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Abstract

We show that the distribution of the number of peaks at height i modulo
k in k-Dyck paths of a given length is independent of i ∈ [0, k− 1] and is
the reversal of the distribution of the total number of peaks. Moreover,
these statistics, together with the number of double descents, are jointly
equidistributed with any of their permutations. We also generalize this
result to generalized Motzkin paths and generalized ballot paths.

1 Introduction

Given a positive integer k, a k-Dyck path of down-size n is a lattice path from (0, 0)
to ((k+1)n, 0) with unit steps u = (1, 1) (an up-step) and d = (1,−k) (a down-step)
that stays in the first quadrant. This is a generalization of the well-known Dyck
paths (see e.g. [6]), where k = 1 and the down-size is called the semilength. Note
that a k-Dyck path of down-size n contains exactly n down-steps and kn up-steps.

A ud block in a k-Dyck path is called a peak, and the height of that peak is
defined as the second coordinate of the left endpoint of the d step in the peak. Given
a peak ud, we also call the vertex between the u and d steps a peak. Similarly, a dd
block (and the vertex in the middle of it) is called a double descent. Any Dyck path
P with at least one edge has at least one peak, so define pk(P ) to be the number of
non-rightmost peaks of P (that is, the number of peaks minus one). Similarly, define
dd(P ) to be the number of double descents of P .

Deutsch [2] showed that the statistics pk and dd are equidistributed on the set
of Dyck paths of any given length and gave an involution on the set of Dyck paths
that interchanged these two statistics. In other words, the bistatistics (pk, dd) and
(dd, pk) are jointly equidistributed on the set of Dyck paths. We generalize this
result greatly, first to k-Dyck paths, then to the generalizations colored Motzkin and
Schröder paths. Our results also extend those of DeJager et al. [3], who considered,
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in particular, k-Dyck paths and colored Motzkin and Schröder paths where all peaks
have a fixed peak parity i modulo k. Likewise, we generalize the peak enumeration
results of Mansour and Shattuck [4] for (k, a)-Dyck paths.

In Section 2 of this paper we will consider a group of statistics enumerating the
heights of peaks of each peak parity i modulo k in k-Dyck paths (0 ≤ i ≤ k − 1),
and prove that they not only have the same distribution, but also have the same
joint distribution as any permutation of themselves. Furthermore, these statistics
are naturally related to the number-of-i-th-children statistics on (k+1)-ary trees for
i = 1, 2, . . . , k + 1, which are easily seen to have the same joint distribution as any
of their permutations.

In Section 3 we will extend and generalize the results of Section 2 to include level
steps (e.g. generalized colored Motzkin and Schröder paths) and some paths that do
not end at their initial height (e.g. generalized colored ballot paths).

2 Main results

Let Pk
n be the set of k-Dyck paths of down-size n ≥ 0. Note that the rightmost peak

of any path P ∈ Pk
n is followed only by down-steps and thus is at height 0 mod k.

Therefore, we will only consider non-rightmost peaks of paths in Pk
n .

We define the following statistics on Pk
n . Given a k-Dyck path P ∈ Pk

n , for each
i = 0, 1, . . . , k−1, let pk(P ) be the total number of non-rightmost peaks in P , and let
pki(P ) be the number of non-rightmost peaks in P that are at heights i mod k. (Of
course, the rightmost peak of P is always at height 0 mod k, since it is followed only
by down-steps, but we will need the values of the above statistics on some subpaths
of P as well, where the height modulo k of the rightmost peak may be different.) We
also define dd(P ) to be the number of double descents in P . Note that every d step
of P follows either a u step or a d step, and thus dd(P ) = n− 1 − pk(P ) for n ≥ 1
(we subtract 1 for the rightmost peak of P ). Then we have the following result.

Theorem 2.1. The (k+1)-statistic (pk0, pk1, . . . , pkk−1, dd) on Pk
n is jointly equidis-

tributed with any of its permutations.

We note here that because of the total symmetry of these statistics modulo k,
it may appear useful to consider paths on a cylinder of circumference k rather than
on a plane. However, the paths in the plane also stay on or above the x-axis, and
the corresponding restriction in paths on a cylinder would be more difficult to track.
Thus, we stay with the paths in the plane.

