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1 Introduction

Let ¢ be a non-negative integer. A c-partite or multipartite tournament is a digraph
obtained from a complete c-partite graph by orienting each edge. In 1999, Volk-
mann [3] developed the first contributions in the study of the structure of strongly
connected subtournaments in multipartite tournaments. He proved that every almost
regular c-partite tournament contains a strongly connected subtournament of order
p for each p € {3,4,...,c—1}. In the same paper he also proved that, if each partite
set of an almost regular c-partite tournament has at least % — 6 vertices, then there
exists a strong subtournament of order c. In 2008 Volkmann and Winzen [5] proved
that every almost regular c-partite tournament has a strongly connected subtourna-
ment of order ¢ for ¢ > 5. In 2011, Xu et al. [6] proved that every vertex of a regular
c-partite tournament with ¢ > 16 is contained in a strong subtournament of order p
for every p € {3,4,...,c}. The following problem was posed by Volkmann [4]:

Determine further sufficient conditions for (strongly connected) c-partite tourna-
ments to contain a strong subtournament of order p, for some 4 < p < c. How close
to reqular must a c-partite tournament be, to secure a strongly connected subtourna-
ment of order c?

In this direction, in [2] in 2016 we proved that for every (not necessarily strongly
connected) balanced c-partite tournament 7" of order n > 6, if the global irregularity

£ T is at most — then T contai trongl ted t t of
O 1S al Most ——————— en contams a stron connecte ournament o
/et 26 &Y

order ¢. A c-partite tournament is balanced if all partite sets contain the same
number of vertices.

We follow all the definitions and notation of [1]. Let G be a c-partite tournament
of order n with partite sets {V;}¢_;. We denote by G, . a balanced c-partite tourna-
ment satisfying |V;| = r for every i € [c¢], where [¢] = {1,...,c}. Throughout this
paper |V;| = r for each i € [c].

Let G be a ¢-partite tournament. For z € V(G) and ¢ € [¢], the out-neighborhood
of © in Vi is Nj*(z) = V; N N*(x); the in-neighborhood of z in V; is N; (z) =
Vi N~ (2); df (2) = [N (@)l; d; () = [Ni" ()] and 8(G) = min {d"(x),d" (x)}.

For an oriented graph D, the global irreqularity of D is defined as
ig(D) = max (max{d*(z),d (z)} —min{d*(y),d" (y)}).

z,yeV (D)
If i,(D) = 0 (i,(D) < 1, respectively) D is regular (almost regular, respectively).
For our study we introduce another irregularity parameter, namely the local partite
irreqularity of D, which is defined as

D) = dr(z) — d; (x)].
u(D) zglv%)rirgﬁgfl F(r) —d; (z)]

Observe that, for a balanced c-partite tournament G, ., we have p(G, ) > ng—rlc)

In this paper we consider Volkmann’s problem for balanced c-partite tournaments.
We give sufficient conditions on its regularity to ensure the existence of a strong
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subtournament with minimum degree at least L%J + 1. We obtain this result as an
application of counting the number of subtournaments of order ¢ for which a vertex
has minimum out-degree (respectively, in-degree) at most g > 0.

Our main result is the following.

Theorem Let G,. be a balanced c-partite tournament, with r > 2, such that

§(Gre) > |2 (r+ w(Gye) =5, Then G, contains a strongly connected tourna-

ment T of order ¢ such that 6(T) > |<72| + 1, whenever
(i) ig(Gre) < 5 and ¢ > 13, ¢ ¢ {14,15,18}, or
(i) 19(Girc)
(111) iy(Gy )

IN

rand ¢ > 17, ¢ ¢ {18,19,22}, or

IN

¥ and ¢ > 21, ¢ ¢ {22,23,26}.

2 Maximal tournaments for which a vertex has minimum
degree at most ¢

The aim of this section is to give sufficient conditions on the minimum degree, local
partite irregularity and global irregularity to obtain a bound on the number of max-
imal tournaments in a balanced c-partite tournament G, . in which a given vertex
z € V(G,.) has out-degree (in-degree respectively) at most ¢, for some given ¢ > 0.

