise a different tile of F which would receive the tile-label
n− 1. So let us assume that such a point, x, of T exists.

We know that x does not receive the point-label n − 1. Since it is to the right
of the point of T receiving this point-label, it is necessary that the cell below x is
an empty cell of T . In its row, this empty cell has no point of T to its right (by
assumption on x), and therefore must have a point of T to its left (its row being
non-empty). This shows that this empty cell is a crossing of T . By Observation 2.7,
it follows that this empty cell belongs to a ribbon of T . Our next step is to show
that the point of T at the other extremity of this ribbon (denoted y) is the point of
label n.

Assume first that y is located in a column to the left of the column of the point
labeled n. It means that a cell of the ribbon we are considering belongs to the column
of the point labeled n. This cell cannot be below the point labeled n (otherwise it
would not have received the point-label n). And it cannot be above the point labeled

n, since a crossing above this point implies the existence of a forbidden pattern
· ••• .
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So in this case we reach a contradiction.

Assume next that y lies in the column of the point labeled n or further to the
right, but is different from the point labeled n. Necessarily, y lies above the point
labeled n (which has no point to its right and below, see e.g. Observation 4.10). Also,
by Observation 2.4, y has point-label one larger than the point-label of x. Therefore,
in the construction of F = ΦF(T ), the tile associated with y should be placed before
the tile associated with x. This contradicts that the tile associated with x reaches
the topright corner of the tile labeled n (instead, in this situation, the tile associated
with y should extend until this corner).

Therefore, the point y at the left extremity of the ribbon whose right extremity
is x is the point of label n. Observation 2.4 then implies that x has point-label n−1,
which brings a contradiction. This concludes our analysis in case (b), proving that
there exists no point x as above, and therefore that the tile associated with the point
labeled by n− 1 also has tile-label n− 1.

The case of generic k ≤ n− 1 is similar to the case k = n− 1. Figure 21 (right)
represents the construction of F = ΦF(T ) after the placement of the tiles associated
with points labeled n to k + 1. The gray area represents the tiles already in place.
The northwest boundary of this area is determined by a sequence of points c1, . . . , ch
(h = 6 on the picture), which are those having point-label at least k+1 and no point
with such labels above or to the left of them.

First, we note that the point of T labeled by k cannot lie above and to the
left of any ci. Indeed, the tile associated with the point labeled k would not be of
rectangular shape in this case. In Figure 21 (right), the hatched area indicates this
area where the point labeled by k cannot lie.

So, the point labeled by k must lie in some “white cell” of Figure 21 (right).
To ensure that the tile associated with the point labeled k receives the tile-label k,
similarly to the previous case (k = n− 1), it is enough to show that in each “white
cell” to the right of that containing the point labeled k there is no point of T whose
tile reaches the bottom-right corner of this “white cell”.

To prove this claim, we proceed as in case (b) above. More precisely, assuming
that a point x as above exists, we consider the first point ci to the left of x (this ci
plays the role of the point labeled by n in case (b) above), and we show that there
exists a ribbon from x to ci. This part of the proof is identical to what was done in
case (b).

The label of ci being at least k+ 1, Observation 2.4 shows that x has point-label
at least k. On the other hand, x has point-label less than k (since it is a point not yet
used for the construction of F when placing the tile associated with the point labeled
by k). This gives the contradiction showing that no such x exists. And therefore,
it guarantees that the point labeled by k also has tile-label k, which concludes the
proof.

Lemma 4.12. Let F ∈ Fn and T = ΨF(F ). When identifying the pointed cells of
T and the corners of the tiles of F , the point-order of T coincides with the tile-order
of F .
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Proof. This is a consequence of the definition of ΨF and can be proved by induction.
Note first that Observation 4.8 (applied for j = n) ensures that the tile of F with
label n and the point of T with label n coincide.

Now, let us suppose that the point-order in T coincides with the tile-order of F
for labels n, . . . , k. We shall prove that they also coincide for label k − 1.

Let us consider the TLT, denoted T̂ , obtained by removing the cells of labels
n, . . . , k from T , with the procedure RemovePoint. On the other hand, consider the
object F̃ obtained from F by keeping only the tiles of tile-label strictly less than k.
Observe that F̃ is not a PFP, since it is not of rectangular shape. We can nevertheless
apply to F̃ the same construction as in the definition of ΨF , obtaining a TLT T̃ . By
definition of ΨF , we have that T̃ = T̂ . Consider the tile labeled by k−1 in F̃ and the
corresponding pointed cell in T̃ , denoted c. (So, c has label k− 1 for the tile-order.)
Because of Observation 4.8, c is the rightmost of the pointed cell without any cell
below it. In other words, it is the special point of T̃ . Thus it gets the label k− 1 for
the point-order, as required.

We shall now conclude the proof of Theorem 4.3.

Proof of Theorem 4.3. We can now conclude that the two applications ΨF and ΦF
are inverse.

Indeed, let us consider T ∈ Tn. We have proved that ΦF(T ) is in Fn, thus we may
define T ′ = ΨF(ΦF(T )). By definition of ΨF and ΦF , the pointed cell are the same
in T and T ′. Moreover, the point-order of these pointed cells coincide (Lemmas 4.11
and 4.12). Hence the ribbon configuration is the same in T and T ′, which implies
that T = T ′. This proves that ΨF ◦ ΦF = IdTn .

We prove in the same way that ΦF ◦ΨF = IdFn .

5 Bijection with non-intersecting lattice paths

In this section, we show that Baxter TLTs can also be put in bijective correspondence
with triples of non-intersecting lattices paths. Let us start with the definition these
objects and a few examples.

Definition 5.1 (Triples of non-intersecting lattice paths). Atriple of non-intersecting
lattice paths of size n is a set of three lattice paths, with unitary N = (0, 1) and
E = (1, 0) steps, that never meet, which respectively start at (1, 0), (0, 1) and (−1, 2)
and end at (n− i, i), (n− i− 1, i+ 1) and (n− i− 2, i+ 2) for some i ∈ [0..(n− 1)]
(thus each of the three paths has n− 1 steps).

