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Abstract

In this paper, we characterise the smallest sets B consisting of points and
hyperplanes in PG(n, q), such that each k-space is incident with at least
one element of B. If k > n−1

2
, then the smallest construction consists

only of points. Dually, if k < n−1
2
, the smallest example consists only

of hyperplanes. However, if k = n−1
2
, then there exist sets containing

both points and hyperplanes, which are smaller than any blocking set
containing only points or only hyperplanes.

1 Introduction

Throughout this article, q will denote a prime power, k and n will be integers sat-
isfying 0 � k < n, and PG(n, q) will denote the n-dimensional projective space
over the finite field with q elements. When we mention dimensions, we always mean
projective dimensions.

Blocking sets in projective spaces are classically defined as follows.
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Definition 1.1. A set of points B in PG(n, q) is called a blocking set with respect
to k-spaces if every k-space of PG(n, q) is incident with at least one element of B.

The main objective in the study of blocking sets is the characterisation of blocking
sets of small size. For a survey, see [2]. A classical result by Bose and Burton
characterises the smallest blocking sets.

Proposition 1.2 ([3]). The smallest blocking sets with respect to k-spaces in PG(n, q)
are precisely the point sets of (n− k)-spaces.

A duality of a projective geometry PG(n, q) is a bijective map ⊥ on the subspaces
of PG(n, q) that reverses inclusion, with the property that dim π + dim π⊥ = n − 1
for any subspace π (see [7, pp. 78-79, 88]). The image of a subspace under a duality
is called its dual. In particular, the dual of a point is a hyperplane and vice versa.

We combine the notion of a blocking set and its dual to define the following
generalised notion of a blocking set.

Definition 1.3. Let B be a set of points and hyperplanes in PG(n, q). We call B
a blocking set with respect to k-spaces if every k-space of PG(n, q) is incident with
at least one element of B. That is, for every k-space κ, B contains a point of κ or a
hyperplane through κ.

Throughout this work, if B is a blocking set, we will denote the set of points in B
by B0 and the set of hyperplanes in B by Bn−1, hence B = B0 ∪Bn−1. If B contains
only points, we will emphasise this by calling B a blocking set of points.

In [5, Proposition 7.1], the authors give a lower bound on the number of variables
on which a certain degree 2 Boolean function depends. The lower bound follows from
a lower bound on the size of a blocking set of points and hyperplanes with respect
to 4-spaces in PG(7, q).

We will answer the following more general question.

Question 1.4. What are the smallest blocking sets consisting of point and hyper-
planes in PG(n, q) with respect to k-spaces?

To answer this question, we introduce the following construction, which gener-
alises an idea of Sam Mattheus.

Construction 1.5. Consider a (k + 1)-space Σ and a (k − 1)-subspace σ ⊂ Σ in
PG(2k + 1, q). Partition the set of k-spaces in Σ through σ into two non-empty sets
K1 and K2. Note that |K1|+ |K2| = q + 1. Define the sets

B0 as the set of all points that are contained in some κ ∈ K1, but not in σ, and

Bn−1 as the set of all hyperplanes that go through some κ ∈ K2, but not
through Σ.

Define B := B0 ∪Bn−1.
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Lemma 1.6. Let B be as in Construction 1.5. Then

(1) B blocks all k-spaces of PG(2k + 1, q),

(2) |B| = (q + 1)qk, and

(3) the dual of B is also an instance of Construction 1.5.

Proof. (1) Consider a k-space τ . Note that by Grassmann’s identity, τ ∩Σ is non-
empty. If τ ∩Σ ⊆ κ for a κ ∈ K2, then at least one of the hyperplanes through
〈τ, κ〉 does not go through Σ and hence is contained in Bn−1; this includes the
case of τ ∩ Σ ⊆ σ. If τ ∩ Σ ⊆ κ for a κ ∈ K1, but τ ∩ Σ 
⊆ σ, then τ contains
a point of B0. If τ ∩ Σ is not contained in a k-space of K1 ∪K2, then τ ∩ Σ
contains a line � disjoint from σ. Such a line contains a point of B0 since K1 is
non-empty. Hence, in each case, τ is blocked by an element of B.

(2) We immediately find |B| = |B0|+ |Bn−1| = |K1|qk + |K2|qk = (q + 1)qk.

(3) This can be seen directly from the description of the construction.

We are now ready to state the result of this paper.