We obtain this result by giving a recursive bijection between k-Dyck paths and
(k + 1)-ary trees that maps the above statistics on k-Dyck paths to the number of
(i+ 1)-st children statistics on (k + 1)-ary trees for i = 0, 1, . . . , k − 1, k.

An l-ary tree is a rooted ordered tree in which each node has at most l children
assigned positions in {1, 2, . . . , l} from left to right, not necessarily consecutively.

Let T l
n be the set of l-ary trees on n vertices, n ≥ 1. Define the following statistics

on T l
n . Given an l-ary tree T ∈ T l

n , let ei(T ) be the number of i-th children in T , i.e.
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nodes that are children in position i from the left, for 1 ≤ i ≤ l. Equivalently, ei(T )
is the number of i-th edges in T , i.e. edges from a vertex to its child in position i.

Proposition 2.2. The l-statistic (e1, e2, . . . , el) on T l
n is jointly equidistributed with

any of its permutations.

Proof. This is almost immediately obvious. It is enough to recursively permute the
subtrees of each node of T starting from the root according to the permutation of the
statistics ei, i = 1, . . . , l. We will leave the details of this bijection to the reader.

We can now connect Proposition 2.2 to Theorem 2.1. We will begin by defining
two operations on paths.

Definition 2.3. Given a k-Dyck path Q starting at height 0, define its i-lifting Q(i)

as the path with the same sequence of steps but starting at height i.

Note that any k-Dyck path Q with the maximal down-step suffix of length m ≥ 1
has a unique decomposition as

Q = Q
(0)
0 uQ

(1)
1 u . . .Q

(km−1)
km−1 u dd . . . d︸ ︷︷ ︸

m

, (2.1)

where each Qj , 0 ≤ j ≤ km− 1, is a k-Dyck path.

Definition 2.4. Let Q be a k-Dyck path with the maximal down-step suffix of length
m ≥ 1 and with the decomposition as in (2.1). Define a permutation πm on the set
[0, km− 1] by

πm =
(
k − 1, . . . , 1, 0

)(
2k − 1, . . . , k + 1, k

)
. . .
(
km− 1, . . . , k(m− 1) + 1, k(m− 1)

)
in cycle notation. Define the cyclic shift κ(Q) of Q by replacing each Q

(j)
j with

Q
(j)
πm(j), where j ∈ [0, km− 1]. In other words,

Q
(j)
j �→

{
Q

(j)
j+k−1, if j ≡ 0 (mod k),

Q
(j)
j−1, otherwise.

Note that κ is a bijection on Pk
n since πm is a bijection for any m ≥ 1, and that

κk is the identity map on Pk
n for any n.

Lemma 2.5. For any k-Dyck path Q with the maximal down-step suffix of length
m ≥ 1, the map λ : Q(1) �→ κ(Q) preserves peak heights modulo k in each segment
Qj, 0 ≤ j ≤ km− 1, as well as the number of double descents in Q.

We will call λ(Q(1)) = κ(Q) the cyclic lowering of Q(1).1

1This is not a unique way to define λ so as to preserve non-rightmost peak heights modulo k.
Another possible choice, among many, is to cyclically shift the entire sequence of subpaths Qj , i.e.
to define the permutation πm as the cycle (km−1, km−2, . . . , 1, 0). However, in that case, κ would
have order km, which depends on m. As we defined it, πm has order k, independent of m.
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Proof. Decomposing Q as in (2.1) and lifting it by 1 unit, we see that each segment
Qj in Q(1) starts at height j + 1. On the other hand, the starting height of the
segment Qj in κ(Q) is j−k+1 if j ≡ k−1(mod k), or j+1 if j �≡ k−1(mod k). In
other words, the height of peaks either does not change or decreases by k, and thus
remains the same modulo k.

Thus, λ preserves the statistics pki (0 ≤ i ≤ k − 1) on Q, and hence their sum
pk. But pk+ dd = n− 1 on Pk

n for any n ≥ 0, and therefore λ preserves the number
of double descents as well.

Applying cyclic lowering several times, we obtain an easy corollary of Lemma 2.5.

Corollary 2.6. For any k-Dyck path Q with the maximal down-step suffix of length
m ≥ 1, the map λi : Q(i) �→ κi(Q) on k-Dyck paths preserves peak heights modulo k
in each block Qj, 0 ≤ j ≤ km− 1.

