
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 83(1) (2022), Pages 129–140

Upper and lower bounds on the size of Bk[g] sets

Griffin Johnston Michael Tait∗

Department of Mathematics & Statistics
Villanova University

Villanova, PA, U.S.A.xa
jjohns79@villanova.edu michael.tait@villanova.edu

Craig Timmons†

Department of Mathematics and Statistics
California State University Sacramento

U.S.A.
craig.timmons@csus.edu

Abstract

A subset A of the integers is a Bk[g] set if the number of k-element
multisets from A that sum to any fixed integer is at most g. Let Fk,g(n)
denote the maximum size of a Bk[g] set in {1, . . . , n}. In this paper we
improve the best-known upper bounds on Fk,g(n) for g > 1 and k large.
When g = 1 we match the best upper bound of Green with an improved
error term. Additionally, we give a lower bound on Fk,g(n) that matches
a construction of Lindström while removing one of the hypotheses.

1 Introduction

We will denote the set {1, 2, . . . , n} by [n]. Given natural numbers k and g, a subset
of Z is called a Bk[g] set if for any m there are at most g multisets {x1, . . . , xk} such
that x1 + · · · + xk = m and xi ∈ A. Determining bounds on the maximum size of
a Bk[g] set in [n] is a difficult and well-studied problem and it is the focus of this
paper. Let Fk,g(n) be the maximum size of a Bk[g] set in [n].

When k = 2 and g = 1, B2[1] sets are called Sidon sets. They have been studied
extensively since being introduced by Sidon [28] in the context of Fourier series, and
then studied further by Erdős and Turán [14] from a combinatorial perspective. It
is known [5, 14] that F2,1(n) ∼ n1/2, and determining whether or not F2,1(n) =
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n1/2 + O(1) is a 500 USD Erdős problem [13]. Very recently the error term was
improved by Balogh, Füredi, and Roy [2] to F2,1(n) ≤ n1/2+0.998n1/4 for sufficiently
large n. This represents the first improvement upon the error term in over 50 years.

For other choices of k and g, the asymptotic behavior of Fk,g(n) has not been
determined, yet there are upper and lower bounds that give the order of magnitude
as a function of n. First we discuss upper bounds.

If A is a Bk[g] set contained in [n], then each of the
(|A|+k−1

k

)
k-element multisets

from A determines a sum which is an integer in [kn]. Each such integer can appear
as a sum at most g times so that

(|A|+k−1
k

) ≤ gkn. This implies Fk,g(n) ≤ (gk!kn)1/k

which is known as the trivial bound. When g = 1, a Bk[g] set is often called a Bk set.
Nontrivial bounds on the size of a Bk set were proved by Jia [18] and Kolountzakis
[19] for k even, and by Chen [7] for k odd. These bounds show that

Fk,1(n) ≤
(⌊

k

2

⌋
!

⌈
k

2

⌉
!kn

)1/k

+Ok(1). (1.1)

When k is large, these bounds were improved by Green [17], who proved

Fk,1(n) ≤
(⌈

k

2

⌉
!

⌊
k

2

⌋
!

√
πk

2
(1 + εk)n

)1/k

. (1.2)

It is noted (see page 379 of [17]) that εk can be taken to be O(k−1/8).

For g > 1, Cilleruelo, Ruzsa, and Trujillo [10] improved the trivial bound by
showing

Fk,g(n) ≤
(

k!kgn

1 + cosk(π/k)

)1/k

. (1.3)

Cilleruelo and Jiménez-Urroz [8], using an idea attributed to Alon, showed

Fk,g(n) ≤
(√

3kk!gn
)1/k

. (1.4)

When 3 ≤ k ≤ 6, (1.3) is a better bound while (1.4) is better for large k. Currently
the best general upper bound, proved by the third author [31], is

Fk,g(n) ≤ (1 + o(1))

(
xkk!kgn

π

)1/k

. (1.5)

Here xk is the unique real number in (0, π) that satisfies sinxk

xk
=
(

4
3−cos(π/k)

− 1
)k

.