Theorem 1.7. Let q be a prime power, and let k, n be integers with 0 � k < n. If
q = 2, suppose that k /∈ {

n−2
2
, n
2

}
. Let B be a blocking set with respect to k-spaces in

PG(n, q) consisting of points and hyperplanes.

(1) If k < n−1
2
, then |B| � qk+2−1

q−1
, with equality if and only if B consists of all

hyperplanes through a fixed (n− k − 2)-space.

(2) If k > n−1
2
, then |B| � qn−k+1−1

q−1
, with equality if and only if B consists of all

points in a fixed (n− k)-space.

(3) If k = n−1
2
, then |B| � (q + 1)qk, with equality if and only if B is as in

Construction 1.5.

The first two parts of this theorem will be proven in Section 3, the last part in
Section 4. First, we will discuss some background on blocking sets of points.

2 Preliminaries

The number of m-spaces in PG(n, q) is given by the Gaussian coefficient

[
n + 1

m+ 1

]
q

:=
m+1∏
i=1

qn−m+i − 1

qi − 1
,
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see e.g. [7, Theorem 4.7]. In particular, we set
[
a
b

]
q
:= 0 unless 0 � b � a. We will

also use the notation

θm :=

[
m+ 1

1

]
q

=
qm+1 − 1

q − 1
= qm + qm−1 + · · ·+ q + 1

for the number of points in PG(m, q).

An important result related to blocking sets is the following theorem byMetsch [8].

Result 2.1 ([8, Theorem 1.2]). Let d, s and n be integers with d, s � 0 and n � d+s,
and consider a point set B in PG(n, q). If |B| � θd, then the number of s-spaces not
containing a point of B is at least

q(s+1)(d+1)

[
n− d

s + 1

]
q

+ (θd − |B|)qsd
[
n− d

s

]
q

.

The result by Metsch will be crucial to prove Theorem 1.7 when k 
= n−1
2
. By

applying the principle of duality, this theorem has the following corollary.

Corollary 2.2. Let d, s and n be integers with d � 0 and d−1 � s < n, and consider
a set B of hyperplanes in PG(n, q). If |B| � θd, then the number of s-spaces not
contained in an element of B is at least

q(n−s)(d+1)

[
n− d

n− s

]
q

+ (θd − |B|)q(n−s−1)d

[
n− d

n− s− 1

]
q

.

The next result by Héger and Nagy gives an upper bound on a Gaussian binomial.

Result 2.3 ([6, Lemma 2.2]). With e being Euler’s number, we have:

[
n

k

]
q

<

{
q(n−k)k · e 1

q−2 if q > 2,

2(n−k)k+1 · e 2
3 if q = 2.

We would like to remark that Result 2.1 implies the result by Bose and Burton (see
Proposition 1.2). The latter was strengthened by Bruen [4] for blocking sets of points
with respect to lines in PG(2, q). This in turn was generalised by Beutelspacher [1].

Result 2.4 ([1]). Let B be a blocking set of points with respect to k-spaces in
PG(n, q). Then either

(1) B contains all points of a fixed (n− k)-space and |B| � θn−k, or

(2) B does not contain all points of a fixed (n−k)-space and |B| � θn−k+qn−k−1√q.
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3 The case k 
= n− 1

2

Theorem 3.1. Let k 
= n−1
2

and, if q = 2, suppose that k /∈ {
n−2
2
, n
2

}
. Let B be a

blocking set with respect to k-spaces in PG(n, q) consisting of points and hyperplanes.
Then |B| � min {θk+1, θn−k} with equality if and only if

(1) k < n−1
2

and B consists of all hyperplanes through a fixed (n− k− 2)-space, so
|B| = θk+1, or

(2) k > n−1
2

and B consists of all points in a fixed (n− k)-space, so |B| = θn−k.

Proof. Recall that B0 and Bn−1 are the set of points and the set of hyperplanes in
B, respectively. We may suppose that k < n−1

2
as (2) follows from (1) using duality.

