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Abstract

Seymour’s Second Neighborhood Conjecture (SNC) asserts that every
oriented graph has a vertex whose first out-neighborhood is at most as
large as its second out-neighborhood. In this paper, we prove that if G
is a graph containing no induced C4, C4, S3, chair and chair, then every
oriented graph missing G satisfies this conjecture. As a consequence,
we deduce that the conjecture holds for every oriented graph missing a
threshold graph, a generalized comb or a star.

1 Introduction

Throughout this paper, all graphs are considered to be simple, that is, there are no
loops and no multiple edges. Given a graph G, the vertex-set and the edge-set of G
are denoted by V (G) and E(G) respectively. Given an edge xy of G, the vertices x
and y are called the endpoints of xy and they are said to be adjacent. Two edges
of G are said to be adjacent if they have a common endpoint. The neighborhood of
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a vertex v in G, denoted by NG(v), is the set of all the vertices adjacent to v. The
degree dG(v) of v in G is defined to be dG(v) := |NG(v)|. Note that we may omit
the subscript if the graph is clear from the context. Given two sets of vertices U and
W of G, we denote by E[U,W ] the set of all edges in G that join a vertex in U to a
vertex in W . For A ⊆ V (G), G[A] denotes the subgraph of G induced by A. If G[A]
is an empty graph, then A is called a stable set, that is, there is no edge that joins
any two distinct vertices of A. However, if G[A] is a complete graph, then A is called
a clique set, that is, any two distinct vertices of A are adjacent. The complement
graph G of G is defined as follows: V (G) = V (G) and xy ∈ E(G) if and only if
xy /∈ E(G). A graph H is called a forbidden subgraph of G if H is not (isomorphic
to) an induced subgraph of G. In this case, we say that G is an H-free graph.

A digraph D is an ordered pair D = (V (D), E(D)) where V (D) is a non-empty
set of elements called the vertices of D, and E(D) ⊆ {(x, y); x, y ∈ V (D) and
x �= y} and it is called the arc-set of D. Thus, a digraph contains neither loops nor
multiple arcs. An oriented graph D is a digraph that contains no digons, that is, if
(x, y) ∈ E(D), then (y, x) /∈ E(D) for all x, y ∈ V (D). In other words, an oriented
graph is an orientation of a simple graph. Given a digraph D, for (x, y) ∈ E(D) with
x, y ∈ V (D), we say that y is an out-neighbor of x, x is an in-neighbor of y and x and
y are adjacent. The (first) out-neighborhood (respectively in-neighborhood) N+

D (v)
(respectively N−

D(v)) of a vertex v in D is the set of all out-neighbors (respectively
in-neighbors) of v. Moreover, the second out-neighborhood N++

D (v) of v in D is the
set of vertices that are at distance 2 from v, that is, N++

D (v) := {x ∈ V (D)−N+
D (v);

∃ y ∈ N+
D (v)| (y, x) ∈ E(D)}. The out-degree, the in-degree and the second out-

degree of v in D are defined as follows: d+D(v) := |N+
D(v)|, d−D(v) := |N−

D(v)| and
d++
D (v) := |N++

D (v)|, respectively. Note that we omit the subscript if the digraph is
clear from the context. For short, we write x → y if the arc (x, y) ∈ E(D). Also, we
write x1 → x2 → · · · → xn, if xi → xi+1 for every 1 � i � n− 1.

Let D be an oriented graph and let v ∈ V (D), we say that v has the second neigh-
borhood property SNP if d+(v) ≤ d++(v). In 1990, Seymour (see [2]) conjectured
the following:

Conjecture 1. Every oriented graph has a vertex satisfying the SNP.

The above conjecture is called “The Second Neighborhood Conjecture”, and is ab-
breviated as “SNC”. The SNC on tournaments is called Dean’s conjecture, where
tournaments are orientations of complete graphs. In 1996, Fisher [4] proved Dean’s
Conjecture. In 2000, a shorter proof of Dean’s conjecture was given by Havet and
Thomassé [10] using a tool called the median order. In 2007, Fidler and Yuster [3]
proved the SNC for tournaments missing a matching, using local median orders and
dependency digraphs. In 2012, Ghazal [7] proved the weighted version of SNC for
tournaments missing a threshold graph. Then, in 2013, Ghazal [5] proved the SNC
for tournaments missing a comb, a cycle of length 4 or 5. In 2015, Ghazal [6] re-
fined the result of [3] and he showed in particular that every tournament missing a
matching has a certain “feed vertex” satisfying the SNP.

In this paper, we prove the SNC for any oriented graph missing a graph G, where
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G contains no C4, C4, S3, chair and chair as induced subgraphs. This generalizes
the results of [7] and [5] that confirm the SNC for oriented graphs missing either a
threshold graph or a comb, respectively. For this purpose, we introduce in Section
2 some necessary definitions and preliminary results established by Ghazal [7, 8]
on the structure of threshold graphs, generalized combs and {C4, C4, S3, chair and
chair}-free graphs. Then in Section 3, as a key step, we characterize the graphs of
our interest using dependency digraphs.

2 Definitions and Preliminaries

A chair is a graph G whose vertex-set is V (G) = {x, y, z, t, v} and whose edge-set is
E(G) = {xy, yz, zt, zv}. The complement of a chair is defined as chair. We denote by
Cn = v1v2 . . . vnv1 the cycle on n vertices, by Pn = v1v2 . . . vn the path on n vertices
and by S3 the graph on 6 vertices indicated in Figure 1. A graph G is a called a
split graph if its vertex-set is the disjoint union of a stable set S and a clique set K.
In this case, we write G is an {S, K}-split graph. For an {S, K}-split graph G, if
sx ∈ E(G) for all s ∈ S and for all x ∈ K, then G is called a complete split graph.
Otherwise if E[S,K] forms a perfect matching of G, then G is called a perfect split
graph.

Figure 1: A chair, an S3 and a chair

In [9] and [1], the notion of a threshold graph (also known as a generalized star)
is introduced as follows:

Definition 2.1. A graph G is called a threshold graph if:

1. V (G) :=

n+1⋃

i=1

(Xi ∪ Ai−1), where the Ai and the Xi are pairwisely disjoint sets.

2. K :=

n+1⋃

i=1

Xi is a clique and the Xi are nonempty, except possibly Xn+1.

3. S :=
n⋃

i=0

Ai is a stable set and the Ai are nonempty, except possibly A0.

4. For all i and j with 1 ≤ j ≤ i ≤ n, G[Ai ∪Xj] is a complete split graph.

5. The only edges of G are the edges of the subgraphs mentioned above.
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In this case, G is called an {S, K}-threshold graph.

On the structure of threshold graphs, Hammer and Chvàtal noticed the following:

Theorem 2.2. (Hammer and Chvàtal [9], [1]) G is a threshold graph if and only if
C4, C4 and P4 are forbidden subgraphs of G.

As a generalization of threshold graphs, Ghazal introduced the notion of gener-
alized combs as follows:

Definition 2.3. (Ghazal [8]) A graph G is called a generalized comb if:

1. V (G) is the disjoint union of the sets A0, . . . , An,M1, . . . ,Ml, X1, . . . , Xn+1, Y2,
. . . , Yl+2 with Y1 = X1.

2. S := A0 ∪ A ∪M is a stable set, where M =

l⋃

i=1

Mi and A =

n⋃

i=1

Ai.

3. K := X ∪ Y is a clique, where X =

n+1⋃

i=1

Xi and Y =

l+2⋃

i=1

Yi.

4. For all i and j with 1 ≤ j ≤ i ≤ n, G[Ai ∪Xj ] is a complete split graph.

5. G[A ∪ Y ] is a complete split graph.

6. For all i with 1 ≤ i ≤ l, G[Yi ∪Mi] is a perfect split graph or Mi = ∅.
7. For all i and j with 1 ≤ i < j ≤ l + 1, G[Yj ∪Mi] is a complete split graph.

8. Xn+1, Yl+2, Yl+1 and A0 are the only possibly empty sets among the Xi, Yi and
Ai.

9. The only edges of G are the edges of the subgraphs mentioned above.

In this case, we say that G is an {S, K}-generalized comb.

On the structural properties of generalized combs, Ghazal proved in the same
paper the following characterization:

Theorem 2.4. (Ghazal [8]) G is a generalized comb if and only if C4, C4, C5, S3,
chair and chair are forbidden subgraphs of G.

The next corollary shows that generalized combs can be viewed as generalizations of
threshold graphs:

Corollary 2.5. (Ghazal [8]) Every threshold graph is a generalized comb.

Even though the converse of Corollary 2.5 is not necessarily true, the next proposition
shows that every generalized comb contains a threshold graph as a subgraph:
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Proposition 2.6. Let G be a generalized comb defined as in Definition 2.3. Then
G′ = G−⋃

1≤i≤l E[Yi,Mi] is a threshold graph.

Proof. According to Theorem 2.2, it is enough to prove that G′ contains no induced
C4, C4 and P4. Assume to the contrary that G′ contains an induced C4, say C4 =
v1v2v3v4v1. Assume first that v1v3 /∈ E(G), then v2v4 ∈ E(G), since otherwise
C4 would be an induced subgraph of G. Thus, according to Theorem 2.4, G is
not a generalized comb, a contradiction. This implies that v1v3 ∈ E(G) and so
v1v3 ∈ E[Yi,Mi] for some 1 ≤ i ≤ l, say v1 ∈ Mi and v3 ∈ Yi. But v1v2 ∈ E(G′) and
so v1v2 ∈ E(G) as well. Recall that the neighbors of each vertex in M are only in Y ,
due to Definition 2.3. Thus, it follows that v2 ∈ Y . But v3 ∈ Yi, then v2v3 /∈ E(G)
and so v2v3 /∈ E(G′), a contradiction. This verifies that G′ contains no induced C4.
Proceeding in a similar way, we can prove that G′ contains no C4 and P4 as induced
subgraphs. This ends the proof.

On the structure of graphs containing no C4, C4, S3, chair and chair as induced
subgraphs, Ghazal exhibited a partition of their vertex-sets as follows:

Theorem 2.7. (Ghazal [8]) C4, C4, S3, chair and chair are forbidden subgraphs of
a graph G if and only if V (G) is the disjoint union of three sets S, K and C such
that:

1. G[S ∪K] is an {S,K}-generalized comb.

2. G[C] is empty or isomorphic to the cycle C5.

3. Every vertex in C is adjacent to every vertex in K but to no vertex in S.

From now on, if G = C5, we set G = xyzuvx. If G is an {S,K}-generalized comb,
we follow the same notation as in Definition 2.3. Moreover, if G is a {C4, C4, S3,
chair and chair}-free graph, we use the notation in Theorem 2.7. Note that if G is
defined as in Theorem 2.7 and G[C] is empty, then G is a generalized comb.

3 Characterization Using Dependency Digraphs

Let D be an oriented graph. For two vertices x and y ofD, we say that xy is a missing
edge of D if (x, y) /∈ E(D) and (y, x) /∈ E(D). A vertex v of D is called a whole
vertex if it is not incident to any missing edge, i.e., N+(v) ∪ N−(v) = V (D)− {v}.
Otherwise, we say that v is a non-whole vertex. The missing graph G of D is defined
to be the graph formed by the missing edges of D, formally, G is the graph whose
edge-set is the set of all the missing edges of D and whose vertex-set is the set
of the non-whole vertices. In this case, we say that D is missing G. Given two
missing edges x1y1 and x2y2 of D, we say that x1y1 loses to x2y2 if: x1 → x2 and
y2 /∈ N+(x1) ∪ N++(x1), y1 → y2 and x2 /∈ N+(y1) ∪ N++(y1). In this case, we say
that there is a losing relation between the missing edges x1y1 and x2y2.