We will call λi(Q(i)) = κi(Q) the cyclic i-lowering of Q(i). Note that κi(Q)
permutes blocks Qj as follows:

Q
(j)
j �→

{
Q

(j)
j+k−i, if j ≡ 0, 1, . . . , i− 1 (mod k),

Q
(j)
j−i, if j ≡ i, i+ 1, . . . , k − 1 (mod k).

Theorem 2.7. The statistics (pk0, pk1, . . . , pkk−2, pkk−1, dd) on Pk
n and (e1, e2, . . . ,

ek+1) on T k+1
n are equidistributed.

Proof. Any path P ∈ Pk
n has a unique decomposition as

P = P
(0)
0 uP

(1)
1 u . . . P

(k−1)
k−1 uP

(k)
k d, (2.2)

where each Pi, 0 ≤ i ≤ k, is a k-Dyck path. Let ni be the down-size of Pi, then∑k
i=0 ni = n− 1.

Let Pk = ∪n≥0Pk
n and T k+1 = ∪n≥0T k+1

n . To prove the theorem, we will give a
bijection ψ : Pk → T k+1 that maps peaks at heights i modulo k (i = 0, 1, . . . , k− 1)
of a k-Dyck path P of down-size n to (i + 1)-st children of a (k + 1)-ary tree ψ(P )
on n vertices, and maps double descents of P onto (k+1)-st (i.e. rightmost) children
in ψ(P ).

To do this, first label the peaks and double descents of P (i.e. the left endpoints
of all down-steps of P ) from left to right as follows:

• label the rightmost peak by r,

• label the left endpoint of a down-step ij if it is the j-th non-rightmost peak at
height i modulo k, where 0 ≤ i ≤ k − 1, and

• label the left endpoint of a down-step dj if it is the j-th double descent of P .
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For a tree T ∈ T k+1, let R be its root label, Ti be its i-th subtree, and write
T = R(T1, T2, . . . , Tk+1). Then define the map ψ as follows: let ψ(∅) = ∅ (i.e.
the one-point path corresponds to the empty tree), and for P �= ∅, define ψ(P )
recursively so that R = r and, for i = 0, 1, . . . , k, the (i + 1)-st subtree of ψ(P ) is
ψ(P )i+1 = ψ(κi(Pi)). In other words,

ψ(P ) = r
(
ψ(P0), ψ(κ(P1)), ψ(κ

2(P2)), . . . , ψ(κ
k−1(Pk−1)), ψ(κ

k(Pk)
)
, (2.3)

and we recall that κk(Pk) = Pk. As the root of ψ(P ) is already labeled with r, label
the rest of the vertices of ψ(P ) recursively as follows:

• for i = 0, 1, . . . , k−1, label the (i+1)-st child of the root of ψ(P ) (i.e. the root

of ψ(κi(Pi))) with the label of the rightmost peak of P
(i)
i (which is at height i

modulo k);

• label the (k+1)-st (i.e. the rightmost) child of the root of ψ(P ) (i.e. the root of

ψ(Pk)) with the label of the right endpoint of P
(k)
k (which is a double descent

if Pk �= ∅, since it is preceded and followed by a down-step). Recall that the

rightmost peak of P
(k)
k is also the rightmost peak of P , and hence its label has

already been used for the root of ψ(P ).

Now, proceeding inductively for each i = 0, 1, . . . , k, label the remaining (nonroot)
vertices of each ψ(κi(Pi)) with the labels of the corresponding non-rightmost peaks

or double descents of P
(i)
i . Note that the cyclic i-lowering λi may permute positions

of peaks and double descents of P
(i)
i but preserves peak heights modulo k. Therefore,

all (i + 1)-st children in ψ(P ) are labeled either ij (for some j) if 0 ≤ i ≤ k − 1, or
dj (for some j) if i = k (see Figure 2.1 and Example 2.8).

In particular, if P has down-size n, then ψ(P ) has n vertices. Moreover,

(pk0, pk1, . . . , pkk−1, dd)(P ) = (e1, e2, . . . , ek+1)(ψ(P )).

Finally, we see that Proposition 2.2 and Theorem 2.7 together imply Theorem
2.1.