Moreover, we assume that |B| � min {θk+1, θn−k} = θk+1 and will prove that B0 is
empty; (the dual of) Proposition 1.2 then finishes the proof. As |Bn−1| � |B| � θk+1,
we can apply Corollary 2.2 (with d := k + 1 and s := k) to obtain that Bn−1 does
not block at least

(θk+1 − |Bn−1|)q(n−k−1)(k+1) � |B0|q(n−k−1)(k+1)

k-spaces, which means that the points in B0 have to block at least |B0|q(n−k−1)(k+1)

k-spaces. Any point of PG(n, q) is incident with
[
n
k

]
q
k-spaces. If q > 2, Result 2.3

implies [
n

k

]
q

< q(n−k)k · e 1
q−2 = q(n−k−1)(k+1) e

1
q−2

qn−2k−1
� q(n−k−1)(k+1),

where we used the fact that e
1

q−2 � qn−2k−1 if and only if 1 � (q−2)(n−2k−1) ln(q),
the latter of which is always true as q � 3 and k � n−2

2
. If q = 2, any point of PG(n, q)

is incident with at most[
n

k

]
2

< 2(n−k)k+1 · e 2
3 = 2(n−k−1)(k+1) e

2
3

2n−2k−2
� 2(n−k−1)(k+1)

k-spaces, as e
2
3 � 2n−2k−2 if and only if 2

3 ln(2)
� n − 2k − 2, the latter of which is

true if k � n−3
2
. In conclusion, we obtain that any point is incident with less than

q(n−k−1)(k+1) k-spaces, which contradicts the statement that the points in B0 have to
block at least |B0|q(n−k−1)(k+1) k-spaces unless B0 is empty.

Remark 3.2. It remains open whether the same holds for the case of n even, k ∈{
n−2
2
, n
2

}
, q = 2.

However, it is not that surprising that this case does not submit itself to mere
approximations. For k = n

2
and q = 2, we can define B0 to be the set of points in

an n
2
-space Σ except for the points in some (n

2
− 1)-space κ ⊂ Σ, and Bn−1 to be

the set of hyperplanes through κ not containing Σ (i.e. similar to Construction 1.5
with Σ an n

2
-space and σ an

(
n
2
− 2

)
-space in PG(n, q), whereby σ ⊂ κ, |K1| = 2

and |K2| = 1). The set B = B0 ∪ Bn−1 blocks all n
2
-spaces and has size 2

n
2
+1, while

a trivial blocking set consisting of all points in an n
2
-space has size 2

n
2
+1 − 1.

A similar observation exists for the dual case k = n−2
2
.
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4 The case k =
n− 1

2

Assume that n = 2k+ 1 � 3 and consider a blocking set B = B0 ∪Bn−1 in PG(n, q)
with respect to k-spaces.

Lemma 4.1. Suppose that ρ is a (k − 1)-space skew to B0. Then ρ lies in at least

q + 1− |B0|
qk

hyperplanes of Bn−1. If equality holds, then

(1) every k-space through ρ contains at most one point of B0, and

(2) |B0| is a multiple of qk.

Proof. We project from ρ as follows: we take a (k + 1)-space κ skew to ρ and define

B′
0 = {〈ρ, P 〉 ∩ κ || P ∈ B0} , B′

n−1 = {π ∩ κ || ρ ⊂ π ∈ Bn−1} .
Then B′

0∪B′
n−1 needs to block all the points in κ, since B0∪Bn−1 blocks all k-spaces

through ρ. We may assume that |B′
n−1| � q+1 since otherwise the lemma is trivially

fulfilled. B′
0 needs to contain all points of κ not covered by the k-spaces in B′

n−1.
Applying Corollary 2.2 in κ ∼= PG(k + 1, q) (with d := 1 and s := 0) we find that

|B′
0| � (q + 1− |B′

n−1|)qk.
This implies that

|B′
n−1| � q + 1− |B′

0|
qk

� q + 1− |B0|
qk

.

If this bound is tight, then |B′
0| = |B0|, which means that 〈P, ρ〉 
= 〈R, ρ〉 for any two

points P and R of B0. Thus, no k-space through ρ contains more than one point of
B0. Obviously, equality also implies that q + 1 − |B0|

qk
is integer, so qk must divide

|B0|.
Lemma 4.2. |B| � qk(q + 1). If equality holds, then the following is true.

(1) Let ρ be a (k − 1)-space skew to B0. If there is a k-space through ρ that is
incident with exactly one point of B0 and no hyperplane of Bn−1, then every
k-space through ρ contains at most one point of B0.

(2) No hyperplane of Bn−1 contains a point of B0.

(3) |B0| is a multiple of qk.

Proof. It suffices to prove the lemma in the case that B is a minimal blocking set,
i.e. no proper subset of B is a blocking set. If the lemma is true for minimal blocking
sets, the size of a non-minimal blocking set is greater than qk(q+1), and the lemma
is true for all blocking sets.

