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Abstract

It is shown that every cube tiling of R
2 is layered and the structure

of non-layered cube tilings of R3 is described. It is also shown that in
every cube tiling of R4 a cylinder contains a column. Simultaneously, this
provides another proof of Keller’s cube tiling conjecture about columns
for dimensions d ≤ 4.

1 Introduction

Let T ⊆ R
d. A family of cubes [0, 1)d + T is called a cube tiling of Rd if elements of

this family are pairwise disjoint and the union of cubes of this family is the whole
space Rd. A set T is said to be a set that determines a cube tiling. If T forms a lattice,
then we say that it determines a lattice cube tiling of Rd. In 1896 Minkowski [13]
conjectured that in every lattice cube tiling of Rd there is a pair of cubes which have
a (d − 1)-dimensional face in common. In 1930 Keller [5] generalized Minkowski’s
problem and conjectured that in every, not only lattice, cube tiling there is such a
pair of cubes.

A family of cubes F in R
d is called an l-column, 1 ≤ l < d, if there is a set of

vectors S ⊆ R
d such that:

1. F = [0, 1)d + S;

2. there is an index i ∈ {1, . . . , d} such that the mapping x �→ xi transforms the
set S bijectively into a set that determines a cube tiling of R;

3. there are l indices i ∈ {1, . . . , d} such that the sets {xi : x = (x1, . . . , xd) ∈ S}
are singletons.

Then the set S is said to be a set that determines an l-column. Every (d−1)-column
in R

d is called a column.
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For example, in Figure 1 a part of a cube tiling of R2 is shown. The horizontal
coordinate axis is the first axis, and the vertical coordinate axis is the second. The
grey cubes form a 1-column, and as it is in 2-dimensional space, we say that it is
a column. The lower left corners of grey cubes, which are pointed in Figure 1, are
elements of the set S, i.e.,

S = {. . . , (−6;−1.4), (−5;−1.4), . . . , (2;−1.4), (3;−1.4), (4;−1.4), . . .}.
Then there is an index i ∈ {1, 2}, i.e., i = 1, such that the mapping x �→ x1 transforms
the set S bijectively into a set that determines a cube tiling of R and there is one
index i ∈ {1, 2}, i.e., i = 2, such that the set {x2 : x = (x1, x2) ∈ S} = {−1.4} is a
singleton.

Fig. 1
A part of a cube tiling of R2.

The grey cubes form a column (1-column).

Minkowski’s conjecture can be equivalently formulated in the form: in every
lattice cube tiling of R

d there is a column, whereas Keller’s conjecture gives two
problems: about a pair of cubes and about a column. In 1940 Perron [14] published
the proof of the weaker Keller conjecture for dimensions not exceeding 6, whereas
in 1941 Hajós [4] showed that Minkowski’s conjecture is true for all d ≥ 1. Next,
in 1992 Lagarias and Shor [9] discovered a counterexample to Keller’s conjecture
about a pair of cubes in dimension 10 and ten years later Mackey [12] found such
a counterexample in dimension 8. This implies that both Keller’s conjectures are
not valid in any dimension greater than 7. In 2012 Łysakowska and Przesławski
[11] showed that Keller’s conjecture about a column is true for d ≤ 6. In the years
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2011–2017, Keller’s conjecture about a pair of cubes for dimension 7 was proved in
some special cases (see [2, 8, 7]), and in 2020 Brakensiek, Heule, Mackey, Narváez
[1], using computer calculations, showed that this conjecture is true in dimension 7.
As a result, Keller’s conjecture about a pair of cubes is completely verified, while
Keller’s conjecture about a column is still open for dimension 7.

In this paper the structure of cube tilings is investigated. Let T ⊆ R
d be a set

that determines a cube tiling of Rd and let W ⊆ T . The set W determines a cylinder
(in the direction of the i-th coordinate axis), if there is i ∈ {1, . . . , d} and α ∈ R

such that
W = {t = (t1, . . . , td) ∈ T : ti ∈ α + Z}.

Then the family [0, 1)d+W = {[0, 1)d+w : w ∈ W} is called a cylinder. Let S ⊆ R
d

and Si = {si : s = (s1, . . . , sd) ∈ S} for i ∈ {1, . . . , d}. A family of cubes [0, 1)d + S
is said to be layered, if there is i ∈ {1, . . . , d} and α ∈ R such that Si ⊆ α + Z. A
family of cubes which is not layered is called non-layered.

In [10] authors pointed out an example of a cube tiling of R5 in which there is
a cylinder without any column. This implies that for d ≥ 5 there are cylinders in
cube tilings without l-columns, l ≥ 4. It is worthwhile to see that this is one of the
reasons why the methods used by authors in [11] in the proof of Keller’s conjecture
about columns for d ∈ {1, . . . , 6} do not work in dimension 7.

In contrast to 3-dimensional space, the fact that each cylinder in a cube tiling
of R4 contains a column is not sufficient to describe the structure of all non-layered
cube tilings in 4-dimensional space. Moreover, Sikirić and Łysakowska [3] showed
that there are 183 non-isomorphic two-periodic non-layered cube tilings of R4, where
a cube tiling is said to be two-periodic if the set T that determines it has the property
such that T = T +2ei for every vector ei of the standard basis. By comparison, in R

3

there is only one such cube tiling. The higher the dimension, the more complicated
the structure of cube tilings. In R

4 there are cube tilings that cannot be described
in the same way as in R

3. So it seems to be impossible to describe the structure
of all non-layered cube tilings of R

4. However, as in Lemma 4.1, we can analyse
the structure of cylinders, especially the existence of l-columns in them, in higher
dimensions.