Let us denote by Pn the set of triples of non-intersecting lattice paths of size n.

Figure 24 (p. 57) (right) shows an example of triple of non-intersecting lattice
paths of size 18, and Figure 22 shows all triples of non-intersecting lattice paths of size
4. On these figures, the extremities of the paths are indicated by circles; an additional
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π1 = , π2 = , π3 = ,

π4 = , π5 = , π6 = ,

π7 = , π8 = , π9 = ,

π10 = , π11 = , π12 = ,

π13 = , π14 = , π15 = ,

π16 = , π17 = , π18 = ,

π19 = , π20 = , π21 = , π22 = .

Figure 22: The 22 triples of non-intersecting paths of P4.

E (respectively N) step has been represented at the beginning (respectively end) of
the middle and lower paths. The reason for this choice will appear clearly later.

From the general techniques developed in [19, 24] (and applied to the case of
interest to us in [30]), we know that triples of non-intersecting lattice paths are
enumerated by Baxter numbers. Our size-preserving bijection, denoted ΦP , between
these objects and Baxter TLTs is presented in Subsection 5.1. It is obtained as
a generalization of a bijection between binary trees and pairs of non-intersecting
lattice paths, denoted ϕ in the following, and also defined in Subsection 5.1. The
proofs that ϕ and ΦP are bijections are given in Subsection 5.2. A last subsection
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is dedicated to some refined enumerative results, about triples of non-intersecting
lattice paths and Baxter TLTs, but also twisted Baxter permutations and floorplans
(see Corollaries 5.7 and 5.8).

5.1 A bijection between Baxter TLTs and triples of non-intersecting lat-
tice paths

As announced, the bijection ΦP extends a bijection between binary trees and pairs
of non-intersecting lattice paths, which we describe below. In our context, a pair of
non-intersecting lattice paths of size n is a pair of lattice paths with unitary N and
E steps, which never meet, starting at (1, 0) and (0, 1) and ending at (n − i, i) and
(n− i−1, i+ 1) for some i ∈ [0..(n−1)] (thus each of the two paths has n−1 steps).

To any binary tree B, we associate a word w(B) on the alphabet {L`, Lr, E`, Er}
as follows. We complete B by leaves, i.e., we compute the complete binary tree Bc

whose internal nodes form the tree B. We perform the depth first traversal of Bc,
starting on the left. We start with an empty word w = ε. Whenever a left leaf
(respectively right leaf, left internal edge, right internal edge) is first encountered,
we append L` (respectively Lr, E`, Er) to the end of w (except for the first and the
last leaves of Bc, in which case we do nothing). When the traversal of Bc is over, we
set w(B) = w.

We define w1(B) from w(B) by deleting the letters L` and Lr and by replacing
letters E` (respectively Er) by N (respectively E). Similarly, we define w2(B) from
w(B) by deleting the letters E` and Er and by replacing letters L` (respectively Lr)
by E (respectively N). Finally, we set ϕ(B) = (w1(B), w2(B)). Our notational con-
vention is that the word w1(B) (respectively w2(B)) designate the upper (respectively
lower) path of the pair, starting at (0, 1) (respectively (1, 0)).

Note that treating the first and last leaves of Bc like all others does not change
much in the pair of words produced: it only results in replacing w2(B) by E·w2(B)·N .
In figures, we usually indicate those additional steps, before and after the circles
marking the extremities of the paths.

B = and ϕ(B) =

Figure 23: On the left, a binary tree B is shown in blue, and the leaves added to
obtain Bc are drawn in green. On the right, the two paths w1(B) and w2(B) that
define ϕ(B) are shown respectively in blue and green.

Figure 23 provides an example of this construction. For this particular tree
B, we have w(B) = E`E`LrErE`L`LrErL`ErL`LrErE`E`L`LrLr, so that w1(B) =
NNENEEENN and w2(B) = NENEENENN .

Notice that ϕ has already been defined in [16], where it is stated that it provides an
alternative description of the bijection of [14] between binary trees and parallelogram
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polyominoes. The following proposition follows directly from this statement, which
is however not proved in [16]. For this reason, we prefer to give a proof of it in
Subsection 5.2.

Proposition 5.2. ϕ is a bijection between binary trees having n nodes and pairs of
non-intersecting lattice paths of size n.

Now we shall extend ϕ to a bijection ΦP between Tn and Pn.

To any TLT T ∈ Tn, we may associate a binary tree B(T ) with n nodes, as
explained in Section 2 (see also an example in Figure 24, left). We define ΦP(T ) =
(wtop(T ), wmiddle(T ), wbottom(T )) as follows:

• wtop(T ), from (−1, 2) to (n− i− 2, i+ 2), is w1(B(T )).

• wmiddle(T ), from (0, 1) to (n− i− 1, i+ 1), is w2(B(T )).

• wbottom(T ), from (1, 0) to (n− i, i), is the southeast border of T , except the first
and the last edge.

Figure 24 illustrates this construction. Note that the TLTs of Figures 24 and 5
(right) (p. 32) differ only by their underlying Ferrers diagrams.

T = and ΦP(T ) =

Figure 24: The bijection ΦP .

Theorem 5.3. For any n, ΦP is a bijection between Tn and Pn.

5.2 Proofs that ϕ and ΦP are bijections

We start by proving that ϕ is a bijection, as claimed by Proposition 5.2.

Proof of Proposition 5.2. Denoting Cn = 1
n+1

(
2n
n

)
the n-th Catalan number, we know

that there are Cn binary trees with n nodes as well as Cn pairs of non-intersecting
lattice paths of size n [19, 24]. Therefore, to prove that ϕ is a bijection as claimed, it is
enough to prove that the image of ϕ is included in the set of pairs of non-intersecting
lattice paths, and that ϕ is injective.