D. AL-MNINY AND S. GHAZAL/AUSTRALAS. J. COMBIN. 81 (1) (2021), 58–88 63

The dependency digraph ΔD (or simply Δ) of D is defined to be the digraph whose
vertex-set consists of all the missing edges of D, and whose arc-set contains the arc
(ab, cd) if and only if the missing edge ab loses to the missing edge cd. Note that Δ
may contain digons. These digraphs were used in [3, 5] to prove the SNC for some
oriented graphs.

In [7], Ghazal distinguished between the missing edges as follows:

Definition 3.1. (Ghazal [7]) A missing edge ab is called good if one of the following
holds:

(i) For all v ∈ V \{a, b}, if v → a then b ∈ N+(v) ∪N++(v).

(ii) For all v ∈ V \{a, b}, if v → b then a ∈ N+(v) ∪N++(v).

If ab satisfies (i), then (a, b) is said to be a convenient orientation of ab. Else, (b, a)
is called a convenient orientation of ab.

The next lemma is an immediate consequence of Definition 3.1 and the definition of
the losing relation between two missing edges:

Lemma 3.2. (Ghazal [5]) Let D be an oriented graph and let Δ denote its depen-
dency digraph. A missing edge ab is good if and only if its in-degree in Δ is zero.

In [7], threshold graphs are characterized using dependency digraphs as follows:

Theorem 3.3. (Ghazal [7]) Let G be a graph. The following statements are equiva-
lent:

(i) G is a threshold graph.

(ii) Every missing edge of every oriented graph missing G is good.

(iii) The dependency digraph of every oriented graph missing G is empty.

Given that H is a family of digraphs, a graph G is said to be H-forcing if the
dependency digraph of every oriented graph missing G is a member of H. The set
of all H-forcing graphs is denoted by F(H). Formally, F(H) = {G is a graph; for
all oriented graph D missing G, ΔD ∈ H}.
Denoting by E the class of all empty digraphs, the characterization of threshold
graphs presented in Theorem 3.3 can be restated in terms of E as follows: The only
E-forcing graphs are the generalized stars. Recall that Ghazal [7] proved the SNC for
every oriented graph missing a generalized star. This motivates us to go further and

ask about the characterization of
−→P -forcing graphs for the family of vertex disjoint

directed paths
−→P :
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Problem 1. Let
−→P be the family of all digraphs consisting of vertex disjoint directed

paths and let F(
−→P ) = {G is a graph; for all D missing G, ΔD ∈ −→P} . Characterize

F(
−→P ).

The next proposition establishes a relation between a
−→P -forcing graph and its in-

duced subgraphs:

Proposition 3.4. G ∈ F(
−→P ) if and only if G′ ∈ F(

−→P ), for every induced subgraph
G′ of G.

Proof. To prove the sufficient condition, simply take G′ = G. For the necessary
condition, we assume first that G′ = G − v for some v ∈ V (G), and we consider
an oriented graph D′ missing G′. We construct from D′ an oriented graph D whose
missing graph is G in the following way: Add to the vertex-set of D′ the vertices v, α
and β, where α and β are two distinct extra vertices that are neither in D′ nor in G.
In other words, the vertex-set of D is V (D) = V (D′) ∪ {v, α, β}. Add to the arc-set
of D′ the arcs (α, v), (v, β) and (α, β), the arcs (x, α) and (β, x) for every x ∈ V (D′),
and the arcs (x, v) for every x ∈ V (D′) in case that xv /∈ E(G). The addition of
v, α and β to D′ in this way neither affects the losing relations between the missing
edges of D′ nor creates new ones. This means that ΔD is equal to ΔD′ plus a set
of isolated vertices that correspond to the edges of G incident to v. According to

the facts that G is a
−→P -forcing graph and D is missing G, it follows that ΔD ∈ −→P .

Whence, ΔD′ ∈ −→P and so G′ ∈ F(
−→P ). This proves the case where G′ = G− v. The

rest of the proof follows by induction on the number of vertices removed from G to
obtain the induced subgraph G′.

A quick verification leads to this easy observation:

Proposition 3.5. C4, chair and chair are not in F(
−→P ).

Proof. Let D be the oriented graph whose vertex-set is V (D) = {a, b, c, d} and whose
arc-set is E(D) = {(a, c), (b, d), (d, a), (c, b)}. Observe that D is missing C4, ab loses

to cd and cd loses to ba. Thus ΔD /∈ −→P and so C4 /∈ F(
−→P ). To prove that chairs are

not
−→P -forcing graphs, consider the oriented graph D′ whose vertex-set is V (D′) =

{a, b, c, d, x} and whose arc-set is E(D′) = {(a, d), (b, c), (c, a), (b, x), (x, a), (x, c)}.
Observe that D′ is missing a chair, ab loses to both dc and dx. Thus ΔD′ /∈ −→P . It

remains to prove that chair /∈ F(
−→P ). For this sake, let D′′ be the oriented graph with

vertex-set V (D′′) = {a, b, c, d, x} and arc-set E(D′′) = {(a, c), (b, d), (d, a), (a, x)}.
It is easy to see that D′′ is missing a chair, ab loses to both dc and dx. Thus

ΔD′′ /∈ −→P .

Based on the two propositions above and Theorem 2.4, we are able to prove the
following characterization on generalized combs:

Theorem 3.6. Let G be a {C4, C5, S3}-free graph. Then G ∈ F(
−→P ) if and only if

G is a generalized comb.
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Proof. To prove the first implication, observe that Proposition 3.4, Proposition 3.5

and the fact that G ∈ F(
−→P ) imply that G contains no C4, chair and chair as

induced subgraphs of G. But C4, C5 and S3 are also not induced subgraphs of G,
then Theorem 2.4 forces G to be a generalized comb.

To verify the second implication, consider an oriented graph D missing a generalized
comb G and denote by Δ its dependency digraph. Using the definition of G, each
possible losing relation can occur only between two edges in E[Yt,Mt] for some 1 ≤
t ≤ l. Suppose now that aixi ∈ E[Yt,Mt] with ai ∈ Mt and xi ∈ Yt for i ∈ {1, 2, 3}.
Assume to the contrary that a1x1 loses to the two other edges. This gives that a1 →
x3, x1 → a2, a2 /∈ N+(a1)∪N++(a1) and x3 /∈ N+(x1)∪N++(x1). By the definition
of G, the only edge of G[Yt ∪Mt] incident to a2 is a2x2. Thus, a2x3 is not a missing
edge and so either a2 → x3 or x3 → a2. Whence, either x3 ∈ N+(x1) ∪ N++(x1) or
a2 ∈ N+(a1)∪N++(a1), a contradiction to the initial assumption. This implies that
the maximum out-degree of Δ is 1. Similarly, it can be proved that the maximum
in-degree of Δ is 1. This gives that Δ is composed of directed cycles and paths only.
It remains to prove that Δ contains no directed cycles. Assume that the contrary is
true, and let a1b1 → · · · → anbn → a1b1 be a directed cycle in Δ with ai ∈ Mt and
bi ∈ Yt for some t. Due to the losing relations, it is easy to see that ai+1 → ai for
all i < n and a1 → an in D. We will show now by induction on i that ai → an for
all 1 ≤ i < n. The case i = 1 is true. Assume that ai−1 → an. Because aian is not
a missing edge of D, we must have ai → an, since otherwise ai−1 → an → ai in D,
which contradicts the losing relation between ai−1bi−1 and aibi. This proves that for
all 1 ≤ i < n, ai → an. In particular, an−1 → an, a contradiction. Therefore, Δ has

no directed cycles and thus G ∈ F(
−→P ).

The next proposition shows the dependency digraphs structure of oriented graphs
missing the cycle C5 of length 5:

Proposition 3.7. C5 is a
−→P ∪ −→C5-forcing graph, where

−→C5 = {−→C5} and
−→
C5 is the

directed cycle of length 5. That is, C5 ∈ F(
−→P ∪ −→C5).

Proof. Let D be an oriented graph missing C5 and let Δ denote its dependency
digraph. Assume that a vertex in Δ, say (without loss of generality) xy, loses to two
others. Since xu, xz, yu and yv are the only non-missing edges of D[V (C5)] incident
with x and y, then we may assume that xy loses to uv and zu. Due to the losing
relation xy → zu, we have y → u in D and so u ∈ N+(y)∪N++(y), a contradiction
to the losing relation xy → uv. Thus the maximum out-degree in Δ is 1. Similarly,
we can prove that the maximum in-degree in Δ is 1. This implies that Δ is composed
of directed cycles and paths only.
We claim that the only possible directed cycle in Δ is of length 5. Assume to the
contrary that Δ contains a directed cycle of length 2, say xy → uv → xy, then D
contains a directed cycle of length 2 x → u → x, a contradiction. Assume now that
Δ contains a directed cycle of length 3, say xy → uv → yz → xy. Thus y → x in D,
a contradiction to the fact that yx is a missing edge of D. Finally, assume that Δ
contains a directed cycle of length 4, say xy → uv → yz → vx → xy, then v → x in
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D, a contradiction. This proves our claim. This implies that Δ is either a directed
cycle of length 5 or the union of vertex disjoint directed paths.
For the case where Δ is formed of the union of vertex disjoint directed paths, Δ has
at most 4 arcs because there are only 5 missing edges. We may check by cases that
one of the following occurs up to isomorphism:

(i) Δ has no arcs.

(ii) Δ has exactly one arc, say uv → xy.

(iii) Δ has exactly two arcs, say uv → xy and xv → yz.

(iv) Δ has exactly two arcs, say uv → xy → zu.

(v) Δ has exactly three arcs, say uv → xy → zu → vx.

(vi) Δ has exactly three arcs, say uv → xy → zu and xv → zy.

In view of the preceding, we get the following about {C4, C4, S3, chair and chair}-free
graphs:

Corollary 3.8. Let G be a graph such that V (G) is the disjoint union of three sets
S, K and C such that:

1. G[S ∪K] is an {S,K}-generalized comb;

2. G[C] is empty or isomorphic to the cycle C5;

3. every vertex in C is adjacent to every vertex in K but to no vertex in S.

Then G ∈ F(
−→P ∪ −→C5). That is, G is a

−→P ∪ −→C5- forcing graph.

Proof. Observe that every edge in E(G) − E(C) is incident to a vertex in K. This
implies that there is no losing relation between an edge in E(C) and an edge in
E(G)−E(C), since otherwise there is an edge ab with a ∈ C, b ∈ K and ab /∈ E(G).
This contradicts the fact that every vertex in C is adjacent in G to every vertex in
K. In the same way, we can prove that there is no losing relation between an edge
in E(G[S ∪K]) and an edge in E[K,C], or between two edges in E[K,C]. Thus the
only possible losing relations hold either between two edges in G[S ∪K] or between
two edges in G[C]. However, G[S ∪K] is a generalized comb, then by Theorem 3.6

it is in F(
−→P ). Moreover, G[C] is empty or isomorphic to the cycle C5, whence by

Proposition 3.7 it is in F(
−→P ∪ −→C5). Therefore, G ∈ F(

−→P ∪ −→C5).
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4 Main theorem

Let L = v1v2 . . . vn be an ordering of the vertices of a digraph D. An arc (vi, vj) ∈
E(D) is called forward with respect to L if i < j. Otherwise, it is called backward
with respect to L. L is called a median order of D if it maximizes the set of forward
arcs of D with respect to L, that is, the set {(vi, vj) ∈ E(D); i < j}. An interval
[xi; xj ] of L is the part of L that contains all the vertices xi, xi+1, . . . , xj. The last ver-
tex of a median order is called the feed vertex. The following well-known proposition
gives a fundamental property of median orders, called the feedback property:

Proposition 4.1. Let L = x1x2 . . . xn be a median order of a digraph D. For each
interval I = [xi; xj] of L, we have:

d+I (xi) ≥ d−I (xi); (1)

d−I (xj) ≥ d+I (xj). (2)

We will use frequently what follows, in the proof of our main theorem.