In [31] it is shown that this upper bound is better than both (1.3) and (1.4), but
that xkk!kg

π
→ √

3kk!g as k → ∞.

Our first main theorem is an upper bound for large k that improves (1.5) and
matches (1.2). Our theorem improves the error term in (1.2) from O(k−1/8) [17] to
O(k−1/3).

Theorem 1.6. Let A ⊂ [n] be a Bk[g] set.
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(i) When g = 1

|A| ≤
(⌈

k

2

⌉
!

⌊
k

2

⌋
!

√
πk

2
(1 +O(k−1/3))n

) 1
k

,

and

(ii) when g > 1

|A| ≤
(√

πk

2
k!g(1 +O(k−1/3))n

) 1
k

.

The proof of Theorem 1.6 uses a Berry-Esseen type theorem [4, 15] and is inspired
by the recent work of Dubroff, Fox, and Xu [12] who used a similar technique applied
to the Erdős distinct subset sums problem.

Next we turn to lower bounds. Bose and Chowla [5] constructed a Bk set of size
q in Zqk−1 for q an odd prime power. This implies that Fk,1(n) ≥ (1 − o(1))n1/k.
Lindström [20] showed that

Fk,g(n) ≥ (1− o(1))(gn)1/k, (1.7)

when g = mk−1 for some integer m. Cilleruelo and Jiménez-Urroz [8] proved that for
any ε > 0, there exists a constant g(k, ε) so that for g > g(k, ε)

Fk,g(n) ≥
(
(1− ε)

√
πk

6
gn

)1/k

. (1.8)

Our second main theorem matches the bound in (1.7) and removes the requirement
that g = mk−1.

Theorem 1.9. For any integers k ≥ 2 and g ≥ 1, we have Fk,g(n) ≥ (1 −
o(1))(gn)1/k.

Before continuing the discussion it is important to note that shortly after a
preprint of this article was made available the authors were notified by Carlos Tru-
jillo that, while not stated explicitly, Theorem 1.9 follows from results of Caicedo,
Gómez, and Trujillo [6]. The proof ideas are similar with the notable difference that
[6] works first in a general setting, and then specializes to known Bh-sets. In our
work we focus only on Bose-Chowla Bh sets and consequently, the proof of the lower
bound Fk,g(n) ≥ (1 − o(1))(gn)1/k is shorter. However, we recommend [6] for de-
tails on this technique and how it can be applied to Bh sets of Bose and Chowla,
Ruzsa, and Gómez and Trujillo. We leave in the details of the proof of Theorem
1.9 for completeness and because it includes a density of primes argument that gives
an asymptotic lower bound for all n; the theorem in [6] applies only to an infinite
sequence of n.

Previous work on bounding Fk,g(n) is extensive and we have not included all of
it. In particular, there are numerous papers that consider the case when k = 2 and
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g > 1 (e.g. [9, 11, 19, 22, 23, 32, 33]). For more information, see the surveys of
Plagne [26] and O’Bryant [25]. In Section 2 we prove Theorem 1.6 and in Section 3
we prove Theorem 1.9.

2 Upper bounds

For a finite set S ⊂ N, we define E(S) = 1
|S|
∑

s∈S s and Var(S) = 1
|S|
∑

s∈S(s−E(S))2.
For any random variable X let fX be its probability distribution function and let FX

be its cumulative distribution function.

Assume that A is a Bk[g] set in [n]. To give an upper bound for the size of A,
we will consider the distribution of sums of random elements of A. Define random
variables Xi that are independent and identically distributed by

P(Xi = a− E(A)) =
1

|A|
for every a ∈ A. Note that E(Xi) = 0 and Var(Xi) = Var(A). Define δ such that

Var(A) = δn2. Any set of natural numbers up to n has variance at most (n−1)2

4
and

so δ ≤ 1/4.

