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Abstract

To any finite simplicial complex X, we associate a natural filtration start-
ing from Chari and Joswig’s discrete Morse complex and abutting to the
matching complex of X. This construction leads to the definition of sev-
eral homology theories, which we compute in a number of examples. We
also completely determine the graded object associated to this filtration
in terms of the homology of simpler complexes. This last result provides
some connections to the number of vertex-disjoint cycles of a graph.

1 Introduction

In recent years there has been a growing interest in the combinatorial and topological
properties of certain complexes arising from graph theory that can be associated to a
simplicial complex. Namely, to a simplicial complex X we can associate its matching
complex; this is the simplicial complex M(X) built from matchings on the face poset
of X.

For a graph G, the matching complex can be directly defined as the simplicial
complex of matchings of G; this construction has been extensively studied for some
special families of graphs, namely the complete and bipartite graph (see e.g. [14], [7]
and their references), due to the numerous connections between these complexes and
several other interesting topics (see [7, Ch. 1] for an exhaustive list).

A noteworthy subcomplex of the matching complex was introduced by Chari and
Joswig in [3]; this is the simplicial complex built from suitable equivalence classes of
Forman’s discrete Morse functions [6].

The relation between these two complexes is not well understood. The aim of this
paper is to introduce a natural filtration on the matching complex of a given finite

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License



D. CELORIA AND N. YEROLEMOU/AUSTRALAS. J. COMBIN. 82 (3) (2022), 335–352 336

simplicial complex, which will allow us to relate the matching complex to the discrete
Morse complex. Furthermore, we will define three homology theories related to the
filtration, one of which is only valid when the simplicial complex is 1-dimensional.

While a full computation of these becomes rapidly unwieldy even for relatively
simple complexes, it is possible to greatly reduce the complexity for one of these
homology theories; more precisely, we prove in Theorem 3.3 (Section 3) that the
homology of the associated graded object of the filtration can be decomposed as
the direct sum of contributions from the discrete Morse complex and collections of
oriented cycles in the face poset.

We also provide several examples and computations of these homology groups.

2 The matching and discrete Morse complexes

In this section we recall the terminology and ideas we will use throughout this paper.
We point out that in what follows we will use the terms “cycle” and “loop” inter-
changeably, specifying each time whether we consider them to be oriented or not if
it is not clear from the context.

Given a finite simplicial complex X, one can associate to it its face poset F(X).
This is the oriented graph representing the poset structure of simplices in X. More
precisely, vertices of F(X) are the simplices of X, and there is an oriented edge from
σ to τ if and only if τ is a codimension one face of σ.

A matching on a graph G is a subset m ⊆ E(G) consisting of edges not sharing
any vertices. Such a matching is called perfect if all vertices in the graph are matched
by some edge, that is, if the subgraph consisting of the matched edges is spanning.

The matching complex M(X) is the simplicial complex spanned by matchings in
F(X). That is, the k simplices are given by matchings with k + 1 edges, and face
maps are given by deleting one edge.

Given a matching on F(X), we can invert the orientation of all the edges that
comprise the matching; if this operation does not create any oriented loops in the
face poset, we say that the matching is acyclic. A discrete Morse matching on X is
an acyclic matching on F(X), and the discrete Morse complex M(X) of X is the
simplicial complex spanned by discrete Morse matchings on F(X). This complex
was first defined in [3]; the terminology is derived from Forman’s discrete Morse
functions [6], which are a simplicial analogue of the “classical” Morse functions on
smooth manifolds. A discrete Morse matching can be thought of as being the gradient
vector field of a discrete Morse function. With this point of view, (not necessarily
acyclic) matchings are to be regarded as a discrete analogue of gradient vector fields
of smooth functions.

There are several reasons that make the discrete Morse complex an interesting
object to study, besides being a discrete analogue of its smooth counterpart; for
instance it is a complete invariant of simplicial complexes [2, Thm. A], meaning that
two simplicial complexes are isomorphic if and only if their discrete Morse complexes
are isomorphic. Furthermore, with the exception of the cycles Cn and the boundary of
the n-simplex, the automorphism group ofM(X) is isomorphic to the automorphism
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group of X by [11, Thm. 1].
We also point out this interesting result from [3] (see also [10]), which will be

extensively used in the next sections.