Lemma 4.2. Suppose that rs loses to ab with s → b in an oriented graph D. If
f → a in D and fs is not a missing edge of D, then f → s → b in D and thus
b ∈ N+(f) ∪N++(f).

Proof. Since fs is not a missing edge, then either f → s or s → f in D. If s → f in
D, then s → f → a in D and thus a ∈ N++(s), which contradicts the fact that rs
loses to ab. Thus f → s; whence the result follows.

Proposition 4.3. Suppose that L = v1v2 . . . vn is a median order of a digraph D and
e = (vj, vi) ∈ E(D) with i < j. Then L is a median order of the digraph D′ obtained
from D by reversing the orientation of e.

We will heavily use the following theorem:

Theorem 4.4. (Havet et al. [10]) Every feed vertex of a tournament has the SNP.

Now we are ready to prove our main theorem:

Theorem 4.5. Let D be an oriented graph missing a {C4, C4, S3, chair and chair}-
free graph G. Then D satisfies the SNC.

Proof. Let D be an oriented graph whose missing graph G is a {C4, C4, S3, chair and
chair}-free graph. For the vertex-set of G, we assume that V (G) is the disjoint union
of three sets K,S and C as mentioned in Theorem 2.7. Let Δ denote the dependency
digraph of D and let Δ[E(C)] denote the subdigraph of Δ induced by the subset of
the vertices of Δ that correspond to the edges of G[C]. Due to the proof of Corollary
3.8, it follows that either Δ consists of the union of vertex disjoint directed paths
whose arcs occur between two edges in the same set E[Yj,Mj ] for some 1 ≤ j ≤ l
or between two edges of C only, or Δ consists of the disjoint union of vertex disjoint
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directed paths whose arcs occur only between two edges in the same set E[Yj ,Mj]
for some 1 ≤ j ≤ l and a directed cycle C5 of length 5 whose arcs occur between
two edges of C. Let P = m0y0 → · · · → miyi → · · · → mkyk be a maximal directed
path in Δ, with mi ∈ Mj yi ∈ Yj and k ≥ 0. Due to the maximality of P and due to
Lemma 3.2, we get that m0y0 is a good missing edge of D. If (m0, y0) is a convenient
orientation, we add the arcs (m2i, y2i) and (y2i+1, m2i+1) to D. Else, we add to D the
arcs (y2i, m2i) and (m2i+1, y2i+1). In each main case below, we do this procedure for
every maximal directed path in Δ whose vertices are edges in E[Yj ,Mj]. To complete
the proof, we distinguish between the possible cases of Δ[E(C)].

Case I. G[C] is empty, that is, Δ[E(C)] is empty.

In this case, the obtained oriented graph D′ is missing G′ = G−∪E[Yj ,Mj] which is
a threshold graph by Proposition 2.6. We assign to every missing edge of D′ (which
is good by Theorem 3.3) a convenient orientation and we add it to D′. The obtained
oriented graph T is a tournament. Let L be a median order of T and let f denote its
feed vertex. Then, by Theorem 4.4, f has the SNP in T . Reorienting all the missing
edges incident to f towards f except those whose out-degree in Δ is not zero results
in a tournament T ′. It can be easily seen, by Proposition 4.3, that L is also a median
order of T ′. Whence, f has the SNP in T ′. We will prove that f has the SNP in D
also. For this aim, we consider many cases.

Case I.1. f is a whole vertex.

Clearly, f gains no new out-neighbors in T ′ by comparison to D. We will prove that
f gains no new second out-neighbors in T ′ by comparison to D. To this end, we
assume that f → a → b → f in T ′. Since f is a whole vertex, then f → a and
b → f in D. If a → b in D or (a, b) is a convenient orientation with respect to D,
then b ∈ N++

D (f). If a → b in D′ −D and (a, b) is not a convenient orientation with
respect to D, then there is rs → ab in Δ, namely s → b and a /∈ N++

D (s). But f → a
in D and fs is a non-missing edge of D, then Lemma 4.2 gives that b ∈ N++

D (f). If
a → b in T ′−D′, then (a, b) is a convenient orientation w.r.t D′. Hence, b ∈ N++

D′ (f).
This implies the existence of a vertex a′ such that f → a′ → b in D′. Since f → a′

in D′ and f is a whole vertex, then f → a′ in D. But this is already treated above,
then b ∈ N++

D (f).

Case I.2. f ∈ Mt for some 1 ≤ t ≤ l, that is, there is a maximal directed path
P = m0y0 → · · · → miyi → · · · → mkyk in Δ such that f = mi.

Case I.2.1. (yi, mi) ∈ E(D′). Clearly, f gains no new first out-neighbors in T ′ by
comparison to D. To see the previous fact, recall that all the missing edges of D
incident to f are directed towards f in T ′ except those whose out-degree in Δ is not
zero. However, due to the structure of G, the only missing edges of D with possible
out-degree greater than zero in Δ are the edges in E[Yt,Mt] for some 1 � t � l
because the possible losing relations occur only between two edges in E[Yt,Mt].
Thus, the only missing edge of D incident to mi with possible out-degree greater
than zero in Δ is the edge yimi. But yi is an in-neighbor of mi in D′ and so in T ′ as
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well. We claim that f gains no new second out-neighbors in T ′ by comparison to D.
Assume that mi → a → b → mi in T ′. Then (mi, a) ∈ E(D) and (a, b) ∈ E(T ). We
consider the following three possibilities:

Subcase I.2.1.a. If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase I.2.1.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient ori-
entation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ,
namely s → b and a /∈ N++

D (s). Then there is an integer j ∈ {1, 2, . . . , l} such that
rs, ab ∈ E[Yj,Mj ]. Clearly, mi is distinct from a and b. We will prove that mi is also
different from r and s. Assume first that mi = r. It follows that yi = s, a = yi+1 and
b = mi+1. Since (yi, mi) ∈ E(D′), then (mi+1, yi+1) ∈ E(D′), that is, (b, a) ∈ E(D′),
a contradiction. This means that mi cannot be equal to r. Assume now that mi = s.
This gives that r = yi, a = mi+1 and b = yi+1. Since M is stable in G, then mimi+1 is
not a missing edge of D. Consequently, due to the losing relation yimi → mi+1yi+1,
we get that (mi+1, mi) ∈ E(D) and so (a,mi) ∈ E(D), a contradiction. Thus mi is
not s also. Now we prove that mis is not a missing edge of D. If b ∈ Yj, then s ∈ Mj

and thus mis is not a missing edge of D. Else if b ∈ Mj , then a ∈ Yj and s ∈ Yj.
But mia is not a missing edge of D, then the definition of G gives that mis is also
not a missing edge of D. But f → a in D and a /∈ N++

D (s), then Lemma 4.2 implies
that b ∈ N++

D (f).

Subcase I.2.1.c. If (a, b) ∈ E(T ) − E(D′), then (a, b) is a convenient orientation
w.r.t D′. Since f → a in D, then f → a in D′ and so b ∈ N++

D′ (f). But this is
already treated above in Subcase I.2.1.a and Subcase I.2.1.b.

Case I.2.2. (mi, yi) ∈ E(D′). Here there are two cases to be consider.

Case I.2.2.1. i = k, that is, f = mk. Note that possibly k = 0. In this case,
the missing edge mkyk has out-degree zero in Δ. Thus (yk, mk) ∈ E(T ′). This
implies that f gains no new out-neighbors in T ′ by comparison to D. We will
prove that f gains no new second out-neighbors in T ′ by comparison to D. Suppose
f → a → b → f in T ′. Then (f, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase I.2.2.1.a. If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase I.2.2.1.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ,
namely s → b and a /∈ N++

D (s). Then there is 1 ≤ j ≤ l such that rs, ab ∈ E[Yj ,Mj].
Since f = mk, we have r �= mk and s �= mk. If b ∈ Yj, then s ∈ Mj . Then mks
is not a missing edge of D. Else if b ∈ Mj , then a ∈ Yj and s ∈ Yj. Since mka is
not a missing edge of D, then the definition of G gives that fs = mks is also not a
missing edge of D. But f → a in D and a /∈ N++

D (s), then by Lemma 4.2 we get
b ∈ N++

D (f).

Subcase I.2.2.1.c. If (a, b) ∈ E(T )−E(D′), then (a, b) is a convenient orientation
with respect to D′ and so b ∈ N++

D′ (f). Then there is a vertex a′ such that mk →
a′ → b in D′. Since (mk, a) ∈ E(D), then a �= yk and for all j > t, a /∈ Yj. If
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we prove that (mk, a
′) ∈ E(D), this case will be reduced to Subcase I.2.2.1.a and

Subcase I.2.2.1.b. Thus it is sufficient now to show that (mk, a
′) ∈ E(D), that is,

mka
′ is not a missing edge of D. To this end, we need to prove that a′ �= yk. Assume

to the contrary that a′ = yk. Then (yk, b) ∈ E(D′) and b �= mk. This implies that
(yk, b) /∈ E[Yj ,Mj] for all 1 � j � l. Thus the edge ykb is not a missing edge of D
and so (yk, b) ∈ E(D). This means that b /∈ A ∪ X ∪ Y ∪ C. Then either b is a
whole vertex or b ∈ M . If b is a whole vertex, then ab is not a missing edge of D, a
contradiction. Thus, b ∈ M and so there exists an integer α such that b ∈ Mα. If
α < t, then the definition of G forces ykb to be an edge in G, that is, ykb is a missing
edge of D, a contradiction. Thus α ≥ t. Since b ∈ Mα with α ≥ t and ab is a missing
edge of D′, then by the definition of G, a ∈ Yj for some j > α. Thus a ∈ Yj for some
j > t, a contradiction. This proves that a′ �= yk and so mka

′ is not a missing edge of
D.

Case I.2.2.2. i < k. In this case, f gains only yi as a first out-neighbor in T ′ by
comparison to D. We will prove that f gains only mi+1 as a second out-neighbor in
T ′ by comparison to D.

Subcase I.2.2.2.a. Suppose that mi → yi → b in T ′ such that b �= mi+1. Then
(yi, b) /∈ E(D′)− E(D) and (yi, b) ∈ E(T ).

Subcase I.2.2.2.a.1. If (yi, b) ∈ E(D), then yib is not a missing edge of D. But
yi ∈ Yt, then yi+1 ∈ Yt. Then, by the definition of G, yi+1b is not a missing edge of
D. Since yi → b in D and yi+1 /∈ N++

D (yi), then we must have yi+1 → b in D. Thus,
mi → yi+1 → b in D.

Subcase I.2.2.2.a.2. If (yi, b) ∈ E(T ) − E(D′), then (yi, b) is a convenient orien-
tation with respect to D′. Then b ∈ N++

D′ (mi), that is, there is vertex a such that
mi → a → b in D′.