The details split into two cases depending on whether g = 1 or g > 1. When
g = 1 we take advantage of the fact that if A is a Bk[1] set, then for any c ∈ Z there
is at most one solution (up to rearranging) to the equation

a1 + · · ·+ a�k/2� − a�k/2�+1 − · · · − ak = c, (2.1)

where a1, . . . , ak ∈ A.

When g > 1, if A is a Bk[g] set, then there are at most g solutions (up to
rearranging) to the equation

a1 + · · ·+ ak = c. (2.2)

Define

Y1 = X1 + · · ·+X�k/2�
Y2 = X�k/2�+1 + · · ·+Xk

Y = Y1 − Y2

Z = X1 + · · ·+Xk.

When g = 1 we will consider the random variable Y and when g > 1 we will
consider Z.

In [8], Cilleruelo and Jiménez-Urroz give an upper bound on the size of a Bk[g]
set for g > 1 that depends on the variance of the set. Their proof is easily modified
to include the g = 1 case. For our purposes it is more convenient to phrase the result
in terms of the variance of the set. We give a short proof for completeness.
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Theorem 2.3 (Theorem 1.1 in [8]). Let k, g ∈ N be fixed. If A is a Bk[g] set in [n],
then for g = 1 we have

|A|2k
12
(�k

2
�!
k

2
�!)2 ≤ (k + o(1))Var(A),

and for g > 1 we have
|A|2k

12(gk!)2
≤ (k + o(1))Var(A).

Proof. For convenience we assume that |A|k is divisible by �k
2
�!
k

2
�! when g = 1 and

by gk! when g > 1. If this is not the case, then we may truncate A and let the o(1)
terms account for the difference.

Because the Xi are independent, we have that Var(Y ) = Var(Z) = kVar(A). To
lower bound this quantity, observe that the variance of Y or Z is as small as possible
when the values taken by the random variables are as close together as possible. By
(2.1) and (2.2), when we look at all outputs of Y or Z, each output can occur at
most �k

2
�!
k

2
�! times for g = 1 and at most gk! times for g > 1. Hence, we have that

the variance is bounded below by the variance of the multiset of integers from 1 to

� where � = |A|k
�k
2
�!�k

2
�! when g = 1, and where � = |A|k

gk!
when g > 1. Since each integer

occurs the same number of times in this multiset, the variance of the multiset is the
same as that of the discrete uniform distribution of integers up to �. This is given by

Var({1, . . . , �}) = �2 − 1

12
,

and the result follows.

When k gets large, we can improve Theorem 2.3 by using more precise information
about Y and Z than the variance. As k goes to infinity, these distributions will be
close to normal distributions, and we use a Berry-Esseen [4, 15] theorem to quantify
this.

Theorem 2.4 (Berry-Esseen). Let X1, . . . , Xn be independent random variables with
E[Xi] = 0, E[X2

i ] = Var(Xi) and E[|Xi|3] = ρi < ∞. Let X = X1 + · · · + Xn,
σ2 = E[X2], and ψ = σ−3 ·∑n

i=1 ρi. Then

sup
x∈R

|FX(x)− Φ(x)| ≤ 0.56ψ,

where FX(x) and Φ(x) are the cumulative distribution functions for X and the normal
distribution with mean zero and standard deviation σ respectively.

One brief remark before continuing is that our proof does not depend on the value
of the constant 0.56; any constant here would work as it will be absorbed into an
error term. The 0.56 constant we use is proved in [27].
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By Theorem 2.4, for any j we can approximate X1+ · · ·+Xj by a normal random
variable with mean 0 and variance jδn2 by using

ρi = E[|Xi|3] ≤ nE[X2
i ] = δn3,

σ2 = Var(X) = jVar(Xi) = jδn2,

ψ =
1

σ3

j∑
i=1

ρi ≤ jδn3

j3/2δ3/2n3
=

1√
jδ
.