Let x € V(G,.). We may asume that z € V.. A maximal tournament of G, .
containing the vertex x can be constructed by choosing a vertex from each partite set
V; for i € [c — 1]. We assign a vector to each maximal tournament 7' containing the
vertex z as follows: h = (hy, ha, ..., he1) € {0,1}¢7! such that h; = 1, if and only if
the vertex of V; is an out-neighbor of x, see Figure 1. Clearly, different tournaments
can have the same vector and for a given maximal tournament T', >~ h; = df.(z).

x\
© © © ©
* * * *
A A A A
Vi Va Vs Vi

Figure 1: For x € V5. The vectors of the maximal subtournaments containing the
vertex x induced by vertices ®, % and A respectively are he = (1,1,1,0), h, =
(1,0,1,0) and ha = (0,0,1,0).

For each 0 < k < c—1, let H; (x) be the set of such vectors satisfying S| h; = k.
Observe that if, for some 0 < i < ¢ — 1, we have that d; (z) = r, then h; = 1 for
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every k and every h € H} (), analogously if d; (x) = 0, then h; = 0 for every k and
every h € H, (z).

The number of maximal tournaments for a fixed h = (hy, h, ..., he_1) is i

c—1
[T )y ().
i=1

Thus we have the following remark.

Remark 1. Let G, . be a balanced c-partite tournament and let x € V.. The number
of maximal tournaments of G,.. for which x has out-degree k is equal to

c—

S T @) (o).

heM] (z) 1=

Let © € V(G,.). For each ¢ > 0, let T,F(z) (respectively T, (z)) be the number
of maximal tournaments of G, . for which x has out-degree (respectively in-degree)
at most g. All the following results regarding T,/ (z) can be obtained for T, (z) in
an analogous way.

Assume, without loss of generality, that x € V.. By Remark 1,
q c—1
Tr @)=Y > [ldf@"d ()"
k=0 he} (z) =1

In order to bound T;(x), for any integer r > 2, and g1, go, .. ., gs real numbers
such that 0 < ¢g; < r, we define

Mgy, gsk) =Y [T o (r =g,
heH; i=1
where H; is the set of s-vectors (hq, ha, ..., hs) € {0,1}° such that:
i) if g; = r then h; = 1;
i1) if g; = 0 then h; = 0;
iii) > hi=k.
i=1

Observe that if s = ¢ — 1 and x is a vertex in a balanced c-partite tournament G, .
such that df (z) = g; for every i € [c — 1], then H} (z) = H;.

Lemma 2.1. Let r > 2 be an integer, and let gi,...,qgs be real numbers such that
0<g <r. Let I' = maxe|q) g; and v = miney g;. If, for some integer ¢ > 1, we
have that > g; > q(r + 1T —~) =T, then

i€[s]

M(gla"wgs;Q) ZM(glavg&q_]')
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Proof. Without loss of generality we may assume that there are integers ¢ and p,
such that

i) 0 < g; <rif and only if i € [t];
i) gi=rifand only if t +1 <i <t + py;

iti) g; =0if and only if t + p, +1 < i < s.

Observe that for every h = (hy,...,h,) € H5_; and for every h' = (R}, ..., h,) € H;
we have that h; = h, =1fort+1<i<t+p,and h;, =h, =0fort+p,+1<i <s.
Notice that, if p, > ¢, then H;_; = (), which implies that M(gi,...,g5¢ —1) =0
and the lemma follows. Thus, we may assume that ¢ > p, + 1.

For each h = (hy,...,hs) € H;_ 1, let F(h) = {(h},...,h,) € Hy :+ h <
h; for all i € [s]} and let a(h) = {j : h; = 1for j € [t]}. Observe that for ev-
ery h e . Ja(h)| = g — 1 - p,.