Proposition 2.1. [3, Prop. 3.1] If G is a graph, there is a bijection between the set
of discrete Morse matchings on F(G) and rooted spanning forests in G.

There is a bit of a notational conflict in the literature, in the case where X is a
graph. It is immediate to realise that if G is a graph, then F(G) is isomorphic to the
first barycentric subdivision B(G) of G, with the orientation going from barycenters
of the edges towards the vertices of G, as shown in Figure 1. So in the case of

Figure 1: On the left a graph, and on the right its face poset. White vertices
represent the 1-cells of G.

graphs, we will instead denote by M(G) the simplicial complex spanned by disjoint
edges of G. In other words, if G is a 1-dimensional simplicial complex (a graph), then
M(G) = M(B(G)). The complexes M(G) have been extensively studied, especially
for specific families of graphs –such as Kn, the complete graphs on n vertices (see [7]
for an extensive monograph on the subject).

Analogously, given an oriented graph G, we define M(G) as the simplicial com-
plex with vertices given by E(G), and simplices given by collections of disjoint edges,
such that changing the orientation of each of these edges does not create oriented
loops. As before, for graphs we haveM(G) =M(B(G)). Observe thatM(G) is not
well-defined for general graphs; for example, whenever G contains an oriented loop,
M(G) cannot be a simplicial complex. We will, however, reserve this notation only
for certain subgraphs of face posets, and in this case no issue arises.

If F is a forest, it follows immediately that M(F ) = M(F ), since all matchings
are acyclic. Moreover, a result by Marietti and Testa [12, Thm. 4.13] guarantees
that, for a forest, these complexes are either contractible or homotopic to a wedge of
spheres (of possibly different dimensions).

For a simplex σ ⊆ M(X), we will denote by mσ the matching on F(X) associated
to σ. Given a matching m on F(X) inducing an oriented loop γ in F(X), we say
that m supports γ; an example is shown in Figure 2. Note that if m supports the
loop γ, then every other edge of the loop γ belongs to the matching m. However, the
converse is not true: an unoriented loop with half of its edges alternatively belonging
to a matching need not to be oriented (see the right part of Figure 2).
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Lemma 2.2. Let m be a matching on F(X). Then any oriented loop γ induced on
F(X) by m has the following properties:

1. The dimensions of the simplices corresponding to the vertices of γ are two
consecutive integers.

2. The loop γ has even length.

Proof. Suppose, for a contradiction, that a loop γ contains vertices corresponding to
simplices in at least 3 dimensions. Then, γ necessarily contains a path of length 2,
starting at a vertex of dimension k and ending at a vertex of dimension k + 2. This
implies that both edges in this path are contained in m, as they are both oriented
upwards in dimension. This contradicts the fact that γ is supported by a matching,
as the middle vertex of dimension k + 1 would necessarily be incident to two edges
in m.

Hence, γ is a loop in a bipartite graph (the subgraph of F(X) spanned by all
vertices incident to edges in m) whose vertices are partitioned into two sets, those
of dimension l and those of dimension l + 1, for some integer l. So, γ has even
length.

012        

  0          1          2              

0

1 2  

012         

  0          1          2              

01        02        12              01        02        12              

Figure 2: On the left the 2-simplex; the two graphs are a representation for
its face poset. The matching given by the dotted edges in the central part
supports the oriented red loop. Note that inverting the role of dotted and solid
red edges produces another matching supporting the same loop, but with the
opposite orientation. On the right, an example of a loop that is not supported
by the matching, despite having half of its edges contained in it.

For a simplicial complex X, we denote by C(X) the collection of unions of oriented
cycles in F(X), such that each element C ∈ C(X) is supported by a matching in
F(X). The empty set is included in C(X) by definition. Note that these cycles
are not necessarily disjoint, as shown in Figure 3. The number of oriented cycles in
C will be denoted by |C|, and the number of connected components in C will be
denoted by µ(C). We will also reserve the notation µ1(C) for the number of cycles
in C not sharing edges with any other one.