Subcase I.2.2.2.a.2.1. If a = yi, then by the definition of G, (yi, b) ∈ E(D), a
contradiction to the fact that yib is a missing edge of D.

Subcase I.2.2.2.a.2.2. If a �= yi, then (mi, a) ∈ E(D). If (a, b) ∈ E(D), then
clearly b ∈ N++

D (f). Else (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ,
namely s → b and a /∈ N++

D (s). Thus ∃ j such that rs, ab ∈ E[Yj,Mj ]. Assume
that r = mi, then yi = s, a = yi+1 and b = mi+1, a contradiction to the fact that
b �= mi+1. Thus, r �= mi. Assume now that s = mi, then a = mi+1. However,
(mi+1, mi) ∈ E(D), then (a,mi) ∈ E(D), a contradiction. So s �= mi. Now we will
prove that mis is not a missing edge. If b ∈ Yj, then s ∈ Mj and thus mis is not a
missing edge of D. Else if b ∈ Mj , then a ∈ Yj and s ∈ Yj. Since mia is not a missing
edge of D, then by the definition of G, fs = mis is also not a missing edge of D.
But f → a in D and a /∈ N++

D (s), then by Lemma 4.2 we get that b ∈ N++
D (f).

Subcase I.2.2.2.b. Suppose that mi → a → b in T ′, with a �= yi and b �= mi+1.
Then (mi, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase I.2.2.2.b.1. If (a, b) ∈ E(D′), we proceed in a similar way to
Subcase I.2.2.2.a.2.2.
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Subcase I.2.2.2.b.2. If (a, b) ∈ E(T )−E(D′), then (a, b) is a convenient orientation
with respect to D′ and thus b ∈ N++

D′ (f). This means that there is a vertex a′ such
thatmi → a′ → b inD′. If a′ = yi, then (yi, b) ∈ E(D). This case is already treated in
Subcase I.2.2.2.a.1. Else, we proceed in the same method as in Subcase I.2.2.2.a.2.2.

Case I.3. f ∈ Yt for some 1 ≤ t ≤ l such that Mt �= ∅, that is, there is a maximal
directed path P = m0y0 → · · · → miyi → · · · → mkyk in Δ such that f = yi.

Case I.3.1. (mi, yi) ∈ E(D′). Clearly, f gains no new first out-neighbors in T ′ by
comparison to D. We will prove that f gains no new second out-neighbors in T ′ by
comparison to D. Assume that yi → a → b → yi in T ′. Then (yi, a) ∈ E(D) and
(a, b) ∈ E(T ).

Subcase I.3.1.a. If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase I.3.1.b. If (a, b) ∈ E(D′)−E(D), then either (a, b) is a convenient orien-
tation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ, namely
s → b and a /∈ N++

D (s). Thus ∃ j such that rs, ab ∈ E[Yj,Mj]. Assume first
that r = yi. Then s = mi, a = mi+1 and b = yi+1. Since (mi, yi) ∈ E(D′), then
(yi+1, mi+1) ∈ E(D′), that is, (b, a) ∈ E(D′), a contradiction. Then r �= yi. Assume
now that s = yi. It follows that a = yi+1 and yia = yiyi+1 is a missing edge of D, a
contradiction. So s �= yi. Now we prove that yis is not a missing edge of D. If a ∈ Yj,
then yia is a missing edge of D, a contradiction. So a ∈ Mj and hence s ∈ Mj . Since
yia is not a missing edge of D, then by the definition of G, yis is also not a missing
edge of D. Since yi → a in D and a /∈ N++(s), then by Lemma 4.2 we get that
b ∈ N++

D (f).

Subcase I.3.1.c. If (a, b) ∈ E(T ) − E(D′), then (a, b) is a convenient orientation
with respect to D′. Whence, b ∈ N++

D′ (f). Then there is a vertex a′ such that
yi → a′ → b in D′. Since (mi, yi) ∈ E(D′), then (yi, a

′) ∈ E(D). This case is already
treated in Subcase I.3.1.a and Subcase I.3.1.b.

Case I.3.2. (yi, mi) ∈ E(D′).

Case I.3.2.1. i = k, that is, f = yk. Note that possibly k = 0. Clearly, f gains no
new out-neighbors in T ′ by comparison to D. We prove that f gains no new second
out-neighbors in T ′ by comparison to D. Suppose that f → a → b → f in T ′. Then
(f, a) ∈ E(D) and (a, b) ∈ E(T ).

Subcase I.3.2.1.a. If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase I.3.2.1.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ,
namely s → b and a /∈ N++

D (s). Then ∃ j such that rs, ab ∈ E[Yj,Mj ]. Since f = yk,
then r �= yk and s �= yk. Since (yk, a) ∈ E(D), then a /∈ Y . Whence, a ∈ M and
s ∈ M . Since yka is not a missing edge of D, then by the definition of G, yks is also
not a missing edge of D. Since f → a in D and a /∈ N++

D (s), then by Lemma 4.2 we
get b ∈ N++

D (f).
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Subcase I.3.2.1.c. If (a, b) ∈ E(T ) − E(D′), then it is a convenient orientation
with respect to D′. But f → a in D and thus in D′, then b ∈ N++

D′ (f). So there is a
vertex a′ such that f → a′ → b in D′.

Subcase I.3.2.1.c.1. If a′ = mk, then a′b is not a missing edge of D. Since yka is
not a missing edge of D, then either a is a whole vertex of D or a ∈ M − {mk}.
Since (a, b) ∈ E(T ) − E(D), then a is not a whole vertex. Thus ∃ j such that
a ∈ Mj − {mk}. The definition of G together with the facts that f = yk ∈ Yt,
a ∈ Mj −{mk} and yka is not a missing edge imply that j ≥ t. Since (a, b) /∈ E(D′)
and a ∈ Mj , then ∃ α > j such that b ∈ Yα. Thus ba′ ∈ E[Yα,Mt] with α > t. So,
by using the definition of G, a′b is a missing edge of D and D′, a contradiction since
(a′, b) ∈ E(D′).

Subcase I.3.2.1.c.2. If a′ �= mk, then (yk, a
′) ∈ E(D). But (a′, b) ∈ E(D′), this is

already discussed in Subcase I.3.2.1.a and Subcase I.3.2.1.b.

Case I.3.2.2. i < k, that is, f = yi for some i < k. Clearly, f gains only mi as an
out-neighbor in T ′ by comparison to D. We will prove that f gains only yi+1 as a
second out-neighbor in T ′ by comparison to D.

Subcase I.3.2.2.a. Suppose that f → mi → b → f in T ′ with b �= yi+1. Then
(yi, mi) ∈ E(D′) and (mi, b) ∈ E(T ).

Subcase I.3.2.2.a.1. If (mi, b) ∈ E(D), then mib is not a missing edge of D. But
b �= yi+1, then by the definition of G, mi+1b is also not a missing edge of D. Since
mi → b in D and mi+1 /∈ N++(mi), then we must have mi+1 → b in D. Thus
yi → mi+1 → b in D.

Subcase I.3.2.2.a.2. If (mi, b) ∈ E(D′)−E(D), then mib = miyi and hence b = yi,
a contradiction. So this case does not hold.

Subcase I.3.2.2.a.3. If (mi, b) ∈ E(T ) − E(D′), then (mi, b) is a convenient ori-
entation with respect to D′. Since yi → mi in D′, then b ∈ N++

D′ (yi). Then there
is a vertex a′ such that yi → a′ → b in D′. If a′ = mi, then (mi, b) ∈ E(D′), a
contradiction. Thus a′ �= mi and so (yi, a

′) ∈ E(D) and (a′, b) ∈ E(D′).

Subcase I.3.2.2.a.3.1. If (a′, b) ∈ E(D), then yi → a′ → b in D.

Subcase I.3.2.2.a.3.2. If (a′, b) ∈ E(D′)−E(D), then either (a′, b) is a convenient
orientation with respect to D and hence b ∈ N++

D (f), or there is rs → a′b in Δ,
namely s → b and a′ /∈ N++

D (s). If rs = miyi, then a′b = mi+1yi+1. But b �= yi+1, then
b = mi+1. Since (yi, mi) ∈ E(D′), then (mi+1, yi+1) ∈ E(D′), that is, (b, a′) ∈ E(D′),
a contradiction. Thus, mi is neither r nor s. Now we claim that yis is not a missing
edge of D. Since yia

′ is not a missing edge, then a′ /∈ Y . Whence, a′ ∈ M and
s ∈ M . Therefore, using the definition of G and the fact that yia

′ is not a missing
edge of D, we reach our claim. Since yi → a′ in D and a′ /∈ N++

D (s), then by Lemma
4.2 we get that b ∈ N++

D (f).

Subcase I.3.2.2.b. Assume that yi → a → b → yi in T ′, with a �= mi and b �= yi+1.
Then (yi, a) ∈ E(D) and (a, b) ∈ E(T ). If (a, b) ∈ E(D′), this is already treated in
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Subcase I.3.2.2.a.3.1 and Subcase I.3.2.2.a.3.2. Else if (a, b) ∈ E(T )−E(D′), then it
has a convenient orientation with respect to D′ and hence b ∈ N++

D′ (yi). Then there
is a vertex a′ such that yi → a′ → b in D′. If a′ = mi, this is already treated in
Subcase I.3.2.2.a.1 and Subcase I.3.2.2.a.2. Else if a′ �= mi, this is already treated in
Subcase I.3.2.2.a.3.1 and Subcase I.3.2.2.a.3.2.

Case I.4. f ∈ Yt for some 1 ≤ t ≤ l + 1 such that Mt = ∅. Clearly, f gains no new
out-neighbor in T ′ by comparison to D. We will prove that it gains no new second
out-neighbor in T ′ by comparison to D. To this end, suppose that f → a → b → f
in T ′. Then (f, a) ∈ E(D) and (a, b) ∈ E(T ). We consider the following cases.

Subcase I.4.a. If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase I.4.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient orien-
tation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ, namely
s → b and a /∈ N++

D (s). Then ∃ j such that rs, ab ∈ E[Yj,Mj ]. Since fa is not a
missing edge of D, then a /∈ Y . Whence, a ∈ Mj and s ∈ Mj. Since a, s ∈ Mj and
fa is not a missing edge of D, then fs is not also a missing edge. But f → a in D
and a /∈ N++

D (s), then by Lemma 4.2 we get that b ∈ N++
D (f).

Subcase I.4.c. If (a, b) ∈ E(T )−E(D′), then (a, b) is a convenient orientation with
respect to D′. But f → a in D and thus in D′, then b ∈ N++

D′ (f). This induces the
existence of a vertex a′ such that f → a′ → b in D′. Then (f, a′) ∈ E(D). But this
is already treated in Subcase I.4.a and Subcase I.4.b.

Case I.5. f ∈ Yl+2. This case is exactly the same as Case I.4, with only one differ-
ence: In Subcase I.4.b, we have proved that fs is not a missing edge of D. However,
in Subcase I.5.b, there is no need to verify it, because E[Yl+2,Mj] = ∅ by the defini-
tion of G.

Case I.6. f ∈ V (G) − (Y ∪ M). Clearly, f gains no new out-neighbors in T ′ by
comparison to D. We will prove that it gains no new second out-neighbors in T ′

by comparison to D. For this aim, we suppose that f → a → b → f in T ′. Then
(f, a) ∈ E(D) and (a, b) ∈ E(T ). We consider the following cases.