By the definitions of H; and H; ,, it follows that, given h € H; , and h’ €
F(h) C H;, (there is a unique index jo € [t] \ a(h) such that A} = hj, + 1) and
h; = R} for every i € [s] \ {Jjo}-

Thus,

il h! ’ S ’
> Ilgi'(r—g)t™" gli(r — gt M
h'€F(h) i=1 _ Z 11;11 i ) _ Z 9j (1)

I1 gV (r — gi)thi werm [] g (r — g)' " jelam) ' Y
i=1 =1

Claim 1. Y. -2 >¢g—p,.

jela) "
Suppose that > _g < q—py. Let vy =ming;. Thus, > rf—Jw < q—pr
jeltNam) et j€lt\a(h)
and therefore >  g; < (r —v)(¢ — p,;). On the other hand,
Jj€lt\a(h)
Yo=Y gitroe= > gi+ Y gi+rp.
Jj€ls] el Jj€ltNa(h) j€a(h)

Hence, > ¢i= > 9;— Y, ¢ —rp, which implies that
j€[tN\a(h) j€ls] j€a(h)

(r—wa—p)>> _gi— Y g—rp

JE[s] j€a(h)

and therefore, after some easy calculations, we see that

rg+ Y gi—nla—p) > g5

j€a(h) JEIs]
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Let I'; = max;epq g;- Since |a(h)| = ¢ — 1 — p,, it follows that
rq+Tilq—1—p) —nlg—p) > > _ g5
J€ls]
Since I' > T'; > v, > v and p, > 0, we see that
Tilg—1—p)—vlg—p) < T(g—1-p;)—(q—p)

L(g—1) =g —p(I' =)
I'(g—1) =g

IA I

Thus

> g <qr+T—7)-T=rg+T(g—1)—1q
Jj€ls]

which, by hypothesis, is not possible, and the claim follows.

From Claim 1 and (1) it follows that for each h = (hy, ..., hs) € H 4,
> ng r—g)" > (qg—pr ng r—gi) (2)
WeF(h

Observe that, for every h’ € Hg, we have |{j : b = 1 with j € [t]}| = ¢ — p,.
Therefore, for every h' € Hg, there are exactly ¢ — p, elements h € H;_, such that
h' € F(h). Thus,

3 Mt i=m 52 [T -0
heH; | WeF(h) i=1 W eHs i=1

On the other hand, by (2) we see that

s

23N | EUEE SR | L
heH;_; h'cF(h heH;_, im1

implying that

S Tlore—g) "= > [Lottr—g)*"

h'eHg i=1 heH; 1=1

which, by definition, is equivalent to M(g1,...,9s;q) > M(g1,...,9s;q¢— 1), and the
lemma follows. 0

Corollary 2.2. Let r > 2, ¢ > 3 and G, be a balanced c-partite tournament such
that for some ¢ > 1, 0(Gy.) > q(r+ w(G,.)). Then, for every x € V(G,.), the
number of mazimal tournaments in which x has out-degree q is at least equal to the
number of mazximal tournaments in which x has out-degree q — 1.
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The following theorem gives a condition regarding the minimum degree and the
local partite irregularity to obtain an upper bound on TqJr (x).

Theorem 2.3. Let r > 2, ¢ > 5 and G, be a balanced c-partite tournament such

that for some ¢ >0, 6(Gyc) > q (r + w(Gyc)) =5. Then, for every z € V(G,..),

=2 (V) () ()

Proof. Let x € V(G,..) and suppose that x € V.. By Remark 1, we see that

Z > Hd+ >1hi=kZ;M<df<x>,...,d:1< 7); k).

k=0 hGHk({L‘)

For each i € [c — 1], let g; = df (z), and, without loss of generality, assume that
Je—1 = MaXece—1 ¢ = 1" and g._o = minze[C 19i = 7. Let 91, Gy ,gc 9, ¢._1 be real

numbers such that, for i € [c — 3], g/ = g;; and g,_, = ¢/, = Le=219e=!

a
Claim 2. > M(g1,...,9c-1;k) < Z M(gy,....g._1; k).

k=0 k=0
q c—1
Ifg=0,> M(g1,...,9.-1;0) = [ (r — ¢;). Since
k=0 i=1
Ge—2 + Jc—1
(r—ge2)(r — ge—1) < (r — =—=—"—)%,

2

the claim follows. Assume that ¢ > 1. For the sake of readability, in what follows,
g1,y 9e—1 and gy, ..., g3 will be denoted as gj._1) and gj._3), respectively. Observe
that