(2.5)

We will approximate Y1 by a normal distribution N (0, �k
2
�δn2) that has proba-

bility distribution ϕ1(x) and cumulative distribution function Φ1(x). Similarly, let
N (0, 
k

2
�δn2) and N (0, kδn2) have probability distribution functions ϕ2(x) and ϕ(x)

and cumulative distribution functions Φ2(x) and Φ(x), respectively. Since FY1 and
FY2 are close to Φ1 and Φ2 by Theorem 2.4, we have that FY is close to Φ, quantified
by the following lemma.

Lemma 2.6. For Φ the cumulative distribution function of N (0, kδn2), we have

sup
x

|FZ(x)− Φ(x)| ≤ 0.56√
kδ
,

and

sup
x

|FY (x)− Φ(x)| ≤ 4 · 0.56√

k
2
�δ
.

Proof. The first inequality follows from Theorem 2.4 and (2.5). Now we prove the
second. Since Y = Y1 − Y2 we have that fY (x) = (fY1 ∗ f−Y2)(x). We also have
ϕ = ϕ1 ∗ ϕ2. Let x be arbitrary. Then

|FY (x)− Φ(x)| =
∣∣∣∣
∫ x

−∞
fY1 ∗ f−Y2 − ϕ1 ∗ ϕ2

∣∣∣∣
=

∣∣∣∣
∫ x

−∞
ϕ2 ∗ (fY1 − ϕ1) + ϕ1 ∗ (f−Y2 − ϕ2) + (fY1−ϕ1) ∗ (f−Y2−ϕ2)

∣∣∣∣
≤
∣∣∣∣
∫ x

−∞
ϕ2 ∗ (fY1 − ϕ1)

∣∣∣∣+
∣∣∣∣
∫ x

−∞
ϕ1 ∗ (f−Y2 − ϕ2)

∣∣∣∣
+

∣∣∣∣
∫ x

−∞
(fY1 − ϕ1) ∗ (f−Y2 − ϕ2)

∣∣∣∣ .
We use Theorem 2.4 to show that each of the final three terms are small.

∣∣∣∣
∫ x

−∞
ϕ2 ∗ (fY1 − ϕ1)

∣∣∣∣ =
∣∣∣∣
∫ x

−∞

∫ ∞

−∞
ϕ2(z − y)

(
fY1(y)− ϕ1(y)

)
dzdy

∣∣∣∣
=

∣∣∣∣
∫ x

−∞
fY1(y)− ϕ1(y) dy

∫ ∞

−∞
ϕ2(z − y)dz

∣∣∣∣
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=

∣∣∣∣
∫ x

−∞
fY1(y)− ϕ1(y) dy

∣∣∣∣
∣∣∣∣
∫ ∞

−∞
ϕ2(z − y)dz

∣∣∣∣
≤ sup

x∈R
|FY1(x)− Φ1(x)|

∣∣∣∣
∫ ∞

−∞
φ2(z − y)dz

∣∣∣∣
≤ 0.56√

δ�k
2
�

where the last inequality follows because ϕ2 is a probability distribution function
and from (2.5). Similarly, noting that ϕ2 is symmetric around 0, we have that∣∣∣∣

∫ x

−∞
ϕ1 ∗ (f−Y2 − ϕ2)

∣∣∣∣ ≤ 0.56√
δ
k

2
�
,

and∣∣∣∣
∫ x

−∞
(fY1 − ϕ1) ∗ (f−Y2 − ϕ2)

∣∣∣∣ ≤
∣∣∣∣
∫ x

−∞
fY1 ∗ (f−Y2 − ϕ2)

∣∣∣∣+
∣∣∣∣
∫ x

−∞
ϕ1 ∗ (f−Y2 − ϕ2)

∣∣∣∣
≤ 2

0.56√
δ
k

2
�

We now have everything that we need to prove Theorem 1.6.