Subcase I.6.a. If (a, b) ∈ E(D), then clearly b ∈ N++
D (f).

Subcase I.6.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient orien-
tation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ, namely
s → b and a /∈ N++

D (s). Thus ∃ j such that rs, ab ∈ E[Yj ,Mj]. If a ∈ Yj, then fa is
a missing edge of D, a contradiction. So a ∈ Mj and hence s ∈ Mj . Then fs is not
a missing edge of D. But f → a in D and a /∈ N++

D (s), then by Lemma 4.2 we get
that b ∈ N++

D (f).

Subcase I.6.c. If (a, b) ∈ E(T )−E(D′), then (a, b) is a convenient orientation with
respect to D′. But f → a in D and so in D′, then b ∈ N++

D′ (f). Thus there is a
vertex a′ such that f → a′ → b in D′. Then (f, a′) ∈ E(D) and (a′, b) ∈ E(D′). But
this is already discussed in Subcase I.6.a and Subcase I.6.b.
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On the grounds of the preceding, f has the SNP in D if the missing graph of D is a
generalized comb. This completes the proof of Case I. ♦

Case II. Δ[E(C)] contains exactly one arc, say uv → xy.

Assume without loss of generality that (u, v) is a convenient orientation of the good
missing edge uv. We add to D the arcs (u, v) and (x, y), we assign to the good
missing edges xv, yz and zu a convenient orientation and then we add them to D.
The obtained oriented graph D′ is missing G′ = G− (∪E[Yj,Mj ] ∪ E(C)) which is
a threshold graph. We assign to the missing edges of D′ convenient orientations and
we add them to D′ to get a tournament T . Let L be a median order of T and let f
denote its feed vertex. Reorient all the missing edges incident to f towards f , except
those whose out-degree in Δ is not zero. The same order L is a median order of the
obtained tournament T ′, f is also a feed vertex of L and thus f has the SNP in T ′.
We will prove that f has the SNP in D as well. For this purpose, we consider the
following cases.

Case II.1. f is a whole vertex. This is the same as Case I.1.

Case II.2. There exists 1 ≤ t ≤ l such that f ∈ Mt. Exactly same as Case I.2,
with only one difference in the subcases where f → a → b, (f, a) ∈ E(D) and
(a, b) ∈ E(D′) − E(D) such that it is not convenient with respect to D. Such
subcase is called unsteady. As usual, since (a, b) is not convenient with respect to
D, then there is rs → ab in Δ, namely s → b and a /∈ N++

D (s). The difference is
that in the unsteady subcases of Case II.2 either rs, ab ∈ E[Yj ,Mj] for some j or
rs = uv, ab = xy. If rs, ab ∈ E[Yj,Mj ] for some j, we proceed exactly in the same
way as in the unsteady subcases of Case I.2. Else if (r, s) = (u, v) and (a, b) = (x, y),
then fs is not a missing edge of D because E[M,C] = ∅. Since f → a in D and
a /∈ N++

D (s), then by Lemma 4.2 we get that b ∈ N++
D (f).

Case II.3. There is 1 ≤ t ≤ l such that f ∈ Yt and Mt �= ∅. Exactly same as
Case I.3, with only one difference in the unsteady subcases, that is, in the cases
where f → a → b, (f, a) ∈ E(D) and (a, b) ∈ E(D′) − E(D) such that it is not
convenient with respect to D. As usual, since (a, b) is not convenient with respect
to D, then there is rs → ab in Δ, namely s → b and a /∈ N++

D (s). The difference is
that in the unsteady subcases of Case II.3 there are two cases to be consider: Either
rs, ab ∈ E[Yj,Mj ] for some j, or rs = uv and ab = xy. If rs, ab ∈ E[Yj ,Mj] for some
j, we proceed exactly in the same way as in the unsteady subcases of Case I.3. Else
if (r, s) = (u, v) and (a, b) = (x, y), then fa = fx is a missing edge of D because
G[Y ∪ C] is a complete split graph, which contradicts the definition of G.

Case II.4. There is 1 ≤ t ≤ l + 1 such that f ∈ Yt and Mt = ∅. Exactly same as
Case I.4, with only one difference. In Subcase II.4.b, there are two possibilities for the
edges rs, ab: Either rs, ab ∈ E[Yj,Mj ] for some j, or (r, s) = (u, v) and (a, b) = (x, y).
The first case is already treated in Subcase I.4.b. However, the second case does not
exist, since otherwise fa = fx would be a missing edge of D because G[Y ∪ C] is a
complete split graph, which contradicts the fact that (f, a) ∈ E(D).



D. AL-MNINY AND S. GHAZAL/AUSTRALAS. J. COMBIN. 81 (1) (2021), 58–88 75

Case II.5. f ∈ Yl+2. Exactly same as Case I.4, with exactly two differences. The
first difference is that in Subcase II.5.b there are two possibilities for the edges rs, ab:
Either rs, ab ∈ E[Yj,Mj ] for some j, or (r, s) = (u, v) and (a, b) = (x, y). The first
case is already treated in Subcase I.4.b. However, the second case does not exist,
since otherwise fa = fx would be a missing edge ofD because G[Y ∪C] is a complete
split graph, which contradicts the fact that (f, a) ∈ E(D). The second difference
is that in Subcase II.5.b there is no need to prove that fs is not a missing edge of
D because E[Yl+2,Mj ] = ∅ by the definition of G, while in Subcase I.4.b we have
proved it.

Case II.6. f = u. Clearly, u gains only v as a new first out-neighbor in T ′ by
comparison to D. We will prove that it gains only y as a new second out-neighbor
in T ′ by comparison to D.

Case II.6.1. u → v → b → u in T ′, with b �= y. Then (v, b) ∈ E(T )− E(T ′). Note
that b �= x because u → x in D while b → u in T ′.

Subcase II.6.1.a. If (v, b) ∈ E(D), then either b = z, b ∈ S or b is a whole vertex.
Then by the losing relation uv → xy, we get that b ∈ N++

D (u).

Subcase II.6.1.b. If (v, b) ∈ E(D′)− E(D), then b = x or b = u, a contradiction.
Thus this case does not exist.

Subcase II.6.1.c. If (v, b) ∈ E(T ) − E(D′), then b ∈ K and (v, b) is a convenient
orientation with respect to D′. Then there exists a vertex v′ such that u → v′ →
b → u in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since v′ /∈ C and
(f, v′) ∈ E(D′), then (f, v′) ∈ E(D).

Subcase II.6.1.c.1. If (v′, b) ∈ E(D), then b ∈ N++
D (f).

Subcase II.6.1.c.2. If (v′, b) ∈ E(D′)−E(D), then (v′, b) is a convenient orientation
w.r.t D and hence b ∈ N++

D (f), or there is rs → v′b in Δ, namely s → b and
v′ /∈ N++

D (s). Since v′ /∈ C, then ∃ j such that rs, v′b ∈ E[Yj ,Mj]. Since b ∈ K,
then b ∈ Yj. Whence, v′ ∈ Mj and s ∈ Mj . Thus, by the definition of G, fs is not a
missing edge of D. But (f, v′) ∈ E(D) and v′ /∈ N++

D (s), then by Lemma 4.2 we get
that b ∈ N++

D (f).

Case II.6.2. u → a → b → u in T ′, with a �= v and b �= y. Then (u, a) ∈ E(D) and
(a, b) ∈ E(T ). Note that a /∈ K ∪ {u, v, y, z} and b /∈ {u, v, x, y}.
Subcase II.6.2.a. If (a, b) ∈ E(D), then b ∈ N++

D (u).

Subcase II.6.2.b. If (a, b) ∈ E(D′) − E(D), then either ab ∈ E(C) or ab ∈
E[Yj ,Mj] for some j. If ab ∈ E(C), then (a, b) = (x, z) because a /∈ {u, v, y, z}
and b /∈ {u, v, y, x}. Thus xz is a missing edge of D, a contradiction. It follows
that ab ∈ E[Yj,Mj ] for some j. Then either (a, b) is a convenient orientation with
respect to D and hence b ∈ N++

D (u), or there is rs → ab in Δ, namely s → b and
a /∈ N++

D (s). Since a /∈ K, then a ∈ Mj and thus s ∈ Mj . Hence, by the definition
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of G, us is not a missing edge of D. But (u, a) ∈ E(D) and a /∈ N++
D (s), then by

Lemma 4.2 we get that b ∈ N++
D (u).

Subcase II.6.2.c. If (a, b) ∈ E(T ) − E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. Since u → a in D and so in D′, there exists a vertex
v′ such that u → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C.
Since v′ /∈ C and (u, v′) ∈ E(D′), then (u, v′) ∈ E(D). But this is already treated in
Subcase II.6.1.c.1 and Subcase II.6.1.c.2.

Case II.7. f ∈ C − {u}. It is clear that f gains no new first out-neighbors in T ′

by comparison to D. We will prove that it gains no new second out-neighbors in T ′

by comparison to D. Suppose that f → a → b → f in T ′. Then (f, a) ∈ E(D),
(a, b) ∈ E(T ) and a /∈ K.

Subcase II.7.a. If (a, b) ∈ E(D), then b ∈ N++
D (u).

Subcase II.7.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient orien-
tation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ, namely
s → b and a /∈ N++

D (s). If (r, s) = (u, v) and (a, b) = (x, y), then f /∈ {x, y}. Note
that f �= v, since otherwise fa = vx is a missing edge of D, a contradiction. Since
f ∈ C − {u, v, x, y}, then f = z and hence fs = zv is not a missing edge of D. Else
if rs, ab ∈ E[Yj,Mj ] for some j, then r �= f and s �= f . Since a /∈ K, then a /∈ Yj

and so a ∈ Mj . Whence, s ∈ Mj . Thus fs is not missing edge of D by the definition
of G. Therefore, by the losing relation rs → ab in Δ, we get that b ∈ N++

D (f).

Subcase II.7.c. If (a, b) ∈ E(T ) − E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. So there is a vertex v′ such that f → v′ → b in
D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since v′ /∈ C and (f, v′) ∈
E(D′), then (f, v′) ∈ E(D). But this is already treated in Subcase II.6.1.c.1 and
Subcase II.6.1.c.2.

Case II.8. f ∈ V (G)− (Y ∪M ∪C) = A∪ (X −X1) = A∪ (X−Y1). Exactly same
as Case I.6, with only one difference. The difference is that in Subcase II.8.b there
are two possibilities for the edges rs, ab: Either rs, ab ∈ E[Yj,Mj ] for some j, or
(r, s) = (u, v) and (a, b) = (x, y). The first case is already treated in Subcase I.6.b.
However, for the case where (r, s) = (u, v) and (a, b) = (x, y), f must belong to A,
since otherwise f would be a vertex of X and so fx = fa must be a missing edge
of D, because G[X ∪ C] is a complete split graph, which contradicts the fact that
(f, a) ∈ E(D). Thus fs = fv is not a missing edge of D, because E[A,C] is empty
by the definition of G. Since f → a in D and a /∈ N++

D (s), then by Lemma 4.2 we
get that b ∈ N++

D (f).

Therefore, f has the SNP in D when Δ has exactly one arc between two edges of C.
♦

Case III. Δ[E(C)] has exactly two arcs, say uv → xy and vx → yz.