M(gie—11;0) = M(gie—3); 0)M (ge—2, ge—1; 0);
M(g[cfl};l) = M(g[cfiﬂ;]-)M(gc—%gc—l;o)+M(g[673};O)M(gc—27gc—l;]-)

and for every k > 2,

2
[c 1] ZM Gle— 3]a j)M(gcf%gcfl;j)'
7=0
Therefore, for ¢ =1,

Z M( c 1] ) = M(g[c%ﬂ; O) [M(gcf% Ge—1; O) + M(gcf% Ge—1; 1)]
+M (gje—3; 1) M (ge—2, ge—1; 0);
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and for ¢ > 2,
q q—2
Yo M(ge—1:k) = > M(gre—s; k) [M(ge—25 ge—1;0) + M(ge—2, Ge—1; 1)
k=0 k=0

+ M(gc—Za Ge—1, 2)]
"‘M(Q[C,g}; q— 1) [M(gcf% Ge—1; O) + M(gcf% Ge—1; 1)]
_'_M(g[c—fﬂ}; q)M(gcf% Ge—1; O)

It is not hard to see that for any pair x, y of reals, 0 < x,y <7,
M(z,y;0) = (r = 2)(r —y); M(z,y;1) = r(z +y) - 2zy and M(z,y;2) = zy.
Therefore
M (z,y;2) + M(z,y; 1) + M(z,y;0) = r*.

Since g} = g; for i € [c — 3] and g2 + ge—1 = ¢._5 + ¢._;, wWe have, after some easy
calculations, that

q

q
Z M(gfc—lﬁ k) — Z M(gje—1; k) =
k=0 k=0

M(gie—3;q — 1) [ge-29c-1 — gogGo 1] + M(gie—359) [9h_29b1 — Ge—29e1]
= (902901 — Ge—29c—1) [M(gje—3): @) — M(ge—3;q — 1)] -

q q
Since g._59._1 > ge—29e—1, it follows that > M (gj—15; k) < kzzoM(ng*”; k), if and

k=0
only if M(gie—3;:¢ — 1) < M(gje—3);q)-
Since Y. gi=d"(z) > 0(G,.) > q(r+ p(G,.)) =4, it follows that

i€[c—1]

@0 = ar(w) - T

> Grc-
1 2 TG

Therefore, d*(z) > r + u(G,.) + @. On the one hand, clearly, v < d(2)

w(Gyre) > T —~. Tt follows that > glyl =d(z) > q(r+T —~)+~. Since Zil in?
and g._o = v, we see that > Z;[C;}q(r + ' —~) —T'. On the other hand, observe
that I' > I'™ = maxXe[c—3 92651—1(31] v <" = minge_3) g;- Since g > 1, it follows that
q(r+T—~)—=T > q(r+I*—~*)—T* which implies that Y  ¢; > q(r+T*—~*)—T".
Hence, by Lemma 2.1, M (gjc—3;; ¢—1) < M(ge—3]59), anzie[fcr_ogr}n here the claim follows.

Observe that I' > IV = max;c.—1) g; and v < ' = minge._1y g;. Since [Z }gi =
i€[c—1
> gl it follows that > ¢! > q(r+1" — 7’)%, and clearly 0 < g/ < r. Hence,
i€le—1] i€[c—1]
we can iterate this procedure, and by the way that ¢/ _, and ¢/, are defined, we see
that the limit of the difference IV — 4/ by iterating this procedure is zero. Thus, by
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q
Claim 2, it follows that T;"(z) is bounded by > M (d:_("f),. L L@, k). Finally, by

definition, for each k € [q],

dt(z dt(z = dt(z
M<C_(1)7~~~7 C_(1)3k> = Z H(c—(l)
hews =1
k c—1-k
_ dt(z) dt(x)
= 2 < 1 ) <7” - T)

heHS!
o cflk dt(x) k dt(z) c-1-k
- ( k ) c—1 r= 3 ’

and it is not hard to see that r — % = d;(:f). From here the result follows. O

The following theorem gives a condition regarding the minimum degree, the local
partite irregularity and the global irregularity to obtain an upper bound on TqJr (x).