We say that C ∈ C(X) is maximal if the subgraph of F(X) given by the loops in
C is spanning. Let us denote by C◦(X) the subset of C(X) consisting of non-maximal
collections of cycles, and by CM(X) the maximal ones. For reasons that will become
apparent in the next section (cf. Theorem 3.3), we do not include the empty set of
cycles in C◦(X), so C(X) = {∅} t C◦(X) t CM(X).
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012     013     014     023     024     034     123     124    134     234

01       02       03       04       12       13       14       23       24       34

Figure 3: At the top, an example where C ∈ C(X) consists of two oriented
loops supported by a matching. One loop is blue, the other pink, and the
common edge is in gray. Dotted and dashed edges indicate those belonging to
the matching. The underlying graph is part of the face poset of the 4-simplex.
There is only one connected component, hence µ(C) = 1 and µ1(C) = 0. At
the bottom, an example of a 2-factor of a graph.

Analogously, if G is a graph, let us define vdC(G) as the collection of (unoriented)
vertex-disjoint cycles in G (including the empty set). A spanning element in vdC(G)
is better known as a 2-factor of G. Finally, a pseudo-tree is a graph with the
homotopy type of S1.

We can now define the map that will provide us with a filtration on M(X):

Definition 2.3. Given a matching m on X, define the value of the function J on m
as the number of oriented cycles induced by m on F(X). For an integer k, denote
by Mk(X) the set J−1([0, k]), with the convention that Mk(X) = ∅ if k < 0.

The next result ensures that the map J does in fact provide a well-defined filtra-
tion:

Proposition 2.4. The subsets Mk(X) are simplicial subcomplexes of M(X).

Proof. It suffices to show that, given a matching m on F(X) inducing k oriented
cycles in F(X), any face of the simplex σ spanned by the edges of m supports at
most k oriented cycles. That is, removing an edge from m cannot increase the number
of cycles supported by the reduced matching.

Suppose, without loss of generality, that removing an edge e from m introduces
one new cycle γ supported by m \ {e}. Removing e switches its orientation to
downwards in the face poset. By Lemma 2.2, the edges of γ alternately belong to



D. CELORIA AND N. YEROLEMOU/AUSTRALAS. J. COMBIN. 82 (3) (2022), 335–352 340

m \ {e}; this implies that the two vertices incident to e must be incident to other
edges in m, but this contradicts the fact that m was a matching to begin with.

These subcomplexes are nested, meaning that for all integers k, Mk(X)⊆Mk+1(X).
Moreover, they interpolate between the discrete Morse and matching complexes on
a given X; more precisely,

M0(X) =M(X) and Mk�0(X) = M(X).

We denote by η(X) the smallest integer k such that Mk(X) = M(X).

We can now give some sample computations related to this filtration for certain
families of graphs and simplicial complexes.

Example 2.5 (The circle). We can explicitly determine the filtration and the
homotopy type of the associated simplicial complexes Mk for the graph Cn, the cycle
graph on n vertices. As unoriented graphs, F(Cn) ∼= C2n, which can be seen by
taking the first barycentric subdivision of Cn. Also, η(Cn) = 1, because clearly no
matching can support more than one oriented cycle in C2n.

The homotopy type of both the Morse and matching complexes for Cn have been
computed by Kozlov [10, Prop 5.2]:

M(Cn) '


S2k−1 ∨ S2k−1 ∨ S3k−2 ∨ S3k−2 if n = 3k

S2k ∨ S3k−1 ∨ S3k−1 if n = 3k + 1

S2k ∨ S3k ∨ S3k if n = 3k + 2

M1(Cn) = M(Cn) '


S2k−1 ∨ S2k−1 if n = 3k

S2k if n = 3k + 1

S2k if n = 3k + 2

The difference between these two filtration levels is given by the two (n − 1)-
dimensional simplices shown in the right part of Figure 4. The net effect of adding
these two top-dimensional simplices is to cap off two spheres generating the homology
of the Morse complex.

The following computations were provided using a Sage [13] program developed
by the authors and available upon request. The notation Zq(p) denotes q generators
in homological degree p.