In this case, u → x → z → v → y in D and uv, vx, uz are good missing edges of D.
Assume without loss of generality that (u, v) is a convenient orientation with respect
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to D. Add the arcs (u, v) and (x, y) to D. If (v, x) is a convenient orientation of vx,
then add the arcs (v, x) and (y, z). Otherwise, add the arcs (x, v) and (z, y). Then
assign to uz a convenient orientation and add it to D. The obtained oriented graph
D′ is missing G′ = G−(∪E[Yj ,Mj]∪E(C)) which is a threshold graph. Thus, due to
Theorem 3.3, all the missing edges of D′ are good. We assign to them a convenient
orientation and we add them to D′. The resultant digraph is a tournament, say T .
Let L be a median order of T and let f denote its feed vertex. Reorient all the
missing edges incident to f towards f except those whose out-degree in Δ is not
zero. The same order L is again a median order of the obtained tournament T ′. Due
to Theorem 4.4, f has the SNP in T ′. We will prove that f has the SNP in D as
well. We consider the following cases.

Case III.1. f is a whole vertex. This is the same as Case I.1.

Case III.2. There is 1 ≤ t ≤ l such that f ∈ Mt. Exactly same as Case I.2,
with only one difference in the unsteady subcases, that is, in the subcases where
f → a → b, (f, a) ∈ E(D) and (a, b) ∈ E(D′)− E(D) and it is not convenient with
respect to D. As usual, since (a, b) is not convenient with respect to D, then there is
rs → ab in Δ, namely s → b and a /∈ N++

D (s). The difference is that in the unsteady
subcases of Case III.2 either rs, ab ∈ E[Yj,Mj] for some j or rs, ab ∈ E(C). If
rs, ab ∈ E[Yj,Mj ] for some j, we proceed exactly in the same way as in the unsteady
subcases of Case I.2. Else if rs, ab ∈ E(C), there are many cases: (r, s) = (u, v) and
(a, b) = (x, y), (r, s) = (v, x) and (a, b) = (y, z) if (v, x) is a convenient orientation of
vx, or (r, s) = (x, v) and (a, b) = (z, y) if (x, v) is a convenient orientation of vx. For
all these cases, fs is not a missing edge of D because E[M,C] = ∅. Since f → a in
D and a /∈ N++

D (s), then by Lemma 4.2 we get that b ∈ N++
D (f).

Case III.3. There is 1 ≤ t ≤ l such that f ∈ Yt and Mt �= ∅. Exactly same as
Case I.3, with only one difference in the subcases where f → a → b, (f, a) ∈ E(D)
and (a, b) ∈ E(D′)− E(D) such that (a, b) is not convenient with respect to D. As
usual, since (a, b) is not convenient with respect to D, then there is rs → ab in Δ,
namely s → b and a /∈ N++

D (s). The difference is that in the unsteady subcases of
Case III.3, there are two cases to consider: Either rs, ab ∈ E[Yj,Mj ] for some j, or
rs, ab ∈ E(C). If rs, ab ∈ E[Yj,Mj ] for some j, we proceed in the same way as that
of the unsteady subcases of Case I.3. Else if rs, ab ∈ E(C), then fa is a missing
edge of D because G[Y ∪ C] is a complete split graph, a contradiction. Thus this
case does not exist.

Case III.4. There exists 1 ≤ t ≤ l + 1 such that f ∈ Yt and Mt = ∅. Exactly same
as Case I.4, with only one difference. In Subcase III.4.b, there are two possibilities
for the edges rs and ab instead of the one of Subcase I.4.b: Either rs, ab ∈ E[Yj ,Mj]
for some j, or rs, ab ∈ E(C). The first case is already treated in Subcase I.4.b.
However, the second case does not exist, since otherwise fa would be a missing edge
of D because G[Y ∪ C] is a complete split graph, which contradicts the fact that
(f, a) ∈ E(D).

Case III.5. f ∈ Yl+2. This case is similar to Case I.4, except for two differences.
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The first difference is that in Subcase III.5.b there are two possibilities for the edges
rs and ab: Either rs, ab ∈ E[Yj,Mj ] for some j, or rs, ab ∈ E(C). The first case
is already treated in Subcase I.4.b. However, the second case does not exist, since
otherwise fa would be a missing edge of D because G[Y ∪ C] is a complete split
graph, which is a contradiction to the fact that (f, a) ∈ E(D). The second difference
is that in Subcase III.5.b fs is not a missing edge of D because E[Yl+2,Mj] = ∅,
while in Subcase I.4.b we have proved it.

Case III.6. f = u. Clearly, f gains only v as a new first out-neighbor and y as a
new second out-neighbor in T ′ by comparison to D. We prove that it gains only y
as a second out-neighbor in T ′ by comparison to D.

Case III.6.1. u → v → b → u in T ′ with b �= y. Then (v, b) ∈ E(T )−E(T ′). Since
x and z are first and second out-neighbors of u in D respectively, we may assume
that b /∈ C and hence (v, b) /∈ E(D′)−E(D).

Subcase III.6.1.a. If (v, b) ∈ E(D), then either b ∈ S or b is a whole vertex. Thus,
due to the losing relation uv → xy, we get that b ∈ N++

D (u).

Subcase III.6.1.b. If (v, b) ∈ E(T )−E(D′), then b ∈ K and (v, b) is a convenient
orientation with respect to D′. But this is exactly the same as Subcase II.6.1.c.

Case III.6.2. u → a → b → u in T ′ with a �= v and b �= y. Thus (a, b) ∈
E(T ) − E(T ′). Since a �= v, then (u, a) ∈ E(D) and hence a /∈ K. Since x and z
are first and second out-neighbors of u in D and u → v in T ′, then we may assume
b /∈ C.

Subcase III.6.2.a. If (a, b) ∈ E(D), then b ∈ N++
D (u).

Subcase III.6.2.b. If (a, b) ∈ E(D′) − E(D), then either ab ∈ E(C) or ab ∈
E[Yj ,Mj] for some j. If ab ∈ E(C), then b ∈ C, a contradiction. Thus ab ∈ E[Yj ,Mj]
for some j. It follows that either (a, b) is a convenient orientation with respect to D
and hence b ∈ N++

D (u), or there is rs → ab in Δ, namely s → b and a /∈ N++
D (s).

Since a /∈ K, then a ∈ Mj and thus s ∈ Mj . By the definition of G, us is not a
missing edge of D. But (u, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 4.2 we get
that b ∈ N++

D (u).

Subcase III.6.2.c. If (a, b) ∈ E(T )− E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. Since u → a in D and so in D′, there exists a vertex
v′ such that u → v′ → b in D′. But (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since
v′ /∈ C and (u, v′) ∈ E(D′), then (u, v′) ∈ E(D). But this is already treated in
Subcase III.6.2.a and Subcase III.6.2.b.

Case III.7. f = v. Here there are two cases to be consider.

Case III.7.1. (v, x) ∈ E(D′) and (y, z) ∈ E(D′). Then v gains x as a first out-
neighbor and z as a second out-neighbor in T ′ by comparison to D. This case is
similar to Case III.6.
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Case III.7.2. (x, v) ∈ E(D′) and (z, y) ∈ E(D′). Clearly, v gains no new first
out-neighbor in T ′ by comparison to D. We prove that it gains no new second
out-neighbor in T ′ by comparison to D. Suppose f → a → b → f in T ′. Then
(f, a) ∈ E(D) and hence a /∈ K.

Subcase III.7.2.a. If (a, b) ∈ E(D), then b ∈ N++
D (f).

Subcase III.7.2.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation with respect to D and hence b ∈ N++

D (v), or there is rs → ab in Δ,
namely s → b and a /∈ N++

D (s). So either rs, ab ∈ E(C) or rs, ab ∈ E[Yj,Mj ] for
some j. If ab ∈ E(C), then (a, b) = (x, y) or (a, b) = (z, y) and hence b = y, which is
impossible because b → f in T ′ while f → y in D. Thus rs, ab ∈ E[Yj,Mj ] for some
j. Since a /∈ K, then a ∈ Mj and thus s ∈ Mj . So by the definition of G, fs is not a
missing edge of D. But (f, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 4.2 we get
that b ∈ N++

D (f).

Subcase III.7.2.c. If (a, b) ∈ E(T )− E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. Since f → a in D and so in D′, there exists a vertex
v′ such that f → v′ → b in D′. But (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since
v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But this is already treated in
Subcase III.7.2.a and Subcase III.7.2.b.

Case III.8. f = x. Here there are two cases to be consider.

Case III.8.1. (v, x) ∈ E(D′) and (y, z) ∈ E(D′). Clearly, x gains no new first out-
neighbor in T ′ by comparison to D. We prove it gains no new second out-neighbor
in T ′ by comparison to D. Suppose x → a → b → x in T ′. Then (x, a) ∈ E(D),
(a, b) ∈ E(T ) and a /∈ K. Note that a /∈ {x, y, u, v} and we may assume b /∈ {x, z, v}.
Subcase III.8.1.a. If (a, b) ∈ E(D), then b ∈ N++

D (f).

Subcase III.8.1.b. If (a, b) ∈ E(D′) − E(D), then either (a, b) is a convenient
orientation with respect to D and hence b ∈ N++

D (x), or there is rs → ab in Δ,
namely s → b and a /∈ N++

D (s). So either rs, ab ∈ E(C) or rs, ab ∈ E[Yj,Mj ] for
some j. If ab ∈ E(C), then (a, b) = (x, y) or (a, b) = (y, z) and hence a ∈ {x, y}, a
contradiction. Thus rs, ab ∈ E[Yj,Mj] for some j. Since a /∈ K, then a ∈ Mj and
thus s ∈ Mj . By the definition ofG, fs is not a missing edge ofD. But (x, a) ∈ E(D)
and a /∈ N++

D (s), then by Lemma 4.2 we get that b ∈ N++
D (f).

Subcase III.8.1.c. If (a, b) ∈ E(T )− E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. Since x → a in D and so in D′, there exists a vertex
v′ such that x → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C.
Since v′ /∈ C and (x, v′) ∈ E(D′), then (x, v′) ∈ E(D). But this is already treated in
Subcase III.8.1.a and Subcase III.8.1.b.

Case III.8.2. (x, v) ∈ E(D′) and (z, y) ∈ E(D′). Clearly, x gains only v as a first
out-neighbor and y as a second out-neighbor in T ′ by comparison to D. We prove
it gains only y as a second out-neighbor in T ′ by comparison to D. Note that z
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and v are respectively first and second out-neighbors of x in D, (v, u) /∈ E(T ) and
(x, u) /∈ E(T ).

Subcase III.8.2.a. Suppose that x → v → b → x in T ′ with b �= y. Then (v, b) ∈
E(T ). By the previous note, we may assume that b /∈ C and hence (v, b) /∈ E(D′)−
E(D).

Subcase III.8.2.a.1. If (v, b) ∈ E(D), then either b ∈ S or b is a whole vertex.
Thus, by the losing relation xv → zy, we get that b ∈ N++

D (x).

Subcase III.8.2.a.2. If (v, b) ∈ E(T )−E(D′), then b ∈ K and (v, b) is a convenient
orientation with respect to D′. But this exactly the same as Subcase II.6.1.c.

Subcase III.8.2.b. Suppose that x → a → b → x in T ′ with b �= y and a �= v. Then
(x, a) ∈ E(D) and thus a /∈ K ∪ {x, y, v, u}. We may assume that b /∈ {x, y, v, z}.
But this case is already treated in Case III.7.2.