Theorem 2.4. Letr > 2, ¢ > 5 and G, . be a balance c-partite tournament. If for
some q¢ > 0, §(Gy.) > q(r+ u(Greo)) =t and iy(Gyre) = r(c—1)B with 0 < B <

c—2
c—2q—2
c

, then, for every x € V(G,..), we have that

o< (0) () et D)

! q+1 o(1—B)—2¢—2

Proof. Let x € V(G,..). By Theorem 2.3, it follows that
= (e=1\ (d @)\ (d(2)
+ < ¢
W—Z(k)(c—l)( S g

k=0
q k
) ( ) Z (“.1) (?Ei;) . For ev-

q k
ery ¢, with 0 < g <c—1,1let g(q) = > ( ) <d+ ) Observe that for ¢ < ¢ —1,
k=0

[y

c—1 c—

q koo
Observe that > (“.") <M> <d (z)
k=0

q+1 k q k+1
c—1 dt(z) o c—1 d*(z)
g(q + )—1+Z (%) < (a:)) = 1+k§0(k+1) (d—(@)

B 4t (x) 1\ (d+ @) \"
= 1+ d—(z) Z (kJrl) (d*(x))
k=0 b

o dt(z) c—1\ c—1—k [ dt(x)
= 1+ d=(z) k;z::()( k ) k+1 (d*(a})> :

I (@) S fo-1) eml—q (dt(@)\"
= 1+ d—(x) k;()( k ) q+1q <d—(x))
o dt(z) c—1— a c—1 dt(z) k
= 1+ d=(z) q+1q kz::()( k ) <d*(z)>

dt(z) c—1—q
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+1
On the other hand, g(¢+ 1) = g(q) + (;:&) <Zf§ﬁ;>q . Therefore,

s+ (1) (jg;) > PO ),

which implies that

c—1\ [dt(z)\*" dt(x)c—1—¢q
( ) ( - > (= —1)9(q). (4)
qg+1) \d(z) d~(z) q+1
Clearly, 7 E ) > Z(((C;TTT’CC)), and since A(G,..) = —r(c_l)?"(G*’s), (Gre) = —T(C_l)_;g(G*’s),
and i,(G,.) = r(c — 1)5, it is not hard to see that g((GGT’C)) = 1 +g Moreover, since
=22 2042 _ g+l 1-8c—1
B < == ) it follows thatBHﬁ 2Cq2q2(1—6)iqq11.) ?;h;;(efolr)e Hﬁ(l +1)q2 21 > 0.
—1— c—1— _ (A=B)(c=1=q)—(1+p8)(g+ _ ¢ q—
Thus, =B -1 > 5 -1 = EEECEY = @aen Y

Hence, by (4),

() ()™ dmmoay

(c—l) (d+(w))q+1 (L+P)g+1) > g(q)

and then

qg+1) \d (z) c(1—p)—2¢—2
Therefore, it follows that, for ¢ < ¢ — 1,

q . . k ~(z c—1-k ~(z c—1 g . . k
(D) (FF) 0 = () 6O (E)
-1

k=0

)“ (=) d+<z>>q“ (148)(g+1)
q+1/ \ d~(z) c(1-B)—2¢—2"

Thus, by (3),

o< (52)”(70) (2" Azt

Finally, observe that

() ()™ - () ) )
c—1 d=(z) c—1 c—1 d—(z)
( a @\

On the one hand, since d™(x) + d~(x) = r(c — 1), it follows that ﬁ)i‘&(x) <

7‘2()—2 r +qj733 q+1 2+2
4((6_11))2 = ZQ and therefore (%‘1)2”) < ( ) s
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_ r(c=1)+ig(Gr.c) _ r(c—1)+r(c—1)B _ r(c—1)(1
On the other hand, d~(z) < A(G,.) = ( )2”( ) = )J;( )b — rle=D)+h)
<

2
_ 6—1—2(]—2 c—1—2q—2 —1—20—
and therefore <d—(x)> <@> = (%) 1=2¢ 2(1 + B)e 122,

c—1
Thus,
d=()\" [dt(x)\ P\ 2042 [ e-1-20-2 o
< (= — c=1-2¢
(c—l) (d(:c) - (2) (2) (1+5)

_ (! c—1-2¢—2
- (5) a+9)

and from here, the result follows. O

3 Maximal strong subtournament with minimum degree at
least L%J +1

As an application of Theorem 2.4, we give sufficient conditions for the existence of
a maximal subtournament with minimum degree at least L%QJ + 1, in a balanced
c-partite tournament. Note that, as a fairly simple consequence of its minimum
degree, such a tournament is strong.