Example 2.6 (The simplices). The face poset of the n-simplex is the 1-skeleton
of the (n + 1)-cube minus one vertex1, with edges oriented away from the vertex
corresponding to the whole simplex (see Figure 5). It is immediate to determine
that η(∆2) = 1 and η(∆3) = 2 (note that we can already find the two cycles in
Figure 5 and we cannot create more because we would need six vertices disjoint from
those already used); more generally it is possible to give the following coarse double

1We do not include the empty simplex in the diagram.
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(1,01) (0,02) 

(2,12)

(1,12) (2,02)

(0,01)

0
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Figure 4: On the left, the (barycentric subdivision of the) cycle C3; in the
centre, the complex M0(C3) is given by the black 1-skeleton; including the
two green 2-simplices gives M1(C3). On the right side, the only two (top-
dimensional) matchings producing the simplices that appear in M1(C4); one
is pink and dotted, the other blue. Here, black and white dots represent the
vertices in V (C4) and the edges’ barycenters, respectively.

012     013     023     123     

01       02       03       12       13       23       

  0         1         2         3     

0

1

2

3

Figure 5: The face posets for the 3-simplex (with the vertex associated to the
whole simplex removed); we included two disjoint loops in blue and pink; these
are supported by (at least) four matchings, corresponding to the possible ways
of orienting them.

bound n−1 ≤ η(∆n) ≤ b2n+1−1
6
c, where 2n+1 is the number of vertices in the (n+1)-

cube. The right inequality follows from the fact that the shortest oriented loops in
F(∆n) have length 6.

Surprisingly, an explicit computation of the homology groups H∗(M(∆n)) seems
to be currently out of reach. We can, however, complement the analysis carried out
by Chari and Joswig in [3, Sec. 5], by providing the computation of the reduced

homology H̃∗(Mk(∆
n)) for n ≤ 3 in Table 1.

Example 2.7 (Complete graphs). The matching complex M(Kn) of the complete
graph Kn is a rather important and well-studied object, due to its many connections
with several other branches of mathematics (see [7, Ch. 1]). Somewhat surprisingly,
M(Kn) does contain torsion already for n = 7 (see [8], [14] for several other related
results). A table detailing the homology of M(Kn) can be found in [8, Table 1].

In Table 2 we display the (reduced) homology of the subcomplexes of M(Kn)
induced by the filtration J . Since loops in Kn have length at least 3, it follows
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that η(Kn) = bn
3
c.

X H̃∗(M0(X)) H̃∗(M1(X)) H̃∗(M2(X))

∆2 Z4
(1) Z2

(1) –

∆3 Z99
(4) Z39

(4) Z39
(4)

Table 1: The reduced filtered homology of ∆2 and ∆3.

X H̃∗(M0(X)) H̃∗(M1(X)) H̃∗(M2(X))

K3 Z4
(1) Z2

(1) –

K4 Z27
(2) Z5

(2) –

K5 Z256
(3) Z5

(3) ⊕ Z23
(4) –

K6 Z3125
(4) Z6

(4) ⊕ Z927
(5) Z6

(4) ⊕ Z967
(5)

K7 Z46656
(5) Z7

(5) ⊕ Z23287
(6) Z7

(5) ⊕ Z25107
(6)

Table 2: The reduced filtered homology of Kn for n ≤ 7.

We point out a few things: the homology H̃∗(M0(Kn+1)) is by [10, Thm. 3.1] iso-
morphic to Znn(n−1), which is consistent with these computations. Also, the homology
of the complexes associated with K3 can be computed using the simplicial complex
in the central part of Figure 4.

Definition 2.8. If an oriented loop γ in F(X), not sharing edges with any other
loops, is supported by a matching m, then there is another matching m′, coinciding
everywhere with m except on γ, where it induces the opposite orientation. The two
matchings m and m′ are said to differ by a click move; any two matching that can
be related by a finite sequence of click moves will be called click equivalent.

As an example, the blue and pink matchings on the right of Figure 4 differ by a
click move.

We conclude the section with the following proposition asserting that for a graph
G, a matched edge in F(G) can never belong to more than one oriented cycle sup-
ported by a matching (see also Figure 6). This is in contrast with the face posets for
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any complex other than a graph, where this phenomena can occur (as in Figure 3).
As a consequence, η(G) coincides with the maximal number of vertex-disjoint cycles
in G, or in other words

η(G) = max
C∈vdC(G)

{|C|}. (2.1)

This quantity is well known and has been extensively studied (see e.g. [4], [5] and
references therein).

Proposition 2.9. If G is a graph, then there is a surjective function from the set
of oriented loops in F(G) supported some by some matching, to collections of un-
oriented vertex-disjoint loops in G.