Proof of Theorem 1.6. Let k and g be fixed and assume that A is a Bk[g] set in [n].
As before, let Var(A) = δn2. If δ < π

24
, then we may apply Theorem 2.3 to obtain

the claimed upper bound. Hence, for the remainder of the proof we may assume that
π
24

≤ δ ≤ 1
4
. Since the Xi are independent, we have that the standard deviations

of the random variables Y and Z are the same and we will denote this quantity by
σ. We will consider the probability of the events that −t < Y ≤ t and −t < Z ≤ t
where t is an integer that will be chosen later. For g = 1, by Lemma 2.6 and the
assumption that δ ≥ π/24, we have that

|FY (x)− Φ(x)| ≤ 4 · 0.56√

k
2
� π
24

for all x. Hence,

P[−t < Y ≤ t] = FY (t)− FY (−t)
= Φ(t)− Φ(−t)−

(
(FY (−t)− Φ(−t)) − (FY (t)− Φ(t))

)
≥ Φ(t)− Φ(−t)−

∣∣∣FY (−t)− Φ(−t)
∣∣∣− ∣∣∣FY (t)− Φ(t)

∣∣∣
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≥ Φ(t)− Φ(−t)− 8 · 0.56√

k
2
� π
24

=
1

σ
√
2π

∫ t

−t

exp(− x2

2σ2
)dx− 4.48√


k
2
� π
24

≥ (2t) · exp (− t2

2σ2 )

σ
√
2π

− 4.48√

k
2
� π
24

.

On the other hand, by (2.1), we have that for any fixed x

P[Y = x] ≤
(⌈

k

2

⌉
!

)(⌊
k

2

⌋
!

)
|A|−k.

Combining these two inequalities yields

(2t) · exp (− t2

2σ2 )

σ
√
2π

− 4.48√

k
2
� π
24

≤ P[−t < Y ≤ t] ≤ (2t)

(⌈
k

2

⌉
!

)(⌊
k

2

⌋
!

)
|A|−k.

Using the inequality 1− x ≤ e−x for all x and σ2 ≥ kπn2/24, we have

e
−t2

2σ2 ≥ 1− t2

2σ2
≥ 1− 12t2

πkn2
.

Applying this inequality, dividing both sides by 2t and using σ ≤
√
kn
2

leads to

1− 12t2

πkn2

n
√
πk/2

− 4.48

2t
√


k
2
� π
24

≤
(⌈

k

2

⌉
!

)(⌊
k

2

⌋
!

)
|A|−k.

Setting t = k1/3n, we find that s

1− 12
πk1/3

n
√
πk/2

−
4.48

2k1/3n
√

�k
2
� π
24

· n√πk/2

n
√
πk/2

≤
(⌈

k

2

⌉
!

)(⌊
k

2

⌋
!

)
|A|−k.

Rearranging gives the result for g = 1. For g > 1 we use (2.2) and have that

P[Z = x] ≤ gk!|A|−k

for any x. Performing a similar calculation on P(−k1/3n < Z ≤ k1/3n) gives the
result and we omit these details.
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3 Lower Bounds

In this section we prove Theorem 1.9. The idea is to begin with a known construction
of a Bk[1] set and then consider the image of that set in a quotient group. This idea
has been used in other extremal graph theory and combinatorial number theory
problems before [1, 2, 16, 21, 24, 30]. In particular, and as noted in the discussion
following Theorem 1.9, Caicedo, Gómez, and Trujillo [6] contains a more general
approach in comparison to what is done here.

Let g and k be fixed positive integers with k ≥ 2. Assume that q is a power of
prime such that g divides q− 1. Let Fqk be the finite field with qk elements and let θ
be a generator of the multiplicative group F

∗
qk of nonzero elements of Fqk . Bose and

Chowla [5] proved that

A = {a ∈ Zqk−1 : θ
a − θ ∈ Fq}

is a Bk[1] set in Zqk−1. Let μ = qk−1
g

and let H be the subgroup of Zqk−1 generated
by μ. Thus, H is the unique subgroup of Zqk−1 with g elements.