Theorem 3.1. Let G, . be a balanced c-partite tournament, with r > 2, such that

6(Gre) > |2 (r+ w(Gye) =5, Then G, contains a strongly connected tourna-

ment T of order ¢ such that 6(T) > |<72| + 1, whenever
1) 1g(Gre)
i) ig(Gre) <1 and c> 17, ¢ ¢ {18,19,22}, or
iii) ig(Gh.e)

IN
1=

5 and ¢ > 13, c ¢ {14,15,18}, or

IN

oand ¢ > 21, ¢ ¢ {22,23,26}.

Proof. In order to prove this theorem, we first show the following.
Claim 3. Letr > 2 and ¢ > 5. Let G,. be a balanced c-partite tournament with
-2 —1
5(Gre) = | == (r+ u(Gr)) == and iy(Gr.o) < ar/2 (where a > 0). If
C JR—

c—2+a C_Q_QI_QJ c—
20—2 ( L ) (2263—5 ) ! (LT2J + ].)C
—2

L%J‘Fl cZ2a _g|e2| 9 ,

2c—2 4

then G,. contains a strongly connected tournament T of order c¢ such that
5(T) > [552] +1.

Let G, . be a balanced c-partite tournament as in the statement of the claim, and
suppose that there is no tournament 7" of order ¢ in G, such that 6(T) > [<2] + 1.
Thus, each of those tournaments has minimal degree at most L%J, and since there
are 7¢ tournaments of order ¢ in G, , it follows that

S (T (1) + Tros (@) 2 0

1 1
2€V(Gr,c)
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Since |V(G,.)| = re, by Theorem 2.4, we see that

—2

ig(Gr.c)

e N e (1 EE) T ey )
QTC(L L )() < ( )> > re

R (1 2 o] 2] 2

?

2

and since i4(Gr.) < %, it follows that Z;Z((CG_Tf)) < 2(6‘1_1), and as an easy consequence

we have that 1 + Zi((CG_Tl)) < 22eand 1 - Zj((CG_Tl)) > 2222 Thus,

c—2

2”<L c—1 ) ()" () AR Y

c— c—2—« c— =T
T +1 I - 2] -2

2

Multiplying both sides of the inequality by 3:1 217, we obtain that

> 20—2

2c—2—a c—2 —
o — 207 -2

C(L%] . 1) () (1 vy

and from here the claim follows.

c—2
ety (25225e) T o2 e o .
Let fo(c) = (LHQJH) ? 220_2_a_2L¥J_42 and g(c) = 272, Notice that

falc) < fale)for 0 <a <o andcc_z 2.

If iy(Gr.) < 5, it follows that o < 1 and it is not hard to see that fi(c) < g(c)
whenever ¢ € {13,16,19,22}. Analogously, if i,(G,.) < r, then a < 2 and f>(c) <
g(c) whenever ¢ € {17,20,23,26}; and if iy(G,.) < &, then a < 3 and f3(c) < g(c)
whenever ¢ € {21,24,27,30}.

To end the proof, we just need to show that, for a € {1, 2,3}, if for some ¢ > 13
we have that f,(c) < g(c), then f,(c +4) < g(c¢+ 4). For this we show that

o 4 4 4
falc+4) < gle+ ) Clearly, for every ¢ > 13, M = 16. On the other hand,
fa(c) g(c) 9(c)
it is not difficult to see that, for every ¢ > 13,
Merd)—2+4a ) (CTH22LF)
2(ct+4)—2

_(2c+6+a 2 _6
(2c72+a)c—2—2L022J - 2¢+ 6 -5

2c—2

and with some more effort it is possible to verify that, for ¢ > 13,

c+4)—1 c+4)—
(L(£+4))2J+1)(L( +i) 2J —+ ]_)(C =+ 4) 0202—25(1 o 2L%J _9 32
c— S 2%
(2 ) (1552) + De (c+4)Xttoe _g|ltd=2|_ 9 ™ 3
Thus, for ¢ > 13, f‘}ic(t;l ) < 2% <16 = g(gc(gl ) and the result follows. O

As we can observe from the proof of Claim 3, it is possible to obtain analogous
results to Theorem 3.1 for greater values of global irregularity.
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