Proof. Let
−→
C be a set of oriented loops in F(G), supported by a matching m.

Let ϕ(
−→
C ) denote the subgraph of G obtained by considering all edges in G whose

corresponding vertices in F(G) are incident to edges in the matching m. Then ϕ(
−→
C )

is composed of cycles in G, which are vertex-disjoint since
−→
C was supported by a

matching (see Figure 6).
The map ϕ is surjective: given any collection C of vertex-disjoint loops in G,

we can randomly orient each loop, either clockwise or counter-clockwise; to these
oriented loops we can associate the matching on F(G) given by considering the
half-edges of the corresponding loops in B(G) that start from the initial vertex (with
respect to the chosen orientation) and end at its barycenter. The image of a matching
under ϕ constructed this way is C.

Figure 6: A schematic explanation of why a matched edge in F(G) cannot be
part of two different cycles, even if it is in G. There is no way of “transporting”
the pink matching from left to right, as e.g. it could not be extended on the
two blue edges in lower-right part of the figure.

Note that any two matchings sharing the same image under ϕ and coinciding
outside of the oriented loops, are click equivalent.

3 Filtered homology

We can use the function J to define a filtration on the simplicial chain complex of X.
We will use F = F2 coefficients throughout for simplicity, but the same construction
also works with integer coefficients. Define

Ĉj
i (X) = F〈σ ∈ M(X) | dim(σ) = i, J(mσ) = j〉,
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and
Ĉ(X) =

⊕
i,j∈N

Ĉj
i (X).

If x ∈ Ĉj
i (X), we will refer to i and j as its homological and filtration degree respec-

tively.
The simplicial differential ∂, defined in the usual way, can be split into a J-

preserving component ∂J and a “diagonal” one ∂d. The former one decreases the
bi-degree (i, j) by (1, 0), while the latter decreases the bi-degree by (1, c) for some
c ≥ 1; this difference in behaviour stems from cases as in the top part of Figure 3,
where removing a single edge from a matching belonging to some cycle might decrease
the number of oriented cycles by more than one. It follows from Proposition 2.9 that,
in the case when X is a graph, the bi-degree of ∂d as a filtered map can only be (1, 1).

Lemma 3.1. The map ∂J is a differential on Ĉ(X).

Proof. It is immediate to see that for any simplex σ ∈ Ĉ(X), (∂J)2(σ) is a sum over all
pairs of edges that can be removed from the matching mσ on F(X), while preserving
the number of cycles supported by mσ. The sum is 0 with mod 2 coefficients, since
if there are at least two edges not contained in the oriented cycles supported by mσ

there is an even number of ways of choosing such pairs in an ordered fashion. On
the other hand, if there is only one such edge, then the horizontal differential of mσ

is given by removing it, and applying ∂J again sends the collection of matched edges
on the loops to 0.

Remark 1. It is generally not true that ∂d is a differential; this can be appreciated
by considering a matching akin to the one from Figure 3. Consider a matching m
supporting two loops C = {γ1, γ2}, such that µ(C) = 1 (so, the two loops share at
least one edge). Assume for simplicity that γ1∩γ2 consists of a single edge e. To have
∂2d(m) = 0, we rely on the fact that removing two edges from m is independent of
the order in which they are removed. However, this is not the case if we consider the
face of (the simplex corresponding to) m obtained by removing two distinct edges
{e1, e}. Removing e deletes both cycles γ1 and γ2, so ∂d on m \ {e} is 0. However,
removing e1 first, then e is not 0 since after removing e1 we still have one cycle, γ2.

Remark 2. Proposition 2.9 implies that a matching on the face poset of a graph G
can only support disjoint oriented loops, so the aforementioned phenomenon cannot
occur in the matching complex of a graph G. In particular ∂d is a differential on
Ĉ(G).

Now we can define several homology groups associated with this decomposition
of the simplicial differential:

Definition 3.2. Denote by Ĥk(X) the homology of the subcomplex of Ĉ(X) spanned
by all simplices with filtration degree ≤ k, so that

H∗(Mk(X)) = Ĥk
∗ (X).
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We can consider two other related homologies associated to the decomposition

∂ = ∂J + ∂d.