Let B be a binary tree with n nodes. We want to prove that ϕ(B) is a pair of non-
intersecting lattice paths of size n. For this purpose, let us define the correspondence
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(?) between the left (respectively right) internal edges and the right (respectively left)
leaves of Bc (except the first and the last leaves) as follows: to any left (respectively
right) internal edge whose lower node is x, associate the right (respectively left) leaf
that is reached when following (in Bc) only right (respectively left) edges from x until
a right (respectively left) leaf is reached. A simple observation, which is however a
key fact, is that this correspondence is a bijection. This is illustrated in Figure 25.

x

x
⋆ and

x

x
⋆

2

1

4

3

5

6

9

8

7

2
⋆

3
⋆

4
⋆

5
⋆

6
⋆

1
⋆

7
⋆

9
⋆

8
⋆

Figure 25: The correspondence (?): its definition (left) and an illustration with the
example of Figure 23 (right). On the right, the correspondence is indicated by a
labeling of the nodes by integers: the leaf labeled by i is in correspondence with the
internal edge whose lower node is labeled by i.

Now let us denote by i ∈ [0..(n−1)] the number of N steps of w1(B). Since w1(B)
starts at (0, 1), it ends at (n − i − 1, i + 1). Because (?) is a bijection, w1(B) and
w2(B) have the same number of N (respectively E) steps, so that w2(B), starting at
(1, 0), ends at (n− i, i).

Next, we claim that w1(B) is always strictly above w2(B). To prove this claim,
let us consider the coordinates of the points visited by w1(B). They are of the form
(number of right edges visited, 1+ number of left edges visited) when we consider all
instants of the depth first traversal of Bc. Similarly, the coordinates of the points
of w2(B) are of the form (1+number of left leaves visited, number of right leaves
visited) (always leaving aside the first and last leaves). So the claim will follow
if we prove that at any instant of the traversal of Bc, if the number of left leaves
visited (including the first one) is equal to the number of right edges visited, then
the number of left edges visited is larger than or equal to the number of right leaves
visited. This is easily proved using the correspondence (?) between leaves and edges
of B. Indeed, in the traversal of B, any left (respectively right) edge is visited before
the corresponding right (respectively left) leaf.

It remains to prove that ϕ is injective. Consider B and B′ two different binary
trees with n nodes. Of course, the words w(B) and w(B′) encoding the depth-first
traversals of Bc and B′c are different. We prove that w(B) 6= w(B′) implies that
ϕ(B) 6= ϕ(B′).

Consider the first time w(B) and w(B′) differ: w(B)j 6= w(B′)j while w(B)k =
w(B′)k for all k < j. The possible values for the pair of letters (w(B)j, w(B′)j)
(up to the order) are described in the following table, together with the subsequent
difference between ϕ(B) and ϕ(B′). In this table, we denote by i1 (respectively
i2) the number of letters Er or E` (respectively Lr or L`) among the first j letters
of w(B). Therefore, the letter w(B)j corresponds either to w1(B)i1 or to w2(B)i2
(depending on whether w(B)j ∈ {Er, E`} or w(B)j ∈ {Lr, L`}).
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w(B)j w(B′)j Difference Fact(s) used
E` Er w1(B)i1 = N and w1(B

′)i1 = E (obvious)
E` L` w1(B)i1 = N and w1(B

′)i1 = E (a)
E` Lr w1(B)i1 = N and w1(B

′)i1 = E (a)
Er Lr w2(B)i2 = E and w2(B

′)i2 = N (b)
Er L` In this case, w(B)j−1 6= w(B′)j−1, (c) and (d)

contradicting the minimality of j.
Lr L` w2(B)i2 = N and w2(B

′)i2 = E (obvious)

All these cases follow from the following facts:

(a) When the traversal reaches a leaf, then the next edge to be discovered is a right
edge.

(b) When the traversal reaches an edge, then the next leaf to be discovered is a
left leaf.

(c) In any depth-first traversal word w(B), any letter Er follows a letter Lr or L`.

(d) In any depth-first traversal word w(B), any letter L` follows a letter Er or E`.

Recall from Corollary 2.10 that any binary tree is the underlying tree of a unique
rectangular Baxter TLT. This fact will be useful below both for proving that ΦP is
well-defined and that it is a bijection between Tn and Pn, as claimed by Theorem 5.3.

Lemma 5.4. ΦP is well-defined, i.e., for any T ∈ Tn, ΦP(T ) is a triple of non-
intersecting lattice paths of size n.

Proof. From Proposition 5.2, we know that wtop(T ) and wmiddle(T ) are a pair of non-
intersecting lattice paths of size n. So the conclusion will follow if we prove that
wmiddle(T ) and wbottom(T ) also form a pair of non-intersecting lattice paths of size
n. This is an immediate consequence of the following claim (which we then prove):
E · wmiddle(T ) · N can also be interpreted as the southeast border of the thinnest
Ferrers diagram containing all the points of T (see Figure 24, left).

From Corollary 2.10, we know that there is a unique TLT T ′ of rectangular shape

avoiding the patterns · •• • and
· ••• whose underlying binary tree is B(T ). Moreover,

the proof of Corollary 2.10 provides a description of T ′. By uniqueness, the points
of T and T ′ are located in the same cells. Consequently, it is enough to show that
the southeast border of the thinnest Ferrers diagram containing all the points of T ′

is E · wmiddle(T ) ·N .

From the description of T ′ in the proof of Corollary 2.10, we see that the southeast
border of the thinnest Ferrers diagram containing all the points of T ′ is nothing but
the reading of the leaves of B(T ′)c in the depth-first traversal of B(T ′)c (with the
encoding E for a left leaf and N for a right leaf). By definition, E · wmiddle(T ) · N
describes the leaves of B(T )c that are visited in the depth-first traversal of B(T )c.
Because B(T ) = B(T ′), the conclusion follows.
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Proof of Theorem 5.3. Lemma 5.4 ensures that the image of Tn by ΦP is included
in Pn. In addition, from Theorem 3.3 and [20, for instance], the cardinality of Tn
is Baxn, and the same holds for Pn [30]. So it is enough to prove that ΦP is a
bijection. By Corollary 2.10, a Baxter TLT T ∈ Tn is uniquely characterized by
the pair (B(T ), wbottom(T )). Moreover, by Proposition 5.2, we may associate with
B(T ) the pair (wtop(T ), wmiddle(T )), and this correspondence is bijective. Therefore,
the correspondence between T ∈ Tn and (wtop(T ), wmiddle(T ), wbottom(T )) ∈ Pn is a
bijection.