In this article it is shown that every cube tiling of R2 is layered and the structure
of non-layered cube tilings in three-dimensional space is described. It is also proved
that in a cube tiling of R4 every cylinder contains a column. A part of these results
is known (see [10, 6]); however in this paper the new important thing is Lemma 4.1,
telling us that in every 4-dimensional cube tiling each cylinder contains a 2-column.
Moreover, the other methods are used, which can be exploited to analyse the struc-
ture of cube tilings in higher dimensions, especially to solve Keller’s conjecture in
dimension 7. Additionally, the results at the same time provide a new proof of
Keller’s conjecture about columns for dimensions d ≤ 4.
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2 Preliminaries

The terminology and notation are taken from the paper [11]. As usual, the set of
all integers is denoted by Z, and the set of positive integers is denoted by N. The
mapping ε : Rd → N

d given by

ε(x) = ε(x1, . . . , xd) = (ε1(x1), . . . , εd(xd)),

where for each i ∈ {1, . . . , d} a mapping εi : R → N is defined such that for every
x ∈ R the restriction εi|x+Z is a bijection between the sets x+Z = {x+ k : k ∈ Z}
and N, is called a code.

In 1930 Keller [5] showed that if [0, 1)d + T is a cube tiling of Rd, then for each
pair of distinct elements s = (s1, . . . , sd), t = (t1, . . . , td) ∈ T there is an index
i ∈ {1, . . . , d} such that |si − ti| ∈ N. Basing on Keller’s result, in [11] the authors
proved the following theorem.

Theorem 2.1 Let ε : Rd → N
d be a code. Then a set T ⊆ R

d determines a cube
tiling of Rd if and only if ε(T ) = N

d and for every pair of distinct elements s, t ∈ T
there is i ∈ {1, . . . , d} such that |si − ti| ∈ N.

Notice that if T ⊆ R
m is a set that determines a cube tiling of R

m, m > d,
I = {i1, . . . , im−d} ⊆ {1, . . . , m}, and T k

I = {t = (t1, . . . , tm) ∈ T : (ti1 , . . . , tim−d
) =

k} for k ∈ R
m−d, then by Theorem 2.1 we obtain that a set T k({1, . . . , m} \ I) =

{(tim−d+1
, . . . , tim) : t = (t1, . . . , tm) ∈ T k

I } determines a cube tiling of Rd. This implies
the following corollary.

Corollary 2.1 If every cube tiling of Rd contains a column, then for each m > d
every cube tiling of Rm contains a (d− 1)-column.

Two vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ R are called distinguishable if
there is an index i ∈ {1, . . . , d} such that xi �= yi and xi ∈ yi + Z. A system of
vectors is said to be distinguishable if any two vectors of it are distinguishable.

Two sets of vectors F,G ⊆ R
d are said to be isomorphic if there are a bijection

f : F → G and a permutation σ of the set {1, . . . , d} such that xi = yi if and only if
f(x)σ(i) = f(y)σ(i), and |xi − yi| ∈ N if and only if |f(x)σ(i) − f(y)σ(i)| ∈ N for every
pair of vectors x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ F and for each i ∈ {1, . . . , d}.

We will write x : x1 . . . xd instead of x = (x1, . . . , xd). The coordinates of vectors
will be denoted by Roman or Greek lower case letters. If we talk about the set
determining a cube tiling of R

d, then we will tacitly assume that a code of R
d is

defined and we will use Theorem 2.1 without explicitly referring to it. Roman letters
will occur only with lower indices, while Greek letters will occur with lower and
upper indices. A coordinate of a vector will be denoted by a Greek letter when
it is not explicit. Lower indices of coordinates of a vector will correspond to the
code of this vector. When i-th coordinates of two vectors are denoted by the same
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lower case letter with the same upper index (if there is any), then they differ by an
integer, and when they are denoted by different Roman letters, then their difference
is not an integer. For example, w1 : a1α

2
4β

1
2a5, w2 : b1α

2
1β

3
2a3 means that vectors

w1 = (a1, α
2
4, β

1
2 , a5) and w2 = (b1, α

2
1, β

3
2 , a3) have codes ε(w1) = (1, 4, 2, 5) and

ε(w2) = (1, 1, 2, 3). Differences (w1)2 − (w2)2 = α2
4 − α2

1 and (w1)4 − (w2)4 = a5 − a3
are non-zero integers, and the difference (w1)1 − w(2)1 = a1 − b1 is not an integer.
Moreover, the third coordinates of the vectors w1 and w2 have the same code but it
is not decided whether they are equal or different. As another example, let us see
that the vectors

w1 : a1 a1 α1
2 a1 α2

1,

w2 : a1 a2 α3
2 a1 α4

1,

w3 : a1 a3 α5
2 a1 α6

1,
...

determine a 2-column in 5-dimensional space and they can be written in the short
form

wl : a1 al α2l−1
2 a1 α2l

1 , l ≥ 1.

If A ⊆ X, then the set X \ A will be denoted by A′. Let x ∈ R, A ⊆ N and let
ε : R → N be a code. Then the family {xi : i ∈ A} will be denoted by xA. We will
denote by the symbol ∗ an unspecified member of the family xN. These symbols will
be used in the following way. Let A1, A2, . . ., An ⊆ N and T ⊆ R

n. We will denote
by aA1aA2 . . . aAn the following family of vectors from T :

aA1aA2 . . . aAn = {t ∈ T : t : ai1ai2 . . . ain , i1 ∈ A1, i2 ∈ A2, . . . , in ∈ An}.
The inscription aAaB∗ will denote an unspecified member of the family of sets

⋃

(i,j)∈ A×B

aiajx(i, j)N,

where x runs over all functions from A× B to R. The symbol � + Z will denote an
unspecified member of the family α+Z, α ∈ R, and the inscription X × (�+Z) will
denote an unspecified member of the family

⋃

x∈X
{x} × (α(x) + Z),

where α runs over all functions from X to R.
Using geometric arguments it is easy to see that in R

2 every cube tiling is layered.
We prove this obvious fact by using our notation to demonstrate how it works.

Theorem 2.2 Every cube tiling of R2 is layered.