Example 2.8. Figure 2.1 gives an example of the application of map ψ of Theorem
2.7, together with the corresponding mapping of the peaks and double descents of
a path P to the nodes of the corresponding tree ψ(P ). We label the peaks of P as
described in Theorem 2.7. In our example, k = 2, n = 10, and

P = uuduuuuududd︸ ︷︷ ︸
P0

u uuduuuuududd︸ ︷︷ ︸
P

(1)
1

u uud︸︷︷︸
P

(2)
2

d.

Then κ2 = id and ψ(P ) = (ψ(P0), ψ(κ(P1)), ψ(κ
2(P2))) = (ψ(P0), ψ(κ(P1)), ψ(P2)).

For P1 = uuduuuuududd, we use the other decomposition,

P1 = uud︸︷︷︸
P1,0

u ∅︸︷︷︸
P

(1)
1,1

u ∅︸︷︷︸
P

(2)
1,2

u uud︸︷︷︸
P

(3)
1,3

udd.
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Figure 2.1: An example of the application of map ψ, together with the corre-
sponding mapping of the peaks and double descents of a 2-Dyck path P to the
nodes of the ternary tree ψ(P ).

Since the ud . . . d suffix of P1 contains 2 d’s, we have that κ permutes the blocks P1,j,
j = 0, 1, 2, 3, according to π2 = (10)(32), i.e.

κ(P1) = ∅︸︷︷︸
P

(0)
1,1

u uud︸︷︷︸
P

(1)
1,0

u uud︸︷︷︸
P

(2)
1,3

u ∅︸︷︷︸
P

(3)
1,2

udd = uuuduuuduudd.

Note also that P0 = P1 in this example, but the subtrees ψ(P )1 = ψ(P0) and
ψ(P )2 = ψ(κ(P1)) of ψ(P ) corresponding to P0 and P1, respectively, are not equal
as ordered trees.

As a direct consequence of Theorem 2.7, we have the following corollary.

Corollary 2.9. The statistics pk0, pk1, . . . , pkk−1, dd are equidistributed on Pk
n for

n ≥ 0.

Moreover, the fact that dd(P ) = n − 1 − pk(P ) for P ∈ Pk
n , n ≥ 1, implies that

the distribution of each of pk0, pk1, . . . , pkk−1, dd on Pk
n is the reversed distribution

of pk on Pk
n .

Example 2.10. Letting k = 1, we obtain that (dd, pk) and (pk, dd) are equidis-
tributed on Dyck paths. In fact, the well-known bijection due to Deutsch [2], given
by η(∅) = ∅, η(P0uP1d) �→ η(P1)uη(P0)d on Dyck paths (more precisely, an involu-
tion) interchanges the dd and pk statistics. Since the distribution of pk is given by
the Narayana numbers N(n, r) = 1

n

(
n
r

)(
n

r−1

)
, 1 ≤ r ≤ n (see A001263 [5]), this yields

(yet another) bijective proof that N(n, r) = N(n, n− r).

http://oeis.org/A001263
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d

d
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d
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0 d
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0
1

(1, 1, 0)

0

d
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1
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(1, 1, 0)

0 0

(2, 0, 0)

Figure 2.2: Peak heights modulo 2 and double descents in 2-Dyck paths of
down-size 3. A non-rightmost peak at height imod 2 (i ∈ {0, 1}) is labeled
with i. A double descent is labeled with d. The rightmost peak is unlabeled.
Below each path P is the value of (pk0, pk1, dd)(P ).

Example 2.11. Letting k = 2, we see that dd, pk1 (odd-height non-rightmost peaks),
and pk0 (even-height non-rightmost peaks) are equidistributed on 2-Dyck paths, also
known as ternary paths (see Figure 2.2). The distribution of each of pk0, pk1, and
dd is given by A120986 [5], and the distribution of pk = pk0+ pk1 = n − 1 − dd is
given by A108767 [5].

The preceding results enable us now to calculate the joint distribution on Pk
n

(n ≥ 1) of the statistic (pk0, pk1, . . . , pkk−2, pkk−1, dd).

Corollary 2.12. The number of paths P ∈ Pk
n (n ≥ 1) such that (pk0, pk1, . . . ,

pkk−1, dd)(P ) = (r0, r1, . . . , rk−1, rk), where
∑k

i=0 ri = n− 1, is

1

n

k∏
i=0

(
n

ri

)
.