Case III.9. f = y. Clearly, f gains no new first out-neighbor in T ′ by comparison
to D. We prove that it gains no new second out-neighbor in T ′ by comparison to
D. Note that (z, y) ∈ E(T ′) and u and x are first and second out-neighbors of
y, respectively. Suppose that f → a → b → f in T ′. Then (f, a) ∈ E(D) and
a /∈ K ∪ {x, y, v, z}.
Subcase III.9.a. If (a, b) ∈ E(D), then b ∈ N++

D (f).

Subcase III.9.b. If (a, b) ∈ E(D′)−E(D), then either (a, b) is a convenient orien-
tation with respect to D and hence b ∈ N++

D (f), or there is rs → ab in Δ, namely
s → b and a /∈ N++

D (s). So either rs, ab ∈ E(C), or rs, ab ∈ E[Yj ,Mj] for some
j. If ab ∈ E(C), then (a, b) = (x, y) or (a, b) = (y, z) or (a, b) = (z, y) and hence
a ∈ {x, y, z}, a contradiction. Thus rs, ab ∈ E[Yj,Mj ] for some j. Since a /∈ K, then
a ∈ Mj and thus s ∈ Mj . By the definition of G, fs is not a missing edge of D. But
(f, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 4.2 we get b ∈ N++
D (f).

Subcase III.9.c. If (a, b) ∈ E(T ) − E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. But (f, a) ∈ E(D), then (f, a) ∈ E(D′). This gives
the existence of a vertex v′ such that f → v′ → b in D′. Since (v′, b) ∈ E(D′) and
b ∈ K, then v′ /∈ C. Since v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But this
is already treated in Subcase III.9.a and Subcase III.9.b.

Case III.10. f = z. Exactly same as Case III.9, with one difference that yz is
reoriented so that (y, z) ∈ E(T ′).

Case III.11. f ∈ V (G)− (Y ∪M ∪ C) = A ∪ (X −X1) = A ∪ (X − Y1). Exactly
same as Case I.6, with only one difference. The difference is that in Subcase III.11.b
there are two possibilities for the edges rs, ab: Either rs, ab ∈ E[Yj ,Mj] for some j,
or rs, ab ∈ E(C). The first case is treated in Subcase I.6.b. However, for the second
case, f must belong to A since otherwise fa is a missing edge because G[X ∪C] is a
complete split graph, which contradicts the fact that (f, a) ∈ E(D). Thus fs is not
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missing edge of D because E[A,C] = ∅ by the definition of G. Since f → a in D
and a /∈ N++

D (s), then by Lemma 4.2 we get that b ∈ N++
D (f).

Therefore, due to all the discussions above, f has the SNP in D in case that Δ[E(C)]
contains only the two arcs (uv, xy) and (vx, yz). ♦

Case IV. Δ[E(C)] has exactly two arcs, say uv → xy → zu.

Then v → y → u → x → z in D and the edges uv, yz, vx are good missing edges
of D. Assume without loss of generality that (u, v) is a convenient orientation with
respect to D. Add the arcs (u, v), (x, y) and (z, u)to D. Then assign to the good
missing edges vx and zy a convenient orientation and add them to D. The obtained
oriented graph D′ is missing G′ = G − (∪E[Yj ,Mj ] ∪ E(C)) which is a threshold
graph. Due to Theorem 3.3, all the missing edges of D′ are good. We assign to them
a convenient orientation and we add them to get a tournament T . Let L be a median
order of T and let f denote its feed vertex. Reorient all the missing edges incident
to f towards f except those whose out-degree in Δ is not zero. The same order L is
again a median order of the obtained tournament T ′ and thus f has the SNP in T ′.
We will prove that f has the SNP in D. We have the following cases.

Case IV.1. f is a whole vertex. This is the same as Case I.1.

Case IV.2. There exists 1 ≤ t ≤ l such that f ∈ Mt. This is similar to Case III.2.
Note that, in this case, if rs, ab ∈ E(C), then (r, s) = (u, v) and (a, b) = (x, y) or
(r, s) = (x, y) and (a, b) = (z, u).

Case IV.3. There exists 1 ≤ t ≤ l such that f ∈ Yt and Mt �= ∅. This case is
exactly the same as Case III.3, so the proof is left to the reader.

Case IV.4. There exists 1 ≤ t ≤ l + 1 such that f ∈ Yt and Mt = ∅. The proof of
this case is omitted, because it can be easily done by imitating the demonstration of
Case III.4.

Case IV.5. f ∈ Yl+2. This case is exactly the same as Case III.5.

Case IV.6. f = u. Clearly, u gains only v as a first out-neighbor and it gains y as
a second out-neighbor in T ′ by comparison to D. To verify that f has the SNP in
D, it is sufficient to prove that u gains no new second out-neighbors other than y in
T ′. To this end, we proceed in the same manner as that of Case III.6.

Case IV.7. f = v. It is clear that v gains no new first out-neighbor in T ′ by
comparison to D. We prove that it gains no new second out-neighbor in T ′ by
comparison to D. Suppose that v → a → b → v in T ′. Then (v, a) ∈ E(D) and
a /∈ K ∪ {x, v, u}. Since v → y → u in D, we may assume that b /∈ {u, v, y} and
a �= y.

Subcase IV.7.a. If (a, b) ∈ E(D) or (a, b) ∈ E(D)−E(D′) such that it is a conve-
nient orientation with respect to D, then clearly b ∈ N++

D (f).

Subcase IV.7.b. If (a, b) ∈ E(D) − E(D′) and it is not convenient with respect
to D, then there is rs → ab in Δ, namely s → b and a /∈ N++

D (s). Thus either
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rs, ab ∈ E(C) or rs, ab ∈ E[Yj ,Mj] for some j. If ab ∈ E(C), then (a, b) = (x, y)
or (a, b) = (z, u) and hence b ∈ {u, y}, a contradiction. Thus rs, ab ∈ E[Yj,Mj ] for
some j. Since a /∈ K, then a ∈ Mj and thus s ∈ Mj. By the definition of G, fs is
not a missing edge of D. But (f, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 4.2
we get that b ∈ N++

D (f).

Subcase IV.7.c. If (a, b) ∈ E(T ) − E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. But (f, a) ∈ E(D), then (f, a) ∈ E(D′). This induces
the existence of a vertex v′ such that f → v′ → b in D′. Since (v′, b) ∈ E(D′) and
b ∈ K, then v′ /∈ C ∪ K. But (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But this is
already treated in Subcase IV.7.a and Subcase IV.7.b.

Case IV.8. f = x. Then x gains only y as a first out-neighbor and gains u as a
second out-neighbor in T ′ by comparison to D. We prove that it gains only u as a
new second out-neighbor in T ′ by comparison to D.

Subcase IV.8.a. Suppose that x → y → b → x in T ′ with b �= u. Then (y, b) ∈
E(T ) − E(T ′). Since x → z and v → y in D, then we may assume that b /∈ C
and hence (y, b) /∈ E(D′) − E(D). If (y, b) ∈ E(D), then b is a whole vertex or
b ∈ S. Thus, by the losing relation xy → zu, we get that b ∈ N++

D (x). Else if
(y, b) ∈ E(T )−E(D′), then b ∈ K and (y, b) is a convenient orientation with respect
to D′. So there is a vertex v′ such that x → v′ → b in D′. Since (v′, b) ∈ E(D′) and
b ∈ K, then v′ /∈ C ∪K. Since v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). As
usual, we can prove that b ∈ N++

D (x) in D.

Subcase IV.8.b. Suppose that x → a → b → x in T ′ with a �= y and b �= u. Then
(x, a) ∈ D and thus a /∈ K. Since x → z in D and x → y in T , then b /∈ {x, y, u, z}.
We proceed exactly as in Case IV.7.

Case IV.9. f = y. Clearly, y gains no new first out-neighbor in T ′ by comparison
to D. We prove that it gains no new second out-neighbor in T ′ by comparison to
D. Suppose that y → a → b → y in T ′. Then (y, a) ∈ E(D) and a /∈ K. Since
y → u → x in D, then we may assume b /∈ {x, y, u}. We continue exactly as in
Case IV.7.

Case IV.10. f = z. It is clear that z gains no new vertex as a first out-neighbor
in T ′ by comparison to D. We prove that it gains no new vertex as a second out-
neighbor in T ′ by comparison to D. Suppose that z → a → b → z in T ′. Then
(z, a) ∈ E(D) and a /∈ K. Since x → z in D, we may assume that a /∈ K ∪ {x, z}.
Subcase IV.10.a. If (a, b) ∈ E(D) or (a, b) ∈ E(D)−E(D′) and it is a convenient
orientation with respect to D, then b ∈ N++

D (z).

Subcase IV.10.b. If (a, b) ∈ E(D) − E(D′) and it is not convenient with respect
to D, then there is rs → ab in Δ, namely s → b and a /∈ N++

D (s). So either
rs, ab ∈ E(C) or rs, ab ∈ E[Yj ,Mj] for some j. If ab ∈ E(C), then (a, b) = (x, y)
or (a, b) = (z, u) and hence a ∈ {x, z}, a contradiction. Thus rs, ab ∈ E[Yj,Mj ] for
some j. Since a /∈ K, then a ∈ Mj and thus s ∈ Mj . So by the definition of G, fs
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is not a missing edge of D. But (f, a) ∈ E(D) and a /∈ N++
D (s), then by Lemma 4.2

we get b ∈ N++
D (f).

Subcase IV.10.c. If (a, b) ∈ E(T )− E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. Since (f, a) ∈ E(D), then (f, a) ∈ E(D′). This gives
the existence of a vertex v′ such that f → v′ → b in D′. Since (v′, b) ∈ E(D′) and
b ∈ K, then v′ /∈ C ∪ k. Since v′ /∈ C and (f, v′) ∈ E(D′), then (f, v′) ∈ E(D). But
this is already treated in Subcase IV.10.a and Subcase IV.10.b.

Case IV.11. f ∈ V (G)− (Y ∪M ∪ C) = A ∪ (X −X1) = A ∪ (X − Y1). Exactly
same as Case III.11.

Therefore, in the light of the preceding, f satisfies the SNP given that Δ[E(C)] has
exactly the two arcs (uv, xy) and (xy, zu). ♦

Case V. Δ[E(C)] has exactly three arcs, say uv → xy → zu → vx.

Then u → x → z → v → y in D and the edges uv, yz are good missing edges of
D. Assume without loss of generality that (u, v) is a convenient orientation with
respect to D. Add first the arcs (u, v), (x, y), (z, u) and (v, x) to D. Assign to yz a
convenient orientation and add it to D. The obtained oriented graph D′ is missing
G′ = G− (∪E[Yj ,Mj ] ∪ E(C)) which is a threshold graph. Due to Theorem 3.3, all
the missing edges of D′ are good. We assign to each of them a convenient orientation
and we add them till getting a tournament T . Let L be a median order of T and
let f denote its feed vertex. Reorient all the missing edges incident to f towards f
except those whose out-degree in Δ is not zero. The same order L is again a median
order of the obtained tournament T ′ and f has the SNP in T ′. We will prove that f
has the SNP in D. We have the following cases.

Case V.1. f is a whole vertex. This is is the same as Case I.1.

Case V.2. There exists 1 ≤ t ≤ l such that f ∈ Mt. The proof of this case is similar
to that of Case III.2. Note that, in this case, if rs, ab ∈ E(C), then (r, s) = (u, v)
and (a, b) = (x, y), or (r, s) = (x, y) and (a, b) = (z, u), or (r, s) = (z, u) and
(a, b) = (v, x).