5.3 Refined enumeration using the Lindström-Gessel-Viennot lemma

We derive easily from the Lindström-Gessel-Viennot lemma [19, 24] a refined enu-
meration of triples of non-intersecting paths, according to the parameters shown on
Figure 26. This is stated in Lemma 5.5. This yields a refined enumeration of Bax-
ter TLTs via ΦP (see Corollary 5.6), and subsequently of PFPs and permutations
avoiding 3− 14− 2 and 3− 41− 2 via ΦF and ΦB (see Corollaries 5.7 and 5.8).

n− k

r − 1

p− 1

s− 1

q − 1

k

Figure 26: Parameters for the refined enumeration of triples of non-intersecting paths
in Lemma 5.5.

Lemma 5.5. The number of triples of non-intersecting paths of size n such that each
path has k E steps and n− 1− k N steps, the upper path starts with r − 1 N steps
followed by an E step, and ends with p − 1 E steps preceded by a N step, and the
lower path starts with s − 1 E steps followed by a N step, and ends with q − 1 N
steps preceded by an E step (see Figure 26) is given by the determinant:

LGV (n, k, r, p, s, q) =

∣∣∣∣∣∣
(
n−1−r−p
k−p

) (
n−1−p
k−p

) (
n−1−s−p
k−s−p

)(
n−1−r
k

) (
n−1
k

) (
n−1−s
k−s

)(
n−1−r−q

k

) (
n−1−q
k

) (
n−1−s−q
k−s

)
∣∣∣∣∣∣ .
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Proof. This is a simple application of the results of [19, 24].

Corollary 5.6. The determinant LGV (n, k, r, p, s, q) also counts the number of Bax-
ter TLTs of size n, with k+1 columns, r points in the first column, and p−1 columns
to the right of the rightmost column containing at least two points4, and such that
the southeast border of the Ferrers diagram of the TLT starts with s horizontal steps
and ends with q vertical steps.

For example, the TLT T of Figure 24 has parameters n = 18, k = 10, r = 3,
p = 2, s = 5, and q = 2.

Proof. It can be easily checked that all parameters in Lemma 5.5 are translated on
TLTs through ΦP as stated in Corollary 5.6. For instance, the upper path of ΦP(T )
ends with exactly p − 1 E steps if and only if exactly the last p − 1 internal edges
of B(T ) in the depth-first search are right edges, which translates into exactly the
p− 1 rightmost columns of T containing a single point.

Corollary 5.7. The number of PFPs of size n, in a bounding rectangle of height
n − k and width k + 1, with r tiles whose left edge is supported by the left edge of
the bounding rectangle, and such that the rightmost vertical line that supports the left
edge of at least two tiles is at distance p from the right edge of the bounding rectangle
is
∑

q,s LGV (n, k, r, p, s, q).

Proof. It is enough to check that the parameters n, k, r and p in Corollary 5.6 are
translated on PFPs via ΦF as expressed in the statement of Corollary 5.7.

Because ΦF maps T(n−k,k+1) to F(n−k,k+1), we are only left with the interpretation
of the parameters r and p on PFPs. They follow easily from the description of
ΦF , since any point x of T is associated with a tile whose top-left corner is the cell
containing x.

Corollary 5.8. The number of twisted Baxter permutations of size n, with k ascents
and r left-to-right minima is

∑
p,q,s LGV (n, k, r, p, s, q).

Proof. Again, we simply check that the parameters n, k and r in Corollary 5.6 are
translated on twisted Baxter permutations via ΦB as announced.

Consider T ∈ Tn and σ = ΦB(T ) ∈ Bn. From Corollary 3.12, the number of
ascents in σ is the number of column-extremal points in T . Since there is one such
point in each column except the first, this solves the case of parameter k. From
Corollary 3.14, there is one left-to-right minimum for each point in the first column,
proving the statement for the parameter r.

Continuing our example, the TLT T of Figure 24 is sent by ΦF and ΦB to the
objects displayed in Figure 27, for which the parameters of Corollaries 5.7 and 5.8
are indeed n = 18, k = 10, r = 3 (and in addition p = 2 for the PFP).

4Necessarily, each of these p− 1 columns contains a single point.
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1 1 1 1 1 9 9 9 14 16 17

1 1 1 1 1 9 9 9 14 18 16

1 1 1 1 1 10 11 12 9

1 1 1 1 1 13 10 11 12

1 1 1 1 1 15 13 10 11

2 3 3 5 7

2 4 6 3 5

8 2 4 6 3

Figure 27: Images of the TLT of Figure 24.

6 Specializations of the bijections

The aim of this section is to study the restrictions of the three bijections ΦP , ΦF
and ΦB to a subfamily (denoted T̂ ) of Baxter TLTs. The definition of T̂ (Definition
6.1) comes from the underlying tree structure of TLTs. These restrictions, denoted
Φ̂P , Φ̂F and Φ̂B, provide bijections between T̂n and subclasses of Pn, Fn and Bn,
which we denote by P̂n, F̂n and B̂n. As we shall see, the family P̂n is well-known,
giving easy access to the enumeration of these restricted families, the definition of
F̂n involves a new type of constraint in floorplans, and the permutations of B̂n
are natural combinatorial objects (alternating permutations in Bn). In particular,
the enumeration of the permutations of B̂n triggers some intriguing enumerative
problems, which we discuss at the end of this section.

6.1 Definitions and results

To start with, we define the subfamily T̂ and state a lemma which is essential to
analyze the restrictions of our bijections.

Definition 6.1. A complete Baxter TLT is a Baxter TLT whose underlying tree is
a complete binary tree.

An almost complete Baxter TLT of size n is a Baxter TLT of size n whose un-
derlying tree is almost complete: namely, it is a complete binary tree from which the
following have been removed:

• the leaf ` that is reached from the root when following only left edges;

• in addition, if n is odd, the leaf r that is reached from the root when following
only right edges.

We denote by T̂n the set of almost complete Baxter TLTs of size n.

Figures 28 and 29 show some examples.