Moreover, for each statistic st ∈ {pk0, pk1, . . . , pkk−1, dd}, the number of paths P ∈
Pk

n (n ≥ 1) such that st(P ) = r is

1

n

(
n

r

)(
kn

n− 1− r

)
,

https://oeis.org/A120986
https://oeis.org/A108767
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whereas the number of paths P ∈ Pk
n (n ≥ 1) such that pk(P ) = r + 1 is

1

n

(
n

n− 1− r

)(
kn

r

)
=

1

n

(
n

r + 1

)(
kn

r

)
,

where 0 ≤ r ≤ n− 1.

Note that
∑k

i=0 ri = n− 1 in Corollary 2.12 since a down-step must be preceded

by an up-step or another down-step, so that
∑k

i=0 ri counts all the down-steps of P
except the one immediately after its rightmost peak.

Proof. Let f = f(x; q0, q1, . . . , qk−1, qk) be the generating function over the nonempty
k-Dyck paths defined by

f = f(x; q0, q1, . . . , qk−1, qk) =

∞∑
n=1

∑
P∈Pk

n

xn

(
k−1∏
i=0

q
pki(P )
i

)
q
dd(P )
k

=

∞∑
n=1

∑
T∈T k+1

n

xn

(
k∏

i=0

q
ei+1(T )
i

)
.

(2.4)

Then Theorem 2.7 and its proof imply that

f = x
k∏

i=0

(qif + 1). (2.5)

This functional equation follows from the decomposition (2.2). The k up-steps and 1

down-step not in any P
(i)
i , i = 0, 1, . . . , k, contribute the factor x, while P

(i)
i (unless

it is a single point) contributes the factor of qi due to its rightmost peak, which is at
height i mod k.

The number of paths P ∈ Pk
n such that (pk0, pk1, . . . , pkk−1, dd)(P ) = (r0, r1, . . . ,

rk−1, rk) is the coefficient of f at xn
∏k

i=0 q
ri
i . Applying Lagrange inversion (see e.g.

[7, Theorem 5.1.1]) to (2.5), we get that[
xn

k∏
i=0

qrii

]
f =

1

n

[
fn−1

k∏
i=0

qrii

](
k∏

i=0

(qif + 1)

)n

=
1

n

k∏
i=0

(
n

ri

)
,

which is the number of paths we want to enumerate.

The second and third statement of the corollary can be derived similarly by
setting all but one qi = 1 and noting that pk = n− 1− dd on Pk

n .

3 Extensions and generalizations

3.1 Paths with level steps

Theorem 2.1 can be extended to generalized colored Motzkin and Schröder paths as
follows. Let A be a subset of positive integers, and let c = (ca)a≥1 be a sequence of
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nonnegative integers such that ca = 0 exactly when a /∈ A. Consider a path P from
(0, 0) back to height 0 with unit steps u = (1, 1), d = (1,−k), and if A �= ∅, then
la,b = (a, 0) of color b, where 1 ≤ b ≤ ca, for all a ∈ A. Note that the case A = ∅
means that we exclude all level steps so as to generate the k-Dyck paths considered
in Section 2. We will call such paths (k, A, c)-paths, as this generalizes (k, a)-paths
defined in [4] for A = {a} and ca = 1, and let Pk,A,c

n be the set of (k, A, c)-paths of
length n. We also define the length of up, down, and level steps by |u| = 1, |d| = 1,
and |la,b| = a, and the length |P | of a path P as the sum of the lengths of its steps.

On such a (k, A, c)-path P , call the blocks dd and la,bd weak double descents, and
call blocks ud and ula,b, as well as the single step la,b if it is the leftmost step of P , weak
peaks (in each case here, a ∈ A and b ∈ [ca]). Extending our peak height definition
for k-Dyck paths, let the height of a weak peak be the second coordinate of the left
endpoint of the down or level step in the peak. Furthermore, on (k, A, c)-paths P ,
define the following statistics:

• wpki(P ), the number of non-rightmost weak peaks of P at heights i mod k,
where i = 0, 1, . . . , k − 1,

• wpk(P ) =
∑k−1

i=0 wpki(P ), the total number of non-rightmost peaks of P ,

• wdd(P ), the number of weak double descents of P .