Proof. Suppose that T ⊆ R
2 determines a non-layered cube tiling of R2. According,

with our notation we can assume that the vector of T with the code (1, 1) has the
form

w1 : a1 a1.
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As the tiling determined by T is non-layered, the set T contains the following vectors

w2 : αk b1,
w3 : b1 βl

for some k, l ∈ N, up to an isomorphism. By distinguishability of vectors w1, w2 and
w1, w3, we have αk = ak, k �= 1 and βl = al, l �= 1. As a result, vectors w2 and w3

are not distinguishable, which is impossible. �

3 Cube tilings of 3-dimensional space

Theorem 3.1 Let T ⊆ R
3 be a set determining a cube tiling of R3 and let W ⊆ T

be a set determining a cylinder. Then in W there is a set that determines a column.

Proof. Let W be a set that determines a cylinder in [0, 1)3 + T , i.e.

W = {t = (t1, t2, t3) ∈ T : t3 ∈ aN},

up to an isomorphism. Passing to an isomorphic system if necessary, we can assume
that the vector with the code (1, 1, 1) belongs to W and it has the form

w1, 1 : a1 a1 a1.

Consider the vectors of T with codes (l, 1, 1), l ≥ 2. By their distinguishability from
w1, 1, they have the form

w1, l : al α2l−3
1 α2l−2

1 , l ≥ 2.

If αi
1 = a1 for all i ≥ 1, then the vectors w1, l, l ≥ 2, belong to W and together with

w1, 1 determine a column. Suppose that αi
1 �= a1 for some i ≥ 1. We have to consider

two cases:

1. αi
1 �= a1 for some i ∈ {1, 3, . . .}.

Assume that α1
1 �= a1. (If α1

1 = a1 and for example α3
1 �= a1, then we replace the code

ε1 by ε′1, where ε′1|(a1 + Z) = (2 3) ◦ ε1 and ε′1 = ε1 on the complement of the set
a1+Z.) Take into account the vectors with codes (1, l, 1), l ≥ 2. By distinguishability,
they can be written as follows

w′
2, l−1 : a1 al βl−1

1 , l ≥ 2.

If βi
1 = a1 for all i ≥ 1, then the vectors w′

2, l, l ≥ 1, lie in W and together with w1, 1

determine a column. Suppose that βi
1 �= a1 for some i ≥ 1. We can assume that

β1
1 �= a1. (If β1

1 = a1 and βi
1 �= a1 for some i ≥ 2, then we can change the code ε2 in

an appropriate way.) Consider the vectors with codes (1, 1, l), l ≥ 2. They have the
form

w′
3, l−1 : γl−1

1 a1 al, l ≥ 2.
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Notice that the vectors w′
3, l, l ≥ 1, belong to W . If αi

1 �= a1 for some i ∈ {2, 4, . . .},
then by distinguishability of w1, l, l ≥ 2, and w′

3, l, l ≥ 1, we obtain γi
1 = a1 for all

i ≥ 1 and the vectors w1, 1, w′
3, l, l ≥ 1, determine a column. Suppose that αi

1 = a1
for i = 2, 4, . . . and γi

1 �= a1 for some i ≥ 1. We can assume that γ1
1 �= a1. (If γ1

1 = a1
and γi

1 �= a1 for some i ≥ 2, then we can change the code ε3 respectively.) Take the
vectors with codes (l, 1, 2), l ≥ 2. By distinguishability, they are as follows

w′
4, l−1 : γ1

l a1 a2, l ≥ 2.

The vectors w′
4, l, l ≥ 1, belong to W and together with w′

3, 1 determine a column.

2. αi
1 �= a1 for some i ∈ {2, 4, . . .}. We can assume that α2

1 �= a1. (If α2
1 = a1 and for

example α4
1 �= a1, then we replace the code ε1 by ε′1 so that ε′1|(a1 + Z) = (2 3) ◦ ε1

and ε′1 = ε1 on the complement of the set a1 + Z.) Consider the vectors with codes
(1, 1, l), l ≥ 2. By distinguishability from w1, l, l ≥ 1, they have the form

w2, l−1 : a1 βl−1
1 al, l ≥ 2.

The vectors w2, l, l ≥ 1, belong to W . If βi
1 = a1 for all i ≥ 1, then the vectors w1, 1

and w2, l, l ≥ 1, determine a column. Suppose that βi
1 �= a1 for some i ≥ 1. We can

assume that β1
1 �= a1. (If not, then we can change the code ε3 in an appropriate way.)

Now take the vectors with codes (1, l, 1), l ≥ 2. By distinguishability from w1, 1 and
w2, l, l ≥ 1, they can be written in the form

w3, l−1 : γl−1
1 al a1, l ≥ 2.

Notice that the vectors w3, l, l ≥ 1 belong to W . If αi
1 �= a1 for some i ∈ {1, 3, . . .},

then by distinguishability of w1, l, l ≥ 2, and w3, l, l ≥ 1, it follows that γi
1 = a1 for

all i ≥ 1 and the vectors w1, 1, w3, l, l ≥ 1, determine a column. So suppose that
αi
1 = a1 for i = 1, 3, . . . and γi

1 �= a1 for some i ≥ 1. We can assume that γ1
1 �= a1. (If

not, then we can change the code ε2 respectively.) Consider the vectors with codes
(l, 2, 1), l ≥ 2. They are as follows

w4, l−1 : γ1
l a2 a1, l ≥ 2.

The vectors w4, l, l ≥ 1, belong to W and together with w3, 1 determine a column. �

Lemma 3.1 Let T ⊆ R
3 be a set determining a non-layered cube tiling of R3, which

contains a column in the direction of the third coordinate axis. Then there are proper
subsets A and B of Z and real numbers α and β such that a subset of T that contains
the vectors determining all columns in the direction of the third coordinate axis has
the form

(α+ A)× (β +B)× (�+ Z).