Define the horizontal homology hH(X) as the bi-graded homology of the complex

(Ĉ(X), ∂J). More explicitly, hH(X) is the associated graded object to the filtration
J on the complex computing the simplicial homology of M(X).

If G is a graph, we can also define the diagonal homology dH(G) as the homology

of (Ĉ(G), ∂d) (cf. Remark 2).

These homology groups potentially contain a great deal of information about
the matching complex of X and the intermediate complexes Mk(X). Theorem 3.3
provides the computation of the horizontal homology hH(X) in terms of simpler
objects.

As an example, if T is a tree, then hH(T ) ∼= H(M(T )), and dH(T ) ∼= Ĉ(M(T )),
because all simplicial chains are concentrated in filtration degree 0, and in the latter
case the diagonal differential is trivial. Before we can state our next result, we need
to introduce a few terms.

For an element C ∈ C(X), define its complement XC as the subgraph of F(X)
given by all edges not incident to any vertices composing C. Note that the comple-
ment might not be the face poset of a simplicial subcomplex of X.

Theorem 3.3. Let X be a finite simplicial complex; then

hH(X) ∼= H(M(X))⊕

 ⊕
C∈C◦(X)

2µ1(C)⊕
H̃
(
M(XC)

)⊕
 ⊕
C∈CM (X)

F2µ1(C)

〈|C|〉

 . (3.1)

Here, H̃ denotes reduced homology, and F(p)
〈q〉 denotes p generators of the homology in

filtration degree q.

Proof. We prove this theorem by considering the decomposition of oriented loops
C(X) = {∅}tC◦(X)tCM(X). If C ∈ C(X) is the empty set, then we are computing
the homology of the chain complex of the discrete Morse complex, because this is
precisely the simplicial complex generated by matchings supporting no oriented loops
in F(X). This gives us the first term, H(M(X)), in Equation 3.1.

Before we can consider the contribution to hH(X) from nonempty C ∈ C(X),

observe that for such a C, the differential ∂J preserves the splitting of Ĉ(X) into
elements that support C and those that do not. Moreover, the differential ∂J(m) of
a matching m supporting the loops {γr} that compose C is either empty (if all edges
comprising m are on the loops) or a sum of other matchings sharing precisely the
same edges on the cycles as m.

As discussed in Example 2.5, if a cycle γ does not share edges with any other one,
there are exactly two different ways that a matching can support γ (corresponding
to the two possible orientations on γ); hence for each C ∈ C(X) the subcomplex
given by the matchings that support C splits further into 2µ1(C) subcomplexes. This
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Figure 7: The (unoriented) face poset for a graph G, which is homotopic to
the bouquet of two circles, is shown at the top of the figure. Just below it,

a portion of the complex
(
Ĉ1
∗ (G), ∂J

)
is displayed, whose homology is F in

homological degree 2. Matched edges are dotted, oriented cycles are blue, and
gray arrows represent the differential. In the lower part of the figure is part of

the complex
(
Ĉ1
∗ (P ), ∂J

)
, for a pseudo-tree P . All of the generators here share

the same oriented cycle on the triangle. The homology of this subcomplex is
trivial in all homological degrees. Choosing matchings inducing the opposite
orientation on the triangle gives a separate complex with the same homology,
as showed in Theorem 3.3.
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follows from the fact that if two loops supported by a matching share at least one
edge, then there is only one possible orientation that can be induced on them by any
matching supporting both.

Moreover, if C ∈ CM(X), then by definition all edges belonging to m are contained
in some loop in C, and thus their J-boundary is trivial. Since such a maximal set of
cycles is spanning, it follows that all matchings supporting C cannot be boundaries,
and we obtain the right summand in Equation (3.1).

To conclude, we need to determine the homology of the subcomplexes given
by matchings supporting non-maximal collection of cycles. Given a matching m,
consider the subcomplex Ĉ({γr}) ⊆ Ĉ(X) spanned by all matchings that induce the
same non-empty set of oriented loops {γr} (which implies that they share the same
edges as m on these loops). As discussed above, the restriction ∂J

∣∣
Ĉ({γr})

is still a

differential; moreover the map

f : C∗(M(XC)) −→ Ĉ({γr})

sending a matching m′ ∈ C∗(M(XC)) to the matching f(m′) ∈ Ĉ({γr}) obtained
by completing m′ on the loops as m is clearly a bijective chain map. The empty
matching on XC gets mapped by f to a generator of the complex, which is the
unique J-boundary of all matchings of degree 1 in Ĉ({γr}) – that is, all matchings
that have exactly one edge of F(X) not on the oriented loops {γr}. This extra
element has the effect of adding a “terminal generator” to the complex, and hence
we get the reduced homology of M(XC) in the central summand of Equation (3.1),
rather than the usual homology (see the top of Figure 7 for an example).