If B0 = ∅, then, by (the dual of) Proposition 1.2, Bn−1 contains at least θk+1 >
(q + 1)qk hyperplanes; hence |B| > (q + 1)qk. So we may assume that B0 
= ∅, and
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take any point P ∈ B0. There exists a k-space κ that is incident with P and no
other element of B. Otherwise, B \ {P} would also be a blocking set, contradicting
the minimality of B. In κ there are qk distinct (k − 1)-spaces missing P and, by

Lemma 4.1, each of these (k − 1)-spaces must be contained in at least q + 1 − |B0|
qk

hyperplanes of Bn−1. Since no hyperplane of Bn−1 contains κ, no hyperplane is
counted twice. This implies that

|Bn−1| � qk
(
q + 1− |B0|

qk

)
⇐⇒ |B0|+ |Bn−1| � qk (q + 1) .

If equality holds in this bound, then equality holds for the bound described in
Lemma 4.1, for every (k − 1)-space of κ that misses P . Therefore, by that same
lemma, no (k − 1)-space ρ ⊂ κ that misses P lies in a k-space containing more than
1 point of B0, and |B0| is a multiple of qk. Moreover, in the above argument, we did
not count any hyperplane through P . Thus, if equality holds, no point of B0 lies in
a hyperplane of Bn−1.

Definition 4.3. Let S be a set of points in PG(n, q). We call a line � skew, tangent,
or secant to S if � intersects S in respectively 0, 1, or at least 2 points.

Lemma 4.4. If |B| = (q + 1)qk, then no point P /∈ B0 lies on both tangent and
secant lines to B0.

Proof. Suppose that P /∈ B0 lies on a tangent line � to B0. First, we prove that
� lies in some k-space which contains only one point of B0. If k = 1, � itself is a
k-space, and we are done, so suppose that k > 1. Take an (n − 2)-space Π disjoint
to �. Consider the projection of B0 \ � from � onto Π, i.e. the point set

B′
0 := {〈�, R〉 ∩Π || R ∈ B0 \ �} .

Then |B′
0| < (q + 1)qk. Therefore, by Proposition 1.2, B′

0 cannot block all (k − 2)-
spaces of Π. Hence, we can take a (k− 2)-space τ in Π, skew to B′

0. Then κ := 〈τ, �〉
is a k-space through �, containing only one point of B0, and hence is not contained
in a hyperplane of Bn−1 by Lemma 4.2(2). Now suppose that some line �2 through P
contains at least two points of B0. Take a (k−1)-space ρ in κ through P , missing B0.
Then 〈ρ, �2〉 is a k-space through ρ containing at least two points of B0, contradicting
Lemma 4.2(1).

Lemma 4.5. Let S be a non-empty point set of PG(n, q) such that no point P /∈ S
lies on both tangent and secant lines to S. Then

Σ := S ∪ {P /∈ S || P does not lie on a tangent to S}
is a subspace of dimension min {m || |S| � θm}.

Proof. Take a point P /∈ Σ. First, take a plane π through P that contains the
points R1, R2, R3 ∈ S. Suppose that these three points are not collinear. Then
〈R1, R2〉 ∩ 〈P,R3〉 is a point distinct from R3. This point cannot be contained in S,
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because 〈P,R3〉 must be tangent to S in R3. But it lies both on the tangent line
〈P,R3〉 to S, and the secant line 〈R1, R2〉 to S. This contradicts our assumption on
S. Hence, π ∩ S must be contained in a line.

Now suppose that some line � through P contains at least two points R1, R2 ∈ Σ.
Take a point R3 ∈ S \ � (if S ⊂ �, then S contains at most a point, and the lemma is
proven). Then 〈R1, R3〉 and 〈R2, R3〉 are secant lines to S. But then the intersection
of the plane 〈�, R3〉 with S is not contained in a line, contradicting the first part
of the proof. Hence, any point P /∈ Σ only lies on skew and tangent lines to Σ.
Therefore, Σ is a subspace.

It is clear that dimΣ � min {m || |S| � θm}. Now suppose that |S| � θm for
some m, but that dimΣ > m. Take a point P ∈ S. No line through P in Σ is
tangent to S. Therefore, there exist at least θm lines of Σ through P that contain at
least one other point of S and

|S| � 1 + θm,

a contradiction.

Lemma 4.6. Assume that B0 is contained in a (k+1)-space Σ and consider a point
P ∈ Σ \B0. Define

BP := {π ∈ Bn−1 || P ∈ π 
⊇ Σ} .
Then one of the following holds.