Proof. First we will show that if a subset of T that contains the vectors determining
all columns in the direction of the third coordinate axis has the form (α+A)× (β +
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B)× (�+Z), then sets A and B have to be proper subsets of Z. Suppose that A = Z

or B = Z. We can assume that A = Z. Then for every vector t = (t1, t2, t3) ∈
T \ ((α + A)× (β +B)× (�+ Z)) we have t2 ∈ β + Z. It means that T determines
a layered tiling. This implies that sets A and B are proper subsets of Z.

According with our notation, it remains to show that there are proper subsets C
and D of N such that a subset of T that contains the vectors determining all columns
in the direction of the third coordinate axis has the form aC aD ∗.

It is sufficient to show that if the set T contains vectors {α1} × {α2} × (α3 + Z)
and {β1}×{β2}× (β3+Z) determining two columns such that α1 �= β1 and α2 �= β2,
then the vectors {α1} × {β2} × (γ + Z) for some γ ∈ R belong to T .

Passing to an isomorphic system if necessary, we can assume that the vectors of
T which determine a column in the direction of the third coordinate axis have the
form

w1, l : a1 a1 al, l ≥ 1.

Suppose that the set T contains the vectors determining another column in the third
direction, i.e. the following vectors

w2, l : α1
i α2

j α3
l , l ≥ 1,

for some i, j ∈ N. If α1
i �= ai, then by distinguishability we have α2

j = aj and j �= 1.
Now, the vectors with codes (r, k, s), k ∈ N \ {1, j}, for arbitrary r, s ∈ N imply that
T determines a layered tiling. Similarly, if α2

j �= aj, then α1
i = ai and i �= 1. Next,

the vectors with codes (k, r, s), k ∈ N \ {1, i}, for arbitrary r, s ∈ N imply that T
determines a layered tiling. As a result we have

w2, l : ai aj α3
l , l ≥ 1.

We can assume that i �= 1 and j �= 1. Consider the vectors with codes (1, j, l) and
(i, 1, l), l ≥ 1. By distinguishability, they have the form

w3, l : a1 aj β1
l ,

w4, l : ai a1 β2
l , l ≥ 1.

These vectors also determine columns in the direction of the third coordinate axis.
It implies that the set of vectors determining all columns in the third direction has
the desired form. �

Lemma 3.1 is obviously also true for columns in the direction of the first or second
instead of third coordinate axis.

Theorem 3.2 Let T ⊆ R
3 be a set that determines a non-layered cube tiling of R3.

Then there are proper subsets A, B, C of Z and real numbers α, β, γ such that the
set T can be presented as the union of the following sets of vectors:

(α+ A)× (β +B)× (�+ Z),
(α + A′)× (�+ Z)× (γ + C),
(�+ Z)× (β +B′)× (γ + C ′),
(α+ A′)× (β +B)× (γ + C ′),
(α + A)× (β +B′)× (γ + C).
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Proof. In [11] the authors showed that the set T contains vectors that determine
a column. Passing to an isomorphic system if necessary, we can assume that it is a
column in the direction of the third coordinate axis. By Lemma 3.1, a set of vectors
determining all columns in the third direction can be written in the form

K1 = aA aB ∗,

for some proper subsets A, B of N. As the tiling determined by T is non-layered, T
contains the vector

w1, j : α1
i bj α2

k,

for some i, j, k ∈ N. By distinguishability of w1, j with vectors of the set K1, we have
α1
i = ai and i /∈ A. Consider vectors of the set T with codes (i, l, k), l ∈ N \ {j}. By

distinguishability, they have the form

w1, l : ai bl βl
k, l ∈ N \ {j}.

If βl
k �= α2

k for some l ∈ N\{j}, then taking the vectors with codes (i, j, r), r ∈ N\{k},
which have the form

ai bj α2
r , r ∈ N \ {k},

we obtain the vectors that determine a column in the third direction, but they do
not belong to K1, which is impossible. Thus βl

k = α2
k for all l ∈ N \ {j} and the

vectors w1, l, l ≥ 1, determine a column in the direction of the second coordinate axis.
Moreover, this column is disjoint with all columns determined by the set K1. By
an appropriate version of Lemma 3.1 and definition of distinguishability, the vectors
determining all columns in the second direction disjoint with columns determined by
vectors of K1 are contained in the set

K2 = aA′ ∗ aC ,

for some proper subset C of N. Again, as the tiling determined by T is non-layered,
T contains the vector

w2, r : br γ1
s γ2

t ,

for some r, s, t ∈ N. By distinguishability of w2, r from vectors of sets K1 and K2,
we have γ1

s = as, s /∈ B and γ2
t = at, t /∈ C. Now, take the vectors of T with codes

(l, s, t), l ∈ N \ {r}. They are as follows

w2, l : bl as at, l ∈ N \ {r}.

The vectors w2, l, l ≥ 1, determine a column in the direction of the first coordinate
axis disjoint with all columns determined by the vectors of sets K1 and K2. By
an appropriate version of Lemma 3.1 and definition of distinguishability, vectors
determining all columns in the first direction disjoint with columns determined by
the vectors of sets K1 and K2 are contained in the set

K3 = ∗ aB′ aC′ .
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By distinguishability, the vectors of the set T \ (⋃3
i=1Ki

)
are contained in the union

of the following sets:
aA′ aB aC′ ,
aA aB′ aC .

As vectors of the set

S = aA′aBaC′ ∪ aAaB′aC ∪
3⋃

i=1

Ki

are pairwise distinguishable and ε(S) = N
3, where ε : R3 → N

3 is a code, by Theo-
rem 2.1 we obtain T = S. �

Theorem 3.2 is illustrated in Figure 2.

Fig. 2
A part of a non-layered cube tiling of R3.

Each column can be partitioned into cubes in an arbitrary way.

4 Cube tilings of 4-dimensional space

Lemma 4.1 Let T ⊆ R
4 be a set that determines a cube tiling of R4 and let W ⊆ T

be a set that determines a cylinder. Then the set W contains vectors that determine
a 2-column.