Then we have the following unique decomposition:

P = L or P = P
(0)
0 uP

(1)
1 u . . . P

(k−1)
k−1 uP

(k)
k dL,

where each Pi is a (k, A, c)-path of down-size ni (such that 1+
∑k

i=0 ni = n, the down-
size of P ) and L is a block of level steps of allowed lengths and colors. Furthermore,
as before, for each path Pi we have the unique decomposition

Pi = P
(0)
i,0 uP

(1)
i,1 u . . . P

(kmi−1)
i,kmi−1 uDi,

where each Pi,j is a (k, A, c)-path and Di is block of down-steps and level steps (i.e.
no up-steps) containing exactly mi down-steps and possibly some level steps of any
allowed lengths and colors. Then it is easy to see that, for each i ∈ [0, k−1], the cyclic
i-lowering map λi that permutes the subpaths Pi,j in the same way as in Corollary
2.6, preserves weak peak heights modulo k as well as the number of weak peaks and
weak double descents in P

(i)
i . The preceding discussion implies the following result.

Theorem 3.1. The (k+1)-statistic (wpk0, wpk1, . . . , wpkk−1, wdd) on Pk,A,c
n is jointly

equidistributed with any of its permutations.

It is a rather straightforward exercise to adapt the bijective proof of Theorem 2.1
to prove Theorem 3.1, and we will leave it to the reader. Instead, we will give a
short generating function argument similar to that given in Corollary 2.12 so as not
to repeat essentially the same proof with minor variations.
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Figure 3.1: Weak peaks and weak double descents in Motzkin paths of length
5. A non-rightmost weak peak is labeled with 0 (the only remainder modulo
k = 1). A weak double descent is labeled with d. The rightmost weak peak is
unlabeled. Below each path P is the value of (wpk, wdd)(P ).

Proof. Let cA(x) =
∑

a∈A cax
a and Pk,A,c = ∪∞

n=0Pk,A,c
n , and

fk,A,c = fk,A,c(x; q0, q1, . . . , qk−1, qk) =
∑

P∈Pk,A,c\{∅}

x|P |

(
k−1∏
i=0

q
wpki(P )
i

)
q
wdd(P )
k . (3.1)

Then, from the path decompositions above and the cyclic i-lowering maps, we obtain
the functional equation

fk,A,c = cA(x)(fk,A,c + 1) + xk+1

k∏
i=0

(qifk,A,c + 1), (3.2)

Now notice that Equation (3.2) is symmetric in the variables q0, q1 . . . , qk.

Note also that cA(x) = 0 if A = ∅, so letting A = ∅ yields Theorem 2.1.

Example 3.2. Letting k = 1, we obtain the joint equidistribution of (wdd, wpk)
and (wpk, wdd) on Motzkin paths by setting A = {1}, c1 = 1 (see Figure 3.1 for an
example), and on Schröder paths by setting A = {2}, c2 = 1.

3.2 Ballot paths

We can also generalize Theorem 2.1 to left prefixes of k-Dyck paths starting at (0, 0)
and ending at height less than k. Define a (k,m)-ballot path of down-size n to be
a path from (0, 0) to ((k + 1)n +m,m) with steps u = (1, 1) and d = (1,−k). Let
Pk,m be the set of (k,m)-ballot paths, and let Pk,m

n be the set of (k,m)-ballot paths
of down-size n.

Let m ≡ r (mod k), so that m = �k+r for some integers � ≥ 0 and 0 ≤ r ≤ k−1.
Our key observation here is that, for m �≡ 0 (mod k), a (k,m)-ballot path is a prefix
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of some k-Dyck path, and moreover, it can only be extended on the right to a k-
Dyck path by using at least some up-steps (as well as down-steps). Thus, any suffix
extending a (k,m)-ballot path to a k-Dyck path must contain a peak. Therefore, we
need to modify the statistics we consider by letting pk∗i (P ) be the number of peaks
in (k,m)-ballot path P at heights i mod k (so these statistics count the rightmost
peak as well).

Theorem 3.3. Let m, � ≥ 0 and 0 ≤ r ≤ k − 1 be integers such that m = �k + r.
Then for any 0 ≤ r ≤ k − 1,

• the (r+1)-statistic (pk∗0, . . . , pk
∗
r) on Pk,m

n is jointly equidistributed with any of
its permutations.

• the (k−r−1)-statistic (pk∗r+1, . . . , pk
∗
k−1) on Pk,m

n is jointly equidistributed with
any of its permutations.