Case V.3. There exists 1 ≤ t ≤ l such that f ∈ Yt and Mt �= ∅. This case is exactly
the same as Case III.3, so the proof is left to the reader.

Case V.4. There exists 1 ≤ t ≤ l + 1 such that f ∈ Yt and Mt = ∅. The proof of
this case is omitted, because it can be easily done by imitating the demonstration of
Case III.4.

Case V.5. f ∈ Yl+2. This case is exactly the same as Case III.5.

Case V.6. f ∈ {u, x, z}. The proof of this case is left to the reader, because it is
exactly the same as Case III.6.

Case V.7. f = y. Exactly same as Case III.9, with only one difference. The dif-
ference is that in Subcase V.7.b when ab ∈ E(C) then (a, b) can be either (x, y) or
(z, u) or (v, x) and so a ∈ {x, z, v}, a contradiction.
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Case V.8. f = v. Similar to the case where f = y, that is to Case V.7.

Case V.9. f ∈ V (G)− (Y ∪M ∪ C) = A ∪ (X −X1) = A ∪ (X − Y1). The proof
of this case is similar to that of Case III.11.

Therefore, in view of all the observations above, f satisfies the SNP in D, given that
Δ[E(C)] has exactly the three arcs (uv, xy), (xy, zu) and (zu, vx). ♦

Case VI. Δ[E(C)] has exactly three arcs, say uv → xy → zu and xv → zy.

Then u → x → z → v → y → u in D and uv and xv are good missing edges. Assume
without loss of generality that (u, v) is a convenient orientation of uv. Add (u, v),
(x, y) and (z, u) to D. If (x, v) is a convenient orientation the good missing edge xv,
then add (x, v) and (z, y) to D, otherwise add (v, x) and (y, z) to D. The obtained
oriented graph D′ is missing G′ = G − (∪E[Yj ,Mj ] ∪ E(C)) which is a threshold
graph. So all the missing edges of D′ are good. We assign to them a convenient
orientation and we add them to get a tournament T . Let L be a median order of T
and let f denote its feed vertex. Reorient all the missing edges incident to f towards
f except those whose out-degree in Δ is not zero. The same order L is again a
median order of the obtained tournament T ′ and f has the SNP in T ′. We will prove
that f has the SNP in D. We have the following cases.

Case VI.1. f is a whole vertex. This is the same as Case I.1.

Case VI.2. There exists 1 ≤ t ≤ l such that f ∈ Mt. This case is similar to
Case III.2. Note that, in this case, if rs, ab ∈ E(C) then (r, s) = (u, v) and (a, b) =
(x, y), (r, s) = (x, y) and (a, b) = (z, u), (r, s) = (v, x) and (a, b) = (y, z) if (v, x)
is a convenient orientation of vx, or (r, s) = (x, v) and (a, b) = (z, y) if (x, v) is a
convenient orientation of vx.

Case VI.3. There exists 1 ≤ t ≤ l such that f ∈ Yt and Mt �= ∅. This case is
exactly same as Case III.3.

Case VI.4. There exists 1 ≤ t ≤ l + 1 such that f ∈ Yt and Mt = ∅. This case can
be proved by imitating the demonstration of Case III.4.

Case VI.5. f ∈ Yl+2. This case is exactly the same as Case III.5.

Case VI.6. f = u. This case is exactly the same as Case III.6, so it is safely left to
the reader.

Case VI.7. f = y. Exactly same as Case III.9, with only one difference. The
difference is that in Subcase VI.7.b if ab ∈ E(C) then (a, b) can be either (x, y),
(z, u) (y, z) or (z, y) and so a ∈ {x, y, z}, a contradiction.

Case VI.8. f = z. Exactly same as Case VI.7, with one difference that yz and uz
are reoriented so that (y, z) ∈ E(T ′) and (u, z) ∈ E(T ′), respectively.

Case VI.9. f = v. Exactly same as Case III.7, with only one difference. In Subcase
VI.9.2.b, if ab ∈ E(C) then (a, b) can be either (x, y), (z, u) or (z, y) and so a ∈ {x, z}.
This a contradiction because z → v in D and x → v in D′ while v → a in D.
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Case VI.10. f = x. Here we consider two main cases:

Case VI.10.1. (x, v) ∈ E(D′). Clearly, x gains only v and y as new first out-
neighbors in T ′ by comparison to D. However, x loses v as a second out-neighbor
and gains u as a new second out-neighbor in T ′ by comparison to D. We prove that
x gains only u as a new second out-neighbor in T ′ by comparison to D.

Case VI.10.1.1. x → a → b → x in T ′, with a �= y, a �= v and b �= u. Then
(a, b) ∈ E(T ), (x, a) ∈ E(D) and thus a /∈ K. Since x → z → v in D and x → y in
T , then we may assume that b /∈ C.

Subcase VI.10.1.1.a. If (a, b) ∈ E(D), then clearly b ∈ N++
D (x).

Subcase VI.10.1.1.b. If (a, b) ∈ E(D′) − E(D), then either ab ∈ E(C) or ab ∈
E[Yj ,Mj] for some j. If ab ∈ E(C), then b ∈ C, a contradiction. Thus ab ∈ E[Yj ,Mj]
for some j. It follows that either (a, b) is a convenient orientation with respect to D
and hence b ∈ N++

D (x), or there is rs → ab in Δ, namely s → b and a /∈ N++
D (s).

Since a /∈ K, then a ∈ Mj and thus s ∈ Mj . By the definition of G, xs is not a
missing edge of D. But (x, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 4.2 we get
b ∈ N++

D (x).

Subcase VI.10.1.1.c. If (a, b) ∈ E(T ) − E(D′), then b ∈ K and (a, b) is a conve-
nient orientation with respect to D′. Since x → a in D and so in D′, there exists a
vertex v′ such that x → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C.
Since v′ /∈ C and (x, v′) ∈ E(D′), then (x, v′) ∈ E(D). But this is already treated in
Subcase VI.10.1.1.a and Subcase VI.10.1.1.b.

Case VI.10.1.2. x → y → b → x in T ′ with b �= u. Since x → z → v in D, then
we may assume that b /∈ C and hence (y, b) /∈ E(D′)− E(D).

Subcase VI.10.1.2.a. If (y, b) ∈ E(D), then either b ∈ S or b is a whole vertex.
Then, by the losing relation xy → zu, we get that b ∈ N++

D (x).

Subcase VI.10.1.2.b. If (y, b) ∈ E(T ) − E(D′), then b ∈ K and (y, b) is
a convenient orientation with respect to D′. But this is exactly the same as
Subcase VI.10.1.1.a and Subcase VI.10.1.1.b.

Case VI.10.1.3. x → v → b → x in T ′ with b �= u. Since x → z → v in D and
x → y in T , then we may assume that b /∈ C. We proceed similarly to Case VI.10.1.2
by replacing the losing relation xy → zu in Subcase VI.10.1.2.a by the losing relation
xv → zy in Subcase VI.10.1.3.a.

Case VI.10.2. (v, x) ∈ E(D′). Clearly, x gains only y as a new first out-neighbor
and u as a new second out-neighbor in T ′ by comparison to D. We prove that it
gains only u as a new second out-neighbor in T ′ by comparison to D.

Subcase VI.10.2.a. Suppose that x → y → b → x in T ′ with b �= u. Then
(y, b) ∈ E(T )− E(T ′). Since x → z → v in D, then we may assume that b /∈ C and
hence (y, b) /∈ E(D′)− E(D). This is exactly the same as Case VI.10.1.2.
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Subcase VI.10.2.b. Suppose that x → a → b → x in T ′ with a �= y and b �= u.
Then (a, b) ∈ E(T )− E(T ′), (x, a) ∈ E(D) and thus a /∈ K. Since x → z → v in D
and x → y in T , then b /∈ C. We proceed exactly as in Case VI.10.1.1.

Case VI.11. f ∈ V (G)− (Y ∪M ∪C) = A∪ (X −X1) = A ∪ (X − Y1). This case
is similar to Case III.11.

Therefore, f has the SNP in case that Δ[E(C)] has exactly the three arcs (uv, xy),
(xy, zu) and (zu, vx). ♦

Case VII. Δ[E(C)] is a directed cycle of length 5, say xy → zu → vx → yz →
uv → xy.

In this case, add to D the arcs (x, y), (z, u), (v, x), (y, z) and (u, v). The obtained
oriented graphD′ is missing G′ = G−(∪E[Yj,Mj ]∪E(C)) which is a threshold graph.
Thus, due to Theorem 3.3, all the missing edges of D′ are good. Assign to each
missing edge of D′ a convenient orientation and add them to D′ to get a tournament
T . Let L be a median order of T and let f denote its feed vertex. Reorient all the
missing edges incident to f towards f , except those whose out-degree in Δ is not
zero. The same order L is a median order of the obtained tournament T ′, f is also
a feed vertex of L and thus f has the SNP in T ′. We will prove that f has the SNP
in D also. For this purpose, we consider the following cases.

Case VII.1. f is a whole vertex. This is is the same as Case I.1.

Case VII.2. There exists 1 ≤ t ≤ l such that f ∈ Mt. The proof of this case is
similar to that of Case III.2.

Case VII.3. There exists 1 ≤ t ≤ l such that f ∈ Yt and Mt �= ∅. This case is
exactly the same as Case III.3, so the proof is left to the reader.

Case VII.4. There exists 1 ≤ t ≤ l + 1 such that f ∈ Yt and Mt = ∅. The proof of
this case is similar to that of Case III.4.

Case VII.5. f ∈ Yl+2. This case is exactly the same as Case III.5.

Case VII.6. f ∈ C. Due to symmetry, assume that f = u. Clearly, u gains only v
as a new first out-neighbor in T ′ by comparison to D. We prove that it gains only y
as a new second out-neighbor in T ′ by comparison to D.

Case VII.6.1. u → v → b → u in T ′ with b �= y. Then (v, b) ∈ E(T ) − E(T ′).
Since u → x and z → v in D, then we may assume that b /∈ C and hence (v, b) /∈
E(D′)− E(D).

Subcase VII.6.1.a. If (v, b) ∈ E(D), then either b ∈ S or b is a whole vertex.
Then, by the losing relation uv → xy, we get b ∈ N++

D (u).

Subcase VII.6.1.b. If (v, b) ∈ E(T )−E(D′), then b ∈ K and (v, b) is a convenient
orientation with respect to D′. Then there exists v′ such that u → v′ → b → u
in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C. Since v′ /∈ C and (f, v′) ∈
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E(D′). The rest of the proof of this case is exactly the same as Subcase II.6.1.c.1
and Subcase II.6.1.c.2.

Case VII.6.2. u → a → b → u in T ′, with a �= v and b �= y. Then (u, a) ∈ E(D)
and (a, b) ∈ E(T ). Note that a /∈ K ∪ {u, v, y, z} and b /∈ {u, v, x, y}.
Subcase VII.6.2.a. If (a, b) ∈ E(D), then b ∈ N++

D (u).

Subcase VII.6.2.b. If (a, b) ∈ E(D′) − E(D), then either ab ∈ E(C) or ab ∈
E[Yj ,Mj] for some j. If ab ∈ E(C), then a = x because a /∈ {u, v, y, z} and so
(a, b) = (x, y), a contradiction to the fact that b �= y. Thus ab ∈ E[Yj ,Mj] for
some j. Then either (a, b) is a convenient orientation with respect to D and hence
b ∈ N++

D (u), or there is rs → ab in Δ, namely s → b