Proof. If W ⊆ T is a set that determines a cylinder of the tiling [0, 1)4 + T , then it
has the form

W = {t = (t1, t2, t3, t4) ∈ T : t4 ∈ aN},
up to an isomorphism. Suppose that W does not contain vectors determining a
2-column. Passing to an isomorphic system if necessary, we can assume that the
vector

w1, 1 : a1 a1 a1 a1
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belongs to W . Consider the vectors of T with codes (1, 1, 1, l), l ≥ 2. By distin-
guishability, they have the form

w1, l : α3l−5
1 α3l−4

1 α3l−3
1 al, l ≥ 2.

The vectors w1, l, l ≥ 2, belong to the set W . As W does not contain vectors
determining a 2-column, we can assume that αi

1 �= a1 for some i ∈ {1, 4, . . .} and
αi
1 �= a1 for some i ∈ {2, 5, . . .}. We can suppose that α1

1 �= a1. (If α1
1 = a1 and for

example α4
1 �= a1, then we replace the code ε4 by ε′4, where ε′4|(a1 + Z) = (2 3) ◦ ε4

and ε′4 = ε4 on the complement of the set a1 + Z.) Take into account the vectors
with codes (l, 1, 1, 1), l ≥ 2. They are as follows

w2, l−1 : al β2l−3
1 β2l−2

1 a1, l ≥ 2.

The vectors w2, l, l ≥ 1, belong to W . Again, as W does not contain vectors deter-
mining a 2-column, we can suppose that βi

1 �= a1 for some i ∈ {1, 3, . . .} and βi
1 �= a1

for some i ∈ {2, 4, . . .}. We can assume that β1
1 �= a1. (If β1

1 = a1 and for example
β3
1 �= a1, then we replace the code ε1 by ε′1, where ε′1|(a1 + Z) = (2 3) ◦ ε1 and

ε′1 = ε1 on the complement of the set a1 + Z.) Now, consider the vectors with codes
(1, l, 1, 1), l ≥ 2. By distinguishability, they have the form

w3, l−1 : a1 al γl−1
1 a1, l ≥ 2.

The vectors w3, l, l ≥ 1, belong to W and together with w1, 1 determine a 2-column.
�

Theorem 4.1 Let T ⊆ R
4 be a set that determines a cube tiling of R4 and let W ⊆ T

be a set that determines a cylinder. Then W contains vectors determining a column.

Proof. From the definition it follows that W has the form

W = {t = (t1, t2, t3, t4) ∈ T : t4 ∈ aN},

up to an isomorphism. By Lemma 4.1, W contains vectors determining a 2-column.
We have to consider two cases:

I. Vectors determining a 2-column have the form (up to permutations of the first,
second, and third coordinate axes):

w1, 1 : a1 a1 a1 a1,

w1, l : αl−1
1 a1 a1 al, l ≥ 2.

If αi
1 = a1 for all i ≥ 1, then the vectors w1, k, k ≥ 1, determine a column. Suppose

that αi
1 �= a1 for some i ≥ 1. We can assume that α1

1 �= a1. (If α1
1 = a1 and for

example α2
1 �= a1, then we replace the code ε4 by ε′4, where ε′4|(a1 + Z) = (2 3) ◦ ε4
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and ε′4 = ε4 on the complement of the set a1 + Z.) Consider the vectors with codes
(l, 1, 1, 1), l ≥ 2. By distinguishability, they have the form

w2, l−1 : al β2l−3
1 β2l−2

1 a1, l ≥ 2.

The vectors w2, l, l ≥ 1, belong to W . If βi
1 = a1 for all i ≥ 1, then the vectors

w1, 1 and w2, l, l ≥ 1, determine a column. Suppose that βi
1 �= a1 for some i ≥ 1.

We can assume that β1
1 �= a1. (If β1

1 = a1 and for example β4
1 �= a1, then we change

the order of the second and third coordinates and replace the code ε1 by ε′1, where
ε′1|(a1 + Z) = (2 3) ◦ ε1 and ε′1 = ε1 on the complement of the set a1 + Z.) Take the
vectors with codes (2, l, 1, 1), l ≥ 2. They are as follows

w3, l−1 : a2 β1
l γl−1

1 a1, l ≥ 2.

The vectors w3, l, l ≥ 1, belong to W . If γi
1 = β2

1 for all i ≥ 1, then the vectors w2, 1

and w3, l, l ≥ 1, determine a column. Suppose that γi
1 �= β2

1 for some i ≥ 1. We can
assume that γ1

1 �= β2
1 . (If not, then we change the code ε2 in an appropriate way.)

Then we can also assume that γ1
1 �= a1. (If γ1

1 = a1 and β2
1 �= a1, then we replace the

code ε2 by ε′2, where ε′2|(β1
1 + Z) = (1 2) ◦ ε2 and ε′2 = ε2 on the complement of the

set β1
1 + Z.) Consider the vectors with codes (2, 2, l, 1), l ≥ 2. By distinguishability,

they have the form
w4, l−1 : a2 β1

2 γ1
l a1, l ≥ 2.

The vectors w4, l, l ≥ 1, belong to W and together with w3, 1 determine a column.

II. Vectors determining a 2-column have the form (up to permutations of the first,
second, and third coordinate axes):

w1,1 : a1 a1 a1 a1,

w1,l : αl−1
1 al a1 a1, l ≥ 2.

If αi
1 = a1 for all i ≥ 1, then the vectors w1, k, k ≥ 1, determine a column. Suppose

that αi
1 �= a1 for some i ≥ 1. We can assume that α1

1 �= a1. (If α1
1 = a1 and for

example α2
1 �= a1, then we replace the code ε2 by ε′2, where ε′2|(a1 + Z) = (2 3) ◦ ε2

and ε′2 = ε2 on the complement of the set a1 + Z.) Consider the vectors with codes
(l, 2, 1, 1), l ≥ 2. By distinguishability, they have the form

w2, l−1 : α1
l a2 β2l−3

1 β2l−2
1 , l ≥ 2.