We now present the main results relative to this special class of Baxter TLTs.
The proofs are postponed to the next subsection.
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The complete binary tree with 3 vertices (denoted t3),
with all the complete Baxter TLTs of size 3,

and all the almost complete Baxter TLTs of size 2 and 1 (obtained from t3).

The complete binary trees with 5 vertices (denoted t5 and t′5),
with all the complete Baxter TLTs of size 5,

and all the almost complete Baxter TLTs of size 4 and 3 (obtained from t5 and t′5).

Figure 28: Small complete and almost complete Baxter TLTs. (For consistency with
TLTs, the roots of binary trees are drawn in the top left.)

Proposition 6.2. Let P̂n be the set of pairs of Dyck paths with n steps, if n is even
(respectively with n+1 and n−1 steps respectively, if n is odd). Define Φ̄P as follows:

• if n is even, then for all T ∈ T̂n, writing Φ̂P(T ) = (wtop, wmiddle, wbottom), we
set Φ̄P(T ) = (N · wtop, wbottom ·N);

• if n is odd, then for all T ∈ T̂n, writing Φ̂P(T ) = (wtop, wmiddle, wbottom), we set
Φ̄P(T ) = (N · wtop · E,wbottom).

Then, it holds that Φ̄P is a bijection between T̂n and P̂n.

Proposition 6.2 has an immediate enumerative consequence:

Corollary 6.3. For any n, the cardinality of T̂2n is C2
n, and the one of T̂2n+1 is

Cn · Cn+1, where Cn = 1
n+1

(
2n
n

)
is the n-th Catalan number.
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Figure 29: Left: A complete Baxter TLT of size 9. Right: Two almost complete
Baxter TLTs, of respective size 10 and 7.

Next we focus on floorplans. In the characterization of the image of T̂n under the
bijection ΦF between Baxter TLTs and packed floorplans, we are led to defining a
new class of floorplans with constraints along the southwest-northeast diagonal.

Recall from Section 4 that floorplans are rectangular partitions of a rectangle
such that every pair of segments with non-empty intersection forms a T-junction.

Definition 6.4. An alternating floorplan of size n is a partition of a rectangle R
of width dn+1

2
e and height bn+1

2
c into n rectangular tiles whose sides have integer

lengths such that the path from the southwest corner to the northeast corner of R
which moves alternately one unit step East and one unit step North (starting with
East) is included in the boundaries of partitioning rectangles of F . We call this path
the alternating path of F .

We denote by F̂n the set of alternating floorplans of size n.

Remark that the definition of an alternating floorplan F does not require F to
be a packed floorplan. This is nonetheless the case, as we shall see in Lemma 6.10.

Figure 30 (left) shows an example of an alternating floorplan.

Figure 30: Left: An alternating floorplan F of size 26. Right: The almost complete
Baxter TLT T of size 26 such that Φ̂F (T ) = F .
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Proposition 6.5. Φ̂F is a bijection between T̂n and F̂n .

Figure 30 (right) shows an example of an almost complete Baxter TLT which is
in bijection by Φ̂F with the alternating floorplan on the left of this figure.

Finally we deal with permutations. We recall that a permutation σ is alternat-
ing if the comparisons between consecutive elements alternate between ascents and
descents, that is to say if σ(1) > σ(2) < σ(3) > σ(4) < . . . or σ(1) < σ(2) > σ(3) <
σ(4) > . . . . Alternating permutations arise naturally when studying the restriction
of our bijection ΦB to T̂n.

Proposition 6.6. Let B̂n be the set of permutations in Bn that are alternating and
start with an ascent. Φ̂B is a bijection between T̂n and B̂n .

From Proposition 6.6 and Corollary 6.3, we immediately deduce the enumeration
of B̂n.

Corollary 6.7. For any n, there are C2
n (respectively Cn ·Cn+1) permutations of size

2n (respectively 2n+ 1) which avoid the patterns 3− 14− 2 and 3− 41− 2 and are
alternating starting with an ascent.

6.2 Proofs

The following result about the structure of complete Baxter TLTs is essential in
proving the three announced results.

Lemma 6.8. Let T be a Baxter TLT, and define its leaves as its points which
correspond to leaves of the underlying tree of T . The following are equivalent:

• T is a complete Baxter TLT;

• the leaves of T form a staircase shape, i.e., they are located on the southwest-
northeast diagonal which starts at the bottommost point of the first column of
T , and occupy every cell of this diagonal.

Proof. We note that a complete Baxter TLT is necessarily of odd size. We also
observe that a TLT satisfying the second condition above is also necessarily of odd
size: indeed, recalling that there are no empty rows or columns in TLTs, it is forced
to have n rows and n columns for some n, and therefore 2n− 1 points.

We prove the claimed statement for all Baxter TLTs of size 2n+ 1 by induction
on n.

The base case n = 0 is obvious.

Let T be a Baxter TLT of size 2n+ 1 for n > 0. Consider the bi-partition (L,R)
of the non-root points of T where L (respectively R) contains all points of T in
the left (respectively right) subtree pending from the root of the underlying tree of
T . From Proposition 2.9 and Corollary 2.11, T can be decomposed into 4 blocks
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as
A
BC
D

, with A containing only the root of T , B (respectively D) containing all

points of L (respectively R), and C containing no points. We recall that a binary
tree is complete if and only if the left and right subtrees pending from its root are
also complete binary trees.

It follows that, if T is a complete Baxter TLT, then B and D are also complete
Baxter TLTs. They are smaller than T , and by induction have their leaves which
form a staircase shape. This consequently also holds for the leaves of T , which form
a staircase shape obtained from the concatenation of those of B and D. Conversely,
if the leaves of T form a staircase shape, then it also holds for those of B and D,
which are therefore complete Baxter TLTs, implying that T also is a complete Baxter
TLT.

We start by proving our bijective claim on triples/pairs of non-intersecting lattice
paths.

Proof of Proposition 6.2. To prove this statement, we must keep in mind the inter-
pretation of the three paths of Φ̂P(T ) = (wtop, wmiddle, wbottom) for T ∈ Tn explained
in the proof of Lemma 5.4. In particular, the following holds.