(1) There exists a k-space ρ ⊂ Σ such that BP contains all hyperplanes π with
π ∩ Σ = ρ, which implies |BP | � qk.

(2) |BP | � qk−1(q + 1).

Proof. BP must block all k-spaces intersecting Σ exactly in the point P , since no
hyperplane through Σ contains a k-space intersecting Σ only in P . Consider the
quotient geometry through P , which is isomorphic to PG(n− 1, q). Then BP/P :=
{π/P || π ∈ BP} is a set of hyperplanes in PG(n − 1, q) blocking all (k − 1)-spaces
skew to the k-space Σ/P . Choose a duality ⊥ of PG(n − 1, q). Then (BP/P )⊥ :={
(π/P )⊥ || π ∈ BP

}
is a set of points in PG(n − 1, q) blocking all k-spaces skew

to the (k − 1)-space (Σ/P )⊥. Therefore, the union of (BP/P )⊥ and the points of
(Σ/P )⊥ is a blocking set with respect to k-spaces in PG(2k, q).

First, suppose that this blocking set contains a k-space. This space is of the
form (ρ/P )⊥ for some k-space ρ in PG(n, q) through P . If (Σ/P )⊥ ⊂ (ρ/P )⊥, i.e.
ρ ⊂ Σ, then |BP | � θk − θk−1. Otherwise, (Σ/P )⊥ and (ρ/P )⊥ intersect in at most
a (k − 2)-space and |BP | � θk − θk−2.

Now suppose that the blocking set does not contain a k-space. Then, by
Result 2.4, it contains at least θk + qk−1√q points, which implies that |BP | �
θk + qk−1√q − θk−1.

Theorem 4.7. |B| � (q + 1)qk, with equality if and only if B is as in Construc-
tion 1.5.
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Proof. We already proved that |B| � (q+1)qk in Lemma 4.2, so suppose that equality
holds. By Lemmas 4.4 and 4.5, B0 lies in a (k + 1)-space Σ. By duality, there must
also exist a (k − 1)-space σ that lies in all hyperplanes of Bn−1. By Lemma 4.2(2),
every hyperplane of Bn−1 intersects Σ in a k-space skew to B0.

Suppose that σ 
⊂ Σ. Let ni denote the number of points of Σ \ B0 that are
contained in exactly i hyperplanes of Bn−1. Given a k-space ρ ⊂ Σ, there exists
a hyperplane which intersects Σ in ρ, and which does not contain σ. Therefore,
Lemma 4.6(1) does not hold, and ni = 0 for all i < qk−1(q + 1). This implies that

|Bn−1|θk =
∑
i

ini � qk−1(q + 1)
∑
i

ni = qk−1(q + 1)(θk+1 − |B0|).

Then the above inequality implies that

|Bn−1|θk � qk−1(q + 1)(θk+1 − |B0|) = qk−1(q + 1)(θk+1 − (qk+1 + qk − |Bn−1|))
= qk−1(q + 1)(|Bn−1|+ θk−1).

If k = 1, this simplifies to |Bn−1|(q + 1) � (q + 1)(|Bn−1| + 1), a contradiction. If
k > 1, we can rewrite this inequality as

|Bn−1| � qk−1(q + 1)
qk − 1

qk−1 − 1
> qk−1(q + 1)q,

which contradicts |B0 ∪Bn−1| = qk(q + 1).

Hence, σ ⊂ Σ. We know from Lemma 4.2(3) that |B0| = tqk for some t, and
therefore |Bn−1| = (q + 1 − t)qk. By Lemma 4.2(2), every hyperplane of Bn−1

intersects Σ in a k-space through σ. Consider the set S := {π ∩ Σ || π ∈ Bn−1} .
Since each k-space κ of Σ lies in qk hyperplanes intersecting Σ in κ, |S| � q + 1− t,
with equality if and only if Bn−1 consists of all hyperplanes intersecting Σ in a k-
space of S. On the other hand, by Lemma 4.2(2), no point of B0 is contained in
U = ∪κ∈Sκ, hence

tqk = |B0| � |Σ \ U | = θk+1 − (|S|qk + θk−1) = (q + 1− |S|)qk.

This implies that |S| � q + 1− t, with equality if and only if B0 = Σ \ U .

In conclusion, let T denote the set of the t k-spaces in Σ through σ, not contained
in S. Then

Bn−1 consists of all hyperplanes intersecting Σ exactly in an element of S, and

B0 consists of all points of κ \ σ, where κ varies over the elements T .

Thus, B is as in Construction 1.5.
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