If βi
1 = a1 for all i ≥ 1, then the vectors w2, l, l ≥ 1, belong to W and together with

w1, 2 determine a column. We have to consider the following three cases:

1. βi
1 �= a1 for some i ∈ {1, 3, . . .} and βi

1 = a1 for i = 2, 4, . . ..

Then the vectors w1, l, l ≥ 1, belong to W . We can assume that β1
1 �= a1. (If β1

1 = a1
and for example β3

1 �= a1, then we replace the code ε1 by ε′1, where ε′1|(α1
1 + Z) =
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(2 3) ◦ ε1 and ε′1 = ε1 on the complement of the set α1
1 + Z.) Consider the vectors

with codes (2, 2, l, 1), l ≥ 2. They are as follows

u3, l−1 : α1
2 a2 β1

l γl−1
1 , l ≥ 2.

If γi
1 = a1 for all i ≥ 1, then the vectors u3, l, l ≥ 1, belong to W and together with

w2, 1 determine a column. Suppose that γi
1 �= a1 for some i ≥ 1. We can assume

that γ1
1 �= a1. (If not, then we change the code ε3 in an appropriate way.) Take the

vectors with codes (2, 2, 1, l), l ≥ 2. They have the form

u4, l−1 : δ2l−3
2 δ2l−2

2 β1
1 al, l ≥ 2.

The vectors u4, l, l ≥ 1, belong to W . If δi2 = α1
2 for i = 1, 3, . . . and δi2 = a2 for

i = 2, 4, . . ., then the vectors w2, 1 and u4, l, l ≥ 1, determine a column. Suppose that
δi2 �= α1

2 for some i ∈ {1, 3, . . .}. We can assume that δ12 �= α1
2. (If δ12 = α1

2 and for
example δ32 �= α1

2, then we replace the code ε4 by ε′4, where ε′4|(a1 + Z) = (2 3) ◦ ε4
and ε′4 = ε4 on the complement of the set a1 + Z.) Consider the vectors with codes
(l, 2, 1, 2), l ∈ N \ {2}. By distinguishability, they can be written in the form

u′
5, 1 : δ11 η12 β1

1 a2,

u′
5, l−1 : δ1l ηl−1

2 β1
1 a2, l ≥ 3.

The vectors u′
5, l, l ≥ 1, belong to W . If ηi2 = δ22 for all i ≥ 1, then the vectors u4, 1,

u′
5, l, l ≥ 1, determine a column. Suppose that ηi2 �= δ22 for some i ≥ 1. We can

assume that η12 �= δ22. (If not, then we change the code ε1 appropriately.) Then we
can also assume that η12 �= a2. ( If η12 = a2 and δ22 �= a2, then we replace the code
ε1 by ε′1, where ε′1|(δ11 + Z) = (1 2) ◦ ε1 and ε′1 = ε1 on the complement of the set
δ11 + Z.) Take the vectors with codes (1, l, 1, 2), l ∈ N \ {2}. They have the form

u′
6, 1 : δ11 η11 β1

1 a2,

u′
6, l−1 : δ11 η1l β1

1 a2, l ≥ 3.

The vectors u′
6, l, l ≥ 1, belong to W and together with u′

5, 1 determine a column.
Suppose now that δi2 �= a2 for some i ∈ {2, 4, . . .}. We can assume that δ22 �= a2.
(If δ22 = a2 and for example δ42 �= a2, then we replace the code ε4 by ε′4, where
ε′4|(a1 + Z) = (2 3) ◦ ε4 and ε′4 = ε4 on the complement of the set a1 + Z.) Consider
the vectors with codes (2, l, 1, 2), l ∈ N \ {2}. By distinguishability, they are as
follows

u5, 1 : η12 δ21 β1
1 a2,

u5, l−1 : ηl−1
2 δ2l β1

1 a2, l ≥ 3.

The vectors u5, l, l ≥ 1, belong to W . If ηi2 = δ12 for all i ≥ 1, then the vectors u4, 1,
u5, l, l ≥ 1, determine a column. Suppose that ηi2 �= δ12 for some i ≥ 1. We can
assume that η12 �= δ12. (If not, then we change the code ε2 in an appropriate way.)
Then we can also assume that η12 �= α1

2. (If η12 = α1
2 and δ12 �= α1

2, then we replace the
code ε2 by ε′2, where ε′2|(δ21 + Z) = (1 2) ◦ ε2 and ε′2 = ε2 on the complement of the
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set δ21 + Z.) Now take the vectors with codes (l, 1, 1, 2), l ∈ N \ {2}. They have the
form

u6, 1 : η11 δ21 β1
1 a2,

u6, l−1 : η1l δ21 β1
1 a2, l ≥ 3.

The vectors u6, l, l ≥ 1, belong to W and together with u5, 1 determine a column.

2. βi
1 = a1 for i = 1, 3, . . . and βi

1 �= a1 for some i ∈ {2, 4, . . .}.
We can assume that β2

1 �= a1. (If β2
1 = a1 and for example β4

1 �= a1, then we replace
the code ε1 by ε′1, where ε′1|(α1

1+Z) = (2 3)◦ε1 and ε′1 = ε1 on the complement of the
set α1

1 + Z.) Consider the vectors with codes (1, 2, 1, l), l ≥ 2. By distinguishability
from w1, l, l ≥ 1, and w2, l, l ≥ 1, they are as follows

v3, l−1 : α1
1 γ2l−3

2 γ2l−2
1 al, l ≥ 2.

The vectors v3, l, l ≥ 1, belong to W . If γi
2 = a2 for i = 1, 3, . . . and γi

1 = a1 for
i = 2, 4, . . ., then vectors w1, 2, v3, l, l ≥ 1, determine a column. Suppose that γi

2 �= a2
for some i ∈ {1, 3, . . .}. We can assume that γ1

2 �= a2. (If not, then we change the
code ε4 appropriately.) Consider the vectors with codes (1, l, 1, 2), l ∈ N \ {2}. They
have the form

v′4, 1 : α1
1 γ1

1 δ11 a2,

v′4, l−1 : α1
1 γ1

l δl−1
1 a2, l ≥ 3.