• wtop encodes the underlying tree structure of T . In the present case where

T ∈ T̂n, this implies that N ·wtop when n is even and N ·wtop ·E when n is odd
encodes the complete binary tree from which T was built (hence, in particular,
is a generic Dyck path).

• wmiddle has been obtained from the path which follows the leaves of T by
removing the first and the last steps. For T ∈ T̂n, Lemma 6.8 implies that
wmiddle is an alternation of N and E steps starting with an E.

• wbottom is the southeast border of T from which the first and last steps have
been removed. Since wbottom is a path located to the southeast of wmiddle, and
given the very specific form of wmiddle in our case, this implies that wbottom ·N
if n is even (respectively wbottom if n is odd) is the symmetric of a generic Dyck
path with respect to the main diagonal.

Summing up, this shows that pairs (dt, db) of Dyck paths in P̂n are (up to re-
moving initial and/or final steps as described above) in bijection with triples of
non-intersecting paths of size n whose middle path is an alternation of single N and
E steps starting with E, which are themselves in bijection with T̂n by Lemma 6.8,
thus concluding the proof.

Figure 31 shows the triples of non-intersecting paths and the corresponding pairs
of Dyck paths of the two almost complete Baxter TLTs of even and odd size given in
Figure 29. In this figure, dashed steps correspond to the leaves removed (according
to parity) from the complete binary tree in Definition 6.1.
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and and

Figure 31: Two triples of non-intersecting paths and the corresponding pairs of Dyck
paths.

For what concerns floorplans, we first need to show that F̂n is indeed included in
the family Fn of packed floorplans. To this end, we first state an important property
of the alternating paths of alternating floorplans.

Lemma 6.9. In any alternating floorplan F , every tile has either its bottom-right
corner or its topleft corner on the alternating path of F .

Proof. Let us denote by n the size of F . By definition, the alternating path of F
contains dn/2e factors EN and bn/2c factors NE, each corresponding to a bottom-
right corner or a topleft corner of a tile of F , respectively. This gives a total of n
tiles, necessarily all distinct, and therefore all tiles of F have their bottom-right or
topleft corners on the alternating path as claimed.

When a tile t of an alternating floorplan F has its topleft (respectively bottom-
right) corner on the alternating path of F , we say that t is below (respectively above)
the alternating path of F .

Lemma 6.10. Every alternating floorplan is a packed floorplan.

Proof. Let F be an alternating floorplan of size n. To prove that F is a packed
floorplan, comparing with Definition 4.1, we only need to check that F avoids the
pattern .

Assume that two tiles t and t′ of F form a pattern. Using Lemma 6.9, we
distinguish three cases (without loss of generality up to exchanging t and t′): either
t is above the alternating path and t′ is below it, or t and t’ are both above the
alternating path, or they are both below. In the first case, because of the alternating
path condition, the bottom-right corner of t is forced to sit either above and to the
right, or below and to the left, of the topleft corner of t′. But this is impossible
when t and t′ form a pattern . In the second case, the bottom-right corners of t

and t′ are forced to sit as yy by the alternating path condition, but also as yy
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by the occurrence of , yielding again a contradiction. The third case is similar,
considering the topleft corners of t and t′. This concludes the proof that F avoids

, hence is a packed floorplan.

We are now ready to prove our claim that the restriction of ΦF provides a bijection
between T̂n and F̂n.

Proof of Proposition 6.5. Consider an alternating floorplan F ∈ F̂n and its preimage
T under ΦF . We know that T is a Baxter TLT. To prove that it is almost complete,
we use Lemma 6.9 to ensure that T as bn/2c points on the main diagonal (shifted
by one unit to the right): namely, those corresponding to the topleft corners of the
tiles below the alternating path of F . Then, Lemma 6.8 ensures that T is an almost
complete Baxter TLT.

Conversely, for an almost complete Baxter TLT T , we show that ΦF(T ) is an
alternating floorplan by ensuring that it contains a valid alternating path. Lemma 6.8
forces the placement of the topleft corners of some tiles of F , namely, those whose
topleft corner is a leaf of T . As a consequence, the path E(NE)bn/2cN δ is supported
by the sides of the tiles of F , for δ = 0 if n is even and δ = 1 is n is odd. More precisely,
the first E step is supported by the bottom edge of the bounding rectangle of F (hence
by its bottom-leftmost tile), each NE factor surrounds the topleft corner of a tile
corresponding to a leaf of T , and, in case n is odd, the final N step is supported by
the right edge of the bounding rectangle of F (hence by its top-rightmost tile).

Finally we consider permutations.

Proof of Proposition 6.6. We first prove that the image of T̂n by Φ̂B is included in
B̂n. So, consider T ∈ T̂n and its image σ = Φ̂B(T ). We know that σ is in Bn, and
want to prove that σ is alternating starting with an ascent.

By construction, σ is the sequence of iso-labels read along the southeast border
of T . Recalling the rule for propagation of iso-labels (and in particular, the first item
in Subsection 3.1), and the placement of the leaves of T (see Lemma 6.8), it follows
that σ is also read on the path “inside” T along the boundary determined by the
leaves. More precisely, we mean that σ is obtained by reading the iso-labels of the
following cells of T , in this order: the bottommost cell of the first column, then its
right neighbor (which is the first leaf), then the cell above it, then its right neighbor
(which is the second leaf), and all cells subsequently met by moving alternately one
cell to the top and one cell to the right, until the rightmost cell of the top row is
reached. See Figure 32 for an illustration of this fact.

So, σ alternates between reading iso-labels of leaves and iso-labels of pointed or
empty cells corresponding to internal nodes. The two leaves surrounding a pointed
or empty cell with iso-label x have larger iso-labels, because the pointed cell of T
carrying the iso-label x is an ancestor of both leaves. So σ is alternating. Moreover,
σ starts with an ascent because the first leaf is the second cell whose iso-label is read
when building σ (the first cell read carrying as above the iso-label of an ancestor of
this first leaf).