In the special case where the simplicial complex is a graph G, we can relate the
decomposition of Theorem 3.3 to the set vdC(G), using the correspondence provided
by Proposition 2.9. In analogy with the previous result, let us denote vd◦(G) the
collection of non-maximal vertex disjoint cycles in G.

Corollary 3.4. Let G be a graph, and denote by GC = B(G) \B(C); then

hH(G) ∼= H(M(G))⊕

 ⊕
C∈vd◦(G)

2|C|⊕
H̃
(
M(GC)

)⊕( ⊕
C 2-factor of G

F2|C|

〈|C|〉

)
(3.2)

Proof. This is just a restatement of Theorem 3.3, after noting that XC coincides
with GC , and that by Proposition 2.9, the collection of maximal oriented cycles in
F(G) corresponds to 2-factors in G.

In particular, the rank of hH(G) is always bounded below by the sum∑
C 2-factor of G

2|C|.

We collect here some simple computations of hH.
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Example 3.5. If X = Cn, then we have seen already that

hH0
∗ (Cn) = H∗(M(Cn)) = H∗(M(C2n))

in Example 2.5. The only other non-trivial group is Z2 in bi-degree (n − 1, 1),
generated by the two maximal simplices.

In a slightly more general case, if P is a pseudo-tree, then we can write P =
CP ∪mi=1 Ti, where CP is a cycle, and the Ti are disjoint trees, each sharing a unique

vertex vi with CP . Then, by Corollary 3.4, if we let T̃i = B(Ti) \ vi,

hH1
∗ (P ) ∼=

2⊕
H̃∗
(
M(∪mi=1Ti)

) ∼= 2⊕
H̃∗
(
M(∪mi=1Ti)

)
.

Note that by [12, Thm. 4.13], the latter is isomorphic to Z (if the homotopy type of
the complex is that of a pair of points), or to the reduced homology of two disjoint
wedges of spheres.

The dimension of the simplices in complexes with non-zero filtration can be
bounded from below; in what follows, `(γ) will denote the length of a loop γ.

Lemma 3.6. If G is a graph, then the subcomplex of Ĉ(G) spanned by simplices
supporting a fixed C ∈ vdC(G) is trivial in all dimensions strictly less than −1 +∑

γ∈C `(γ).

In particular, if G is a graph without self-loops, the simplices in Cj
∗(G) have

dimension ≥ 2j−1; if furthermore G is simple, than Cj
∗(G) is generated by simplices

of dimension ≥ 3j − 1.

Proof. By Proposition 2.9, a matching belonging to Ĉj
∗ supports exactly j disjoint

cycles {γi}i=1,...,j on G. The number of edges matched on F(G) for each cycle γi is
given by `(γi), therefore the minimal number of edges in a such a matching is given
by
∑j

i=1 `(γi).
The second part of the statement follows by noting that, in a graph without self-

loops, all cycles have length ≥ 2, and if the graph is also simple, than the bound
can be improved to ≥ 3 because multiple edges between pairs of vertices are not
allowed.

It is possible to consider the decategorification of hH(X) (cf. [9]), or in other
words the polynomial obtained as the graded Euler characteristic of hH(X), defined
as

χt(hH(X)) =
∑
i,j∈N

(−1)irk(hHj
i (X)) · tj.