The vectors v′4, l, l ≥ 1, belong to W . If δi1 = γ2
1 for all i ≥ 1, then vectors v3, 1, v′4, l,

l ≥ 1, determine a column. Suppose that δi1 �= γ2
1 for some i ≥ 1. We can assume

that δ11 �= γ2
1 . (If not, then we change the code ε2 in an appropriate way.) Then we

can also assume that δ11 �= a1. (If δ11 = a1 and γ2
1 �= a1, then we replace the code

ε2 by ε′2, where ε′2|(γ1
1 + Z) = (1 2) ◦ ε2 and ε′2 = ε2 on the complement of the set

γ1
1 + Z.) Take the vectors with codes (1, 1, l, 2), l ≥ 2. By distinguishability, they

can be written in the form

v′5, l−1 : α1
1 γ1

1 δ1l a2, l ≥ 2.

The vectors v′5, l, l ≥ 1, belong to W and together with v′4, 1 determine a column.
Now, suppose that γi

1 �= a1 for some i ∈ {2, 4, . . .}. We can assume that γ2
1 �= a1.

(If γ2
1 = a1 and for example γ4

1 �= a1, then we replace the code ε4 by ε′4, where
ε′4|(a1 + Z) = (2 3) ◦ ε4 and ε′4 = ε4 on the complement of the set a1 + Z.) Consider
the vectors with codes (1, 2, l, 2), l ≥ 2. They have the form

v4, l−1 : α1
1 δl−1

2 γ2
l a2, l ≥ 2.

The vectors v4, l, l ≥ 1, belong to W . If δi2 = γ1
2 for all i ≥ 1, then vectors v3, 1

and v4, l, l ≥ 1, determine a column. Suppose that δi2 �= γ1
2 for some i ≥ 1. We can

assume that δ12 �= γ1
2 . (If not, then we change the code ε3 in an appropriate way.)

Then we can also assume that δ12 �= a2. (If δ12 = a2 and γ1
2 �= a2, then we replace

the code ε3 by ε′3, where ε′3|(γ2
1 + Z) = (1 2) ◦ ε3 and ε′3 = ε3 on the complement
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of the set γ2
1 + Z.) Now, take the vectors with codes (1, l, 2, 2), l ∈ N \ {2}. By

distinguishability, they are as follows

v5, 1 : α1
1 δ11 γ2

2 a2,

v5, l−1 : α1
1 δ1l γ2

2 a2, l ≥ 3.

The vectors v5, l, l ≥ 1, belong to W and together with v4, 1 determine a column.

3. βi
1 �= a1 for some i ∈ {1, 3, . . .} and βi

1 �= a1 for some i ∈ {2, 4, . . .}.
We can assume that β1

1 �= a1. (If β1
1 = a1 and for example β3

1 �= a1, then we replace
the code ε1 by ε′1, where ε′1|(α1

1 + Z) = (2 3) ◦ ε1 and ε′1 = ε1 on the complement
of the set α1

1 + Z.) Set r ∈ {2, 4 . . .} such that βr
1 �= a1. Consider the vectors with

codes (1, 2, 1, l), l ≥ 2. By distinguishability from w1, l, l ≥ 1, and w2, l, l ≥ 1, they
have the form

w3, l−1 : α1
1 γ2l−3

2 γ2l−2
1 al, l ≥ 2.

The vectors w3, l, l ≥ 1, belong to W . If γi
2 = a2 for i = 1, 3, . . . and γi

1 = a1 for
i = 2, 4, . . ., then vectors w1, 2 and w3, l, l ≥ 2, determine a column. Suppose that
γi
2 �= a2 for some i ∈ {1, 3, . . .}. We can assume that γ1

2 �= a2. (If not, then we change
the code ε4 appropriately.) Consider the vectors with codes (1, l, 1, 2), l ∈ N \ {2}.
They have the form

w′′
4, 1 : α1

1 γ1
1 δ11 a2,

w′′
4, l−1 : α1

1 γ1
l δl−1

1 a2, l ≥ 3.

The vectors w′′
4, l, l ≥ 1, belong to W . If δi1 = γ2

1 for all i ≥ 1, then vectors w3, 1

and w′′
4, l, l ≥ 1, determine a column. Suppose that δi1 �= γ2

1 for some i ≥ 1. We can
assume that δ11 �= γ2

1 . (If not, then we change the code ε2 in an appropriate way.)
Then we can also assume that δ11 �= a1. (If δ11 = a1 and γ2

1 �= a1, then we replace the
code ε2 by ε′2, where ε′2|(γ1

1 + Z) = (1 2) ◦ ε2 and ε′2 = ε2 on the complement of the
set γ1

1 + Z.) Take the vectors with codes (1, 1, l, 2), l ≥ 2. They are as follows

w′′
5, l−1 : ηl−1

1 γ1
1 δ1l a2, l ≥ 2.

The vectors w′′
5, l, l ≥ 1, belong to W . If βr−1

1 �= δ11, then, by distinguishability of
w2, r

2
and w′′

5, l, l ≥ 1, we have ηi1 = α1
1 for all i ≥ 1 and the vectors w′′

4, 1, w′′
5, l, l ≥ 1,

determine a column. Suppose that βr−1
1 = δ11 and ηi1 �= α1

1 for some i ≥ 1. We can
assume that η11 �= α1

1. (If not, then we change the code ε3 appropriately.) Consider
the vectors with codes (l, 1, 2, 2), l ≥ 2. By distinguishability, they have the form

w′′
6, l−1 : η1l γ1

1 δ12 a2, l ≥ 2.