J.-C. AVAL ET AL. / AUSTRALAS. J. COMBIN. 86 (1) (2023), 24–75 69

1 1 3 5 5 10

1 1 3 6 7

1 1 3 8 6

1 1 4 3

2 9 1 4

=

1 1 3 5 5 10

1 1 3 6 7

1 1 3 8

1 1 4

2 9

7→ 2 9 1 4 3 8 6 7 5 10

1 2 2 6

1 2 2 7

1 3 4

1 5 3

=

1 2 2 6

1 2 2 7

1 3 4

1 5

7→ 1 5 3 4 2 7 6

Figure 32: The two almost complete Baxter TLTs of Figure 29 (right) with their iso-
labeling, and the corresponding permutations. (The bold elements in permutations
correspond to the leaves in the TLTs.)

Conversely, let σ ∈ B̂n, and let T = Φ̂−1B (σ). T is a Baxter TLT, and we want to
prove that T is almost-complete. To this end, using Lemma 6.8, it is enough to prove
that the leaves of T occupy all cells on the main diagonal starting at the second cell
of the bottom row of T (which we refer to as staircase shape). To do so, our first
step is to show that the points of T with iso-labels σ(2i) (for 1 ≤ i ≤ bn/2c) are all
leaves of T .

For any 1 ≤ i ≤ bn/2c, it holds that σ(2i − 1) < σ(2i) > σ(2i + 1) by the
alternating condition (the second inequality being undefined in the case n is even
and i = n/2). Denote by ` the point of T with iso-label σ(2i). By Proposition 3.11
and Corollary 3.12, and according to Definition 3.10, σ(2i− 1) < σ(2i) > σ(2i + 1)
implies that ` is both column-extremal and row-extremal (except for the case n is
even and i = n/2, in which case ` is column-extremal and is the rightmost point in
the first row). In particular, such points ` are leaves of T .

Our next step is to show that these leaves form a staircase shape. We start by
noticing that for any point c of T which is both column-extremal and row-extremal,
all cells of T below and to the right of c must be empty. Indeed, assuming that a cell
c′ below and to the right of c were pointed, and considering without loss of generality
c′ topmost and leftmost among such cells, c, c′ and the parent of c′ would form a

pattern
· ••• or · •• • .

Therefore, all pointed cells of T with iso-label σ(2i) for 1 ≤ i ≤ bn/2c must be
in different columns and in different rows (by “extremality”). Moreover, considering
these points from left to right gives a sequence of points which have increasing y-
coordinates (since they have no point below and to their right).

As a consequence, the number of columns of T is at least 1 + bn/2c, the 1
accounting for the first column, and bn/2c accounting for the column-extremal points
σ(2i) for all i ∈ [1; bn/2c]. Similarly, the number of rows must be at least bn/2c+ 1
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if n is odd (respectively bn/2c if n is even, the point with iso-label σ(n) not being
row-extremal in this case), yielding a total of at least n+1 rows and columns in total
(both in the even and in the odd case). Since T ∈ T̂n, we know that T has exactly
n+ 1 rows and columns in total, implying that all the columns (except the leftmost)
and all the rows (except the topmost when n is odd) are occupied by leaves of T ,
so that the leaves of T must form a staircase shape. Lemma 6.8 then concludes the
proof.

6.3 Enumerative problems raised by the enumeration of alternating
twisted Baxter permutations

Corollary 6.7 provides an enumeration result which we have not been able to find in
the literature. Our proof is bijective, and obtained as the result of composing two
bijections: one between B̂n and T̂n and the other one between T̂n and P̂n. While this
shows that TLT can be useful to prove meaningful results on other combinatorial
objects, this also raises the question of whether B̂n could be enumerated directly,
without appealing to TLTs. It is not hard to observe that, for any permutation σ
of B̂n, its pattern σodd (respectively σeven) corresponding to the odd (respectively
even) positions in [1, n] is a permutation avoiding 312 (respectively 231) as classical
patterns. And it is well-known that the families Av(312) and Av(231) are enumerated
by the Catalan numbers. Therefore, considering also the enumeration obtained in
Corollary 6.7, it is tempting to conjecture that the map σ 7→ (σodd, σeven) is a bijection
between B̂n and Avdn/2e(312)× Avbn/2c(231). We leave this question open.

In addition, we wish to point out that the permutations appearing in Corol-
lary 6.7 are enumerated like the alternating Baxter permutations (i.e., alternating
permutations that avoid the patterns 2− 41− 3 and 3− 14− 2). Indeed, in [12], the
authors give a bijective proof that the number of alternating Baxter permutations of
size 2n (respectively 2n + 1) is C2

n (respectively Cn · Cn+1). Another combinatorial
proof using triples of non-intersecting paths is given in [16].

Another important observation is that, unlike Baxter permutations, the permu-
tations that avoid 3 − 14 − 2 and 3 − 41 − 2 are neither stable under the reverse
symmetry, nor under the complement symmetry. Therefore, Corollary 6.7 does not
solve the enumeration of alternating permutations avoiding 3− 14− 2 and 3− 41− 2
and starting with a descent, whereas the results of [12, 16] do solve the analogous
problem for Baxter permutations.

In view of these two very similar enumeration results, it is natural to look for
a (hopefully simple) bijection between alternating Baxter permutations and alter-
nating (inverses of) twisted Baxter permutations starting with an ascent. We leave
this problem open, but point out one possible direction for finding such a bijection.
In [17], the authors describe several bijections between families of Baxter objects,
and in particular a bijection Θ1 between Baxter permutations and pairs of twin bi-
nary trees, and a bijection Θ2 between pairs of twin binary trees and rectangulations.
These objects are exactly our packed floorplans, up to a rotation of 90◦. The restric-
tion of Θ1 to alternating Baxter permutations provides a bijection with pairs of twin
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binary trees with additional restrictions. A first task would be to examine how these
restrictions are translated on the rectangulations (or packed floorplans) via Θ2, and
then on the Baxter TLTs via Φ−1F . These restricted Baxter TLTs are equinumerous
with the almost complete Baxter TLTs. It is actually possible that they are exactly
the almost complete Baxter TLTs. If it is not the case, a second task would be
to identify a bijection Λ between these two families of TLTs. A bijection between
alternating Baxter permutations and alternating (inverses of) twisted Baxter permu-
tations starting with an ascent would then be the composition Φ̂B ◦Λ◦Φ−1F ◦Θ2 ◦Θ1.
Describing this bijection directly would be the third task in this search of a simple
bijection.