Proof. Note that any (k,m)-ballot path P can be uniquely decomposed as

P = P
(0)
0 uP

(1)
1 u . . . uP

(m−1)
m−1 uP (m)

m , (3.3)

where each Pi, i = 0, 1, . . . , m, is a k-Dyck path, on which the multistatistics
(pk0, . . . , pkr) and (pkr+1, . . . , pkk−1) are jointly equidistributed with any of their
respective permutations. The only peaks not counted by the unstarred statistics are
the rightmost peaks. Note that the rightmost peak of each subpath P

(i)
i is at height

i mod k. Thus, � + 1 of these subpaths, if nonempty, have their rightmost peak at
heights in [0, r] modulo k, whereas only � of these subpaths, if nonempty, have their
rightmost peak at heights in [r + 1, k − 1] modulo k. Thus, for i = 0, 1, . . . , k − 1,

pk∗i (P ) =
m∑
j=0

pk∗i (P
(j)
j ) =

{∑m
j=0 pki(P

(j)
j ) +

∑�
j=0[Pkj+i �= ∅], if 0 ≤ i ≤ r,∑m

j=0 pki(P
(j)
j ) +

∑�−1
j=0[Pkj+i �= ∅], if r+1 ≤ i ≤ k−1,

=

{∑m
j=0 pki(κ

j(Pj)) +
∑�

j=0[Pkj+i �= ∅], if 0 ≤ i ≤ r,∑m
j=0 pki(κ

j(Pj)) +
∑�−1

j=0[Pkj+i �= ∅], if r + 1 ≤ i ≤ k − 1,

(3.4)

where κ is the cyclic shift map defined on page 275 and, as before, [·] is the Iverson
bracket.

The distribution of these statistics can be computed as well. Let

gk,m = gk,m(x; q0, q1, . . . , qk) =

∞∑
n=0

∑
P∈Pk,m

n

xn

(
k−1∏
i=0

q
pk∗i (P )
i

)
q
dd(P )
k , (3.5)

then, from (3.4),

gk,m = gk,�k+r =

(
r∏

i=0

(qif + 1)

)�+1( k−1∏
i=r+1

(qif + 1)

)�

, (3.6)
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where the function f is defined in (2.4) and satisfies (2.5). The multipliers qi in (3.6)

correspond to the fact that the rightmost peak of a nonempty P
(kj+i)
kj+i is at height

i modulo k. From (2.5), f is symmetric in q0, . . . , qk, and therefore it is clear from
(3.6) that gk,�k+r is symmetric in q0, . . . , qr as well as in qr+1, . . . , qk−1.

Applying Lagrange inversion to (3.6) as in Corollary 2.12 yields after some routine
manipulations that the number of paths P ∈ Pk,�k+r

n with (pk∗0, . . . , pk
∗
k−1, dd)(P ) =

(s0, . . . , sk−1, sk), where
∑k

i=0 si = n ≥ 1, is

[
xn

k∏
i=0

qsii

]
gk,�k+r

=
1

n

(
�+ 1

n+�+1

r∑
i=0

si +
�

n+�

k−1∑
i=r+1

si

)(
r∏

i=0

(
n+�+1

si

))( k−1∏
i=r+1

(
n+�

si

))(
n

sk

)
. (3.7)

Note that letting � = 0 and r = 0 in (3.7) yields the result of Corollary 2.12,
since (r0, r1, . . . , rk) in Corollary 2.12 is equal to (s0 − 1, s1, . . . , sk) in the notation
of (3.7).

Example 3.4. Letting k = 2 and r = 1, we see that statistics (pk∗0, pk
∗
1) and

(pk∗1, pk
∗
0) are equidistributed on (2, 1)-ballot paths of down-size n. In particular,

statistics pk∗0 (even-height peaks) and pk
∗
1 (odd-height peaks) are equidistributed on

those paths. For an example of this, see the last 7 paths in Figure 2.2 (rightmost
three in row 2 and all of row 3), delete the rightmost ud from each of those, and
ignore the dd statistic.

The above result can be generalized for the weak versions of the corresponding
statistics.