That is, the coefficient of tm is the Euler characteristic of the chain complex
(⊕i∈NĈm

i (X), ∂J). In particular, the constant term is χ(M(X)).
If, G is a graph, denote by ρk(G) the number of rooted spanning forests in G

with exactly k edges. Then, using [1, Thm. 7.5] combined with Proposition 2.1 we
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get the equality:

χt(hH(G))
∣∣
t=0

=

|E(G)|∑
k=0

(−1)k · ρk(G) = pG(1), (3.3)

where pG(x) = det(L−x ·Id) is the characteristic polynomial of the Laplacian matrix
of G. In fact, if we write

pG(x) =

|E(G)|∑
i=0

ci · x|E(G)|−i, (3.4)

then (−1)kck = ρk(G).
More generally, whenever j > 0, by Corollary 3.4 the coefficient of tj in χt(hH(G))

for a graph G is given by∑
C∈vd◦C(G)
|C|=j

2j ·
(
χ(M(GC)) + (−1)`(C)−1)+

∑
C 2-factor of G

|C|=j

(−1)`(C)−1 · 2j.

Here, the extra (−1)`(C)−1 is due to the presence of the terminal elements described
in the proof of Theorem 3.3, and `(C) denotes the sum of the lengths of the cycles in
C. We point out that Equation (2.1) implies that the maximal degree of χt(hH(G))
coincides with η(G).

Example 3.7. We can easily compute the decategorification of hH for the cycle
graphs Cn: there are only two simplices in J-degree 1, and

pCn(1) =


0 if n ≡ 0 mod 6

−1 if n ≡ 1, 5 mod 6

−3 if n ≡ 2, 4 mod 6

−4 if n ≡ 3 mod 6

(3.5)

This can be deduced by computing the characteristic polynomial of the Laplacian
of Cn, together with some elementary linear algebra. More precisely, pCn(1) is the
determinant of the matrix Ln − Id, where

Ln =


2 −1 0 . . . 0 −1
−1 2 −1 . . . 0 0
0 −1 2 −1 . . . 0
... 0

. . . . . . 2 −1
−1 0 . . . 0 −1 2

 .

The result in Equation (3.5) then follows by considering the Laplace expansion of the
determinant, combined with the fact that the determinant D(n) of the tri-diagonal
matrix Tridn(−1, 1,−1) satisfies the recursive relation

D(n) = D(n− 1)−D(n− 2),
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with initial conditions D(1) = 1 and D(2) = 0. The sequence D(n) is easily seen to
be periodic of period 6.

Therefore,
χt(Cn) = (−1)n−12t+ pCn(1).

Figure 8: A portion of the diagonal complex
(
Ĉ∗∗ (P ), ∂d

)
for the pseudo-tree

from Figure 7. In the top-left we display one of the two chains in maximal
bi-degree (the other one is obtained by clicking the length 3 cycle). The gray
arrows represent the diagonal differential; we also included in blue one (of the
many) elements in Ĉ0

4 (P ) not belonging to the image of ∂d.

The diagonal homology appears to be more complex; however, it is possible to
give a graph-theoretic interpretation of its ranks for some specific class of graphs.

Proposition 3.8. The top-dimensional diagonal homology group of a pseudo-tree P
is free of rank ρ|E(P )|−1(P ) − 2. Furthermore, if P = Cn the homology dH∗∗ (Cn) is
trivial in filtration degree 1, and the ranks in bidegree (i, 0) are ρi+1(Cn) if i < n− 2,
and ρn−1(Cn)− 2 if i = n− 2; these are the only non-trivial groups.

Proof. The first barycentric subdivision of a pseudo-tree has exactly two perfect
matchings, which are related by a click move on the cycle of P (as in Figure 4).
Therefore, the complex has only two elements in top bi-degree (|E(P )| − 1, 1). The
diagonal differential maps them to distinct elements (those obtained by removing
a single edge from the cycle), hence it is injective. The diagonal differential from
Ĉ0
|E(P )|−2 is 0 since there are no loops to remove (the same is true for all other
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complexes in filtration degree 0). Since the diagonal differential from Ĉ1
|E(P )|−1 is

injective, the first result follows.
By combining [1, Thm. 7.5] and Proposition 2.1, there are exactly ρ|E(P )|−1(P )

elements in bi-degree (|E(P )| − 2, 0), hence the first statement follows.

For the second part, let us note that Ĉ1
∗(Cn) is only non-trivial in homological

degree n − 1 (cf. Example 3.5), where it contains two basis elements. We can then
conclude as in the previous case, by recalling that there are exactly ρi+1(Cn) elements
in bi-degree (i, 0) for i = 0, . . . , n− 2.
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