7 Conclusion

The present article has put Baxter TLTs at the center of a big picture involving
bijections with several families of combinatorial objects known to be enumerated
by the Baxter numbers: twisted Baxter permutations, mosaic floorplans and triples
of non-intersecting lattice paths. The landscape of combinatorial structures enu-
merated by the Baxter numbers is however much richer, including among others
Baxter permutations [11, 30], pairs of twin binary trees [15], plane bipolar orienta-
tions [2, 6, 7, 18], Baxter posets [25], hesitating axis-walks and excursions [9, 13].
Although it is beyond the scope of the present paper, it would be interesting to know
if more of these Baxter objects could be put in direct bijection with Baxter TLTs,
enlarging the picture presented in our work.

In particular, as we pointed out in our introduction, the article [17] is similar to
ours in the sense that it presents bijections between many families of Baxter objects,
which are however disjoint from our families (up to the exception of the triples
of non-intersecting lattice paths). Our impression is that either natural bijections
exist between Baxter TLTs and all objects of [17], or they are several “kinds” of
Baxter families, with one kind centered around Baxter TLTs (and twisted Baxter
permutations) and another kind centered around pairs of twin binary trees (and
Baxter permutations) as in [17]. We leave open the problem of formalizing this
question, and possibly answering it.

A more precise question is the following. Combining ΦB and ΦP yields a bijection
between twisted Baxter permutations and triples of non-intersecting lattice paths. It
is of course possible to obtain bijections between these families Bn and Pn combining
already known bijections from the literature. It is therefore natural to ask whether
our bijection is different from these preexisting bijections. The same question can of
course be considered with other pairs of families arising in this article in place of Bn
and Pn. We leave these questions open.
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A Size-preserving bijection between PFPs and mosaic floor-
plans

Mosaic floorplans were defined as follows by Hong et al. [21].

In a rectangular partition of a rectangle, a segment is a straight line, not included
in the boundary of the partitioned rectangle, that is the union of some rectangle sides,
and is maximal for this property. Let us call floorplans the rectangular partitions
of a rectangle such that every pair of segments with non-empty intersection forms a
T-junction (defined on p. 47). Two floorplans are said R-equivalent if one can pass
from one to the other by sliding the segments to adjust the sizes of the rectangles.
A mosaic floorplan is defined as an equivalence class of floorplans under R.

In [1], the authors describe a bijection between mosaic floorplans and Baxter
permutations, i.e., permutations avoiding the patterns 2− 41− 3 and 3− 14− 2 (see
the definition of dashed patterns in Section 3). This implies that mosaic floorplans
are enumerated by Baxter numbers. From Theorems 4.3 and 3.3, and since twisted
Baxter permutations are also enumerated by Baxter numbers, it follows that PFPs
are in size-preserving bijection with mosaic floorplans. This correspondence can be
made more precise:

Proposition A.1. Every mosaic floorplan (i.e., every equivalence class of floorplans
under R) contains exactly one PFP.

Proof. Recall that there are as many mosaic floorplans of size n as PFPs of size n
(namely, Baxn). Thus, it is enough to prove that every mosaic floorplan contains at
least one PFP. To prove this statement, we show that every floorplan containing some
patterns is R-equivalent to a floorplan containing strictly fewer such patterns.

Let F be a floorplan containing . Consider two tiles t1 and t2 forming a

pattern , with t1 located Northwest from t2, and such that the distance between
the bottom rightmost corner of t1 and the top leftmost corner of t2 is minimal among
all such patterns in F . Necessarily, the two segments meeting at the bottom right-
most corner of t1 form a T-junction, of type or . We assume that it is of

type . The case is easily deduced by symmetry (applying reflection along a

northwest-southeast axis).

To obtain a floorplan F ′ R-equivalent to F with fewer patterns , we slide a
segment of F , denoted E, and defined as follows (see Figure 33(a)).

Let t3 be the tile located immediately to the right of t1. By minimality of (t1, t2),
the x-coordinate of right side of t3 is strictly larger than the x-coordinate (denoted
xc) of the top leftmost corner c of t2. Now, consider the stack of tiles containing t3
and all the tiles stacked on t3 such that:

• the x-coordinates of the left sides of the tiles are weakly increasing from bottom
to top and are all smaller than or equal to xc;

• the x-coordinates of the right sides of the tiles are strictly larger than xc.
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We consider the tiles of the stack whose left sides have maximal x-coordinate (denoted
xE), and we define E as the union of all these left sides. We claim that E is a segment
of F , i.e., that the lower (respectively upper) extremity of E is a T-junction of the
form (respectively ). This claim is easily proved by contradiction, using the
above definition of the stack of tiles, its maximality, and the fact that the T-junction
at the bottom rightmost corner of t1 (which is also the bottom leftmost corner of t3)
is of type . It follows that E is also the union of the right sides of some (one or

several) tiles, and for each of these tiles t, (t, t2) is a pattern . The segment E
may be slided to the right until xE > xc, to get a floorplan F ′ which is R-equivalent
to F and contains strictly fewer patterns .

Figure 33(b) shows a floorplan and a PFP that are R-equivalent.

E

t1

t2

t3

c

(a) How to pack a
floorplan.

(b) A floorplan (left) and its R-equivalent PFP
(right).

Figure 33: Every mosaic floorplan contains exactly one PFP.
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146 (1995), 247–262.

[33] J. West, Enumeration of Reading’s twisted Baxter permutations, (talk presented at
Permutation Patterns 2006 ); preprint:
http://www.cs.otago.ac.nz/staffpriv/mike/PP2006/abs/West.pdf.

[34] B. Yao, H. Chen, C. K. Cheng and R. L. Graham, Floorplan representations:
Complexity and connections, ACM Trans. on Design Automation of Electronic Sys-
tems 8(1) (2003), 55–80.

(Received 13 Aug 2021; revised 1 Mar 2023)