Next we prove a lemma that is crucial to the construction. This lemma is essen-
tially known (Lemma 2.2 of [29] or Lemma 2.1 of [3]). A short proof is included for
completeness.

Lemma 3.1. If g, k, q, H and A are given as above and A−A := {a− b : a, b ∈ A},
then (A− A) ∩H = {0}.

Proof. Suppose a, b ∈ A and a−b ∈ H . There is an element s ∈ {0, 1, . . . , g−1} such
that a− b ≡ sμ(mod qk − 1), so θa−b = θsμ in Fqk . Let α, β ∈ Fq satisfy θa = θ + α

and θb = θ + β. Observe that (θsμ)q−1 = (θq
k−1)

s(q−1)
g = 1 and so θsμ ∈ Fq. From

θa−b = θsμ it follows that θ + α = θsμ(θ + β) so

(θsμ − 1)θ + θsμβ − α = 0.

The minimal polynomial of θ over Fq has degree k ≥ 2 and so we must have θsμ−1 = 0
and θsμβ − α = 0. In particular, the first equation implies s = 0 and so a ≡
b(mod qk − 1).

In the quotient group Γ := Zqk−1/H , let AH = {a + H : a ∈ A}. If a + H =
b +H for some a +H, b +H ∈ AH , then a − b ∈ H which, by Lemma 3.1, implies
a ≡ b(mod qk − 1). Hence, q = |A| = |AH |. Next we prove that AH is a Bk[g] set in
Γ. Suppose c +H ∈ Γ and we have

a1 +H + · · ·+ ak +H = c+H (3.2)

for some ai + H ∈ AH . We will show that there are at most g such solutions up
to the ordering of the terms on the left hand side of (3.2). Indeed, (3.2) implies
a1 + · · · + ak ≡ c + h(mod qk − 1) for some h ∈ H . There is at most one multiset
{a1, . . . , ak} from A that is a solution to this equation. As there are g choices for h,



G. JOHNSTON ET AL. /AUSTRALAS. J. COMBIN. 83 (1) (2022), 129–140 138

there will be at most g multisets {a1 +H, . . . , ak +H} from AH that are solutions
to (3.2). Therefore, AH is a Bk[g] set in Γ.

We now finish the proof using a density of primes argument. For positive integers
x, c, and m, let π(x; c,m) be the number of primes p for which p ≤ x and p ≡
c(mod m). Writing φ for the Euler phi function, the Prime Number Theorem in
Arithmetic Progressions states that if gcd(c,m) = 1, then

π(x; c,m) =
x

φ(m) lnx
+O

(
x

ln2 x

)
.

Let α = 
(1− ε)1/k(gn)1/k� and β = 
(gn)1/k�. We then have

π(β; 1, g)− π(α; 1, g) ≥ 1

φ(g)

(
β

lnβ
− α

lnα
− O

(
β

ln2 β

))
. (3.3)

For large enough n depending on ε, g, and k, the right hand side of (3.3) is positive
since x

log x
is strictly increasing for x > e. Thus, there is a prime q with q ≡ 1(mod g)

and α ≤ q ≤ β. We can then choose a Bk[g]-set A in the group Zqk−1/H where
|A| = q. This group is isomorphic to the cyclic group Z(qk−1)/g and we let A′ be a

Bk[g]-set in this cyclic group. Since q ≤ β, we have qk−1
g

≤ n. Therefore, we can

view A′ as a subset of {1, 2, . . . , n} and under integer addition, A′ is still a Bk[g]-set.
It remains to show that q ≥ (1− o(1))(gn)1/k, but this follows from the definition of
α and the inequality q ≥ α. We conclude that for all positive integers g and k with
k ≥ 2,

Fk,g(n) ≥ (1− o(1))(gn)1/k.
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