Let A and c be defined as for (k, A, c)-paths. Define a (k, A, c,m)-path of down-
size n to be a path from height 0 to height m ∈ [0, k − 1] with steps u = (1, 1),
d = (1,−k), and any level steps la,b = (a, 0) of color b, for a ∈ A and b ∈ [ca]. Note
that a (k, A, c,m)-path of down-size n (i.e. with n down-steps) has kn+m up-steps.
Let Pk,A,c,r

n be the set of such paths, and let Pk,A,c,m = ∪∞
n=0Pk,A,c,m

n . Note that
Pk,A,c

n = Pk,A,c,0
n , and therefore, Pk,A,c = Pk,A,c,0. Let wpk∗i (P ) (i = 0, 1, . . . , k − 1)

be the number of (possibly rightmost) weak peaks of P at heights i mod k. Then
we have the following result.

Theorem 3.5. Let m, � ≥ 0 and 0 ≤ r ≤ k − 1 be integers such that m = �k + r.
Then for any 0 ≤ r ≤ k − 1,

• the (r+ 1)-statistic (wpk∗0, . . . , wpk
∗
r) on Pk,A,c,m

n is jointly equidistributed with
any of its permutations.

• the (k − r − 1)-statistic (wpk∗r+1, . . . , wpk
∗
k−1) on Pk,A,c,m

n is jointly equidis-
tributed with any of its permutations.
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Proof. Note that any (k, A, c,m)-path P can be uniquely decomposed as

P = P
(0)
0 uP

(1)
1 u . . . P

(m−1)
m−1 uP (m)

m , (3.8)

where each Pi, i = 0, 1, . . . , m, is a (k, A, c)-path. Define

gk,A,c,m = gk,A,c,m(x; q0, q1, . . . , qk) =
∑

P∈Pk,A,c,r

x|P |

(
k−1∏
i=0

q
wpk∗i (P )
i

)
q
wdd(P )
k , (3.9)

then the decomposition (3.8) implies, as in the proof of Theorem 3.3, that

gk,A,c,m = gk,A,c,�k+r = xm

(
r∏

i=0

(qifk,A,c + 1)

)�+1( k−1∏
i=r+1

(qifk,A,c + 1)

)�

,

where fk,A,c is defined in (3.1) and satisfies (3.2), which is symmetric in q0, . . . , qk.
Therefore, gk,A,c,�k+r is symmetric in q0, . . . , qr and in qr+1, . . . , qk−1.

It would also be interesting to find a natural generalization of these results to more
general families of lattice paths, including walks and bridges [1], where the paths are
allowed go below the x-axis. However, given up-steps (1, 1), down-steps (1,−k), and
an arbitrary set of level steps as unit path steps, the peak height statistics modulo
k considered in this paper are no longer equidistributed either on walks (paths that
may go below the x-axis and end anywhere) or on bridges (walks that end on the
x-axis).

Acknowledgements

The author would like to thank Lou Shapiro, Sergey Kirgizov, Sam Hopkins, and the
anonymous referees for their valuable suggestions on improving the presentation of
the results.

References

[1] C. Banderier and P. Flajolet, Basic analytic combinatorics of directed lattice
paths, Theor. Comp. Sci. 281 (2002), 37–80.

[2] E. Deutsch, An involution on Dyck paths and its consequences, Discrete Math.
204 (1999), 163–166.

[3] I. DeJager, M. Naquin, F. Seidl and P. Drube, Colored Motzkin paths of higher
order, J. Integer Seq. 24 (2021); Article 21.4.6.

[4] T. Mansour and M. Shattuck, Counting humps and peaks in generalized Motzkin
paths, Discrete Appl. Math. 161 (2013), 2213–2216.

https://cs.uwaterloo.ca/journals/JIS/VOL24/Drube/drube7.html


A. BURSTEIN /AUSTRALAS. J. COMBIN. 85 (3) (2023), 273–286 286

[5] N. J.A. Sloane, Ed., The On-Line Encyclopedia of Integer Sequences,
https://oeis.org, 2020.

[6] R. P. Stanley, Enumerative Combinatorics vol. 2, Cambridge University Press,
1999.

[7] H. S. Wilf, generatingfunctionology 2nd ed., Academic Press Inc., Boston, MA,
1994.

(Received 7 Jan 2022; revised 8 Jan 2023, 23 Jan 2023)

https://oeis.org

	Introduction
	Main results
	Extensions and generalizations
	Paths with level steps
	Ballot paths