The vectors w′′
6, l, l ≥ 1, belong to W and together with w′′

5, 1 determine a column.
Now, suppose that γi

1 �= a1 for some i ∈ {2, 4, . . .}. We can assume that γ2
1 �= a1.

(If γ2
1 = a1 and for example γ4

1 �= a1, then we replace the code ε4 by ε′4, where
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ε′4|(a1 + Z) = (2 3) ◦ ε4 and ε′4 = ε4 on the complement of the set a1 + Z.) Consider
the vectors with codes (1, 2, l, 2), l ≥ 2. They have the following form

w4, l−1 : δ2l−3
1 δ2l−2

2 γ2
l a2, l ≥ 2.

The vectors w4, l, l ≥ 1, belong to W . If βr−1
1 �= γ2

1 , then by distinguishability of
w2, r

2
and w4, l, l ≥ 1, we have δi1 = α1

1 for i = 1, 3, . . .. If now δi2 = γ1
2 for i = 2, 4, . . .,

then vectors w3, 1 and w4, l, l ≥ 1, determine a column. Suppose that δi2 �= γ1
2 for

some i ∈ {2, 4, . . .}. We can assume that δ22 �= γ1
2 . (If not, then we change the code

ε3 in an appropriate way.) Then we can also suppose that δ22 �= a2. (If δ22 = a2
and γ1

2 �= a2, then we replace the code ε3 by ε′3, where ε′3|(γ2
1 + Z) = (1 2) ◦ ε3 and

ε′3 = ε3 on the complement of the set γ2
1 +Z.) Take the vectors with codes (1, l, 2, 2),

l ∈ N \ {2}. They have the form

α1
1 δ21 γ2

2 a2,

α1
1 δ2l γ2

2 a2, l ≥ 3.

These vectors belong to W and together with w4, 1 determine a column. Thus βr−1
1 =

γ2
1 . If δi1 = α1

1 for i = 1, 3, . . . and δi2 = γ1
2 for i = 2, 4, . . ., then vectors w3, 1, w4, l,

l ≥ 1, determine a column. Suppose that δi2 �= γ1
2 for some i ∈ {2, 4, . . .}. We can

assume that δ22 �= γ1
2 . (If not, then we change the code ε3 appropriately.) Consider

the vectors with codes (1, l, 2, 2), l ∈ N \ {2}. By distinguishability, they are as
follows

w′
5, 1 : η11 δ21 γ2

2 a2,

w′
5, l−1 : ηl−1

1 δ2l γ2
2 a2, l ≥ 3.

The vectors w′
5, l, l ≥ 1, belong to W . If ηi1 = δ11 for all i ≥ 1, then vectors w4, 1

and w′
5, l, l ≥ 1, determine a column. Suppose that ηi1 �= δ11 for some i ≥ 1. We can

assume that η11 �= δ11. (If not, then we change the code ε2 in an appropriate way.)
Then we can also assume that η11 �= α1

1. (If η11 = α1
1 and δ11 �= α1

1, then we replace the
code ε2 by ε′2, where ε′2|(δ21 + Z) = (1 2) ◦ ε2 and ε′2 = ε2 on the complement of the
set δ21 + Z.) Take the vectors with codes (l, 1, 2, 2), l ≥ 2. They have the form

w′
6, l−1 : η1l δ21 γ2

2 νl−1
2 , l ≥ 2.

If νi
2 = a2 for all i ≥ 1, then the vectors w′

6, l, l ≥ 1, belong to W and together with
w′

5, 1 determine a column. Suppose that νi
2 �= a2 for some i ≥ 1. We can assume

that ν1
2 �= a2. (If not, then we change the code ε1 in an appropriate way.) Then, by

distinguishability of w′
6, 1, w1, 1, and w1, 2, we obtain η12 = a2 and δ21 = a1. Take the

vectors with codes (1, 2, l, 1), l ≥ 2. By distinguishability, they are as follows

w′
7, l−1 : α1

1 a2 al a1, l ≥ 2.

The vectors w′
7, l, l ≥ 1, belong to W and together with w1, 2 determine a column.

Now, suppose that δi1 �= α1
1 for some i ∈ {1, 3, . . .}. We can assume that δ11 �= α1

1.
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(If not, then we change the code ε3 appropriately.) Consider the vectors with codes
(l, 2, 2, 2), l ≥ 2. They have the form

w5, l−1 : δ1l ηl−1
2 γ2

2 a2, l ≥ 2.

The vectors w5, l, l ≥ 1, belong to W . If ηi2 = δ22 for all i ≥ 1, then vectors w4, 1, w5, l,
l ≥ 1, determine a column. Suppose that ηi2 �= δ22 for some i ≥ 1. We can assume
that η12 �= δ22. (If not, then we change the code ε1 in an appropriate way.) Then we
can also assume that η12 �= γ1

2 . (If η12 = γ1
2 and δ22 �= γ1

2 , then we replace the code
ε1 by ε′1, where ε′1|(δ11 + Z) = (1 2) ◦ ε1 and ε′1 = ε1 on the complement of the set
δ11 + Z.) Consider the vectors with codes (2, l, 2, 2), l ∈ N \ {2}. They are as follows

w6, 1 : δ12 η11 γ2
2 ν1

2 ,

w6, l−1 : δ12 η1l γ2
2 νl−1

2 , l ≥ 3.

If νi
2 = a2 for all i ≥ 1, then the vectors w6, l, l ≥ 1, belong to W and together

with w5, 1 determine a column. Suppose that νi
2 �= a2 for some i ≥ 1. We can

assume that ν1
2 �= a2. (If not, then we change the code ε2 appropriately.) Then, by

distinguishability of w6, 1, w1, 1, and w1, 2, we obtain η11 = a1 and δ12 = a2. Take the
vectors with codes (1, 2, l, 1), l ≥ 2. By distinguishability, they have the form

w7, l−1 : α1
1 a2 al a1, l ≥ 2.

The vectors w7, l, l ≥ 1, belong to W and together with w1, 2 determine a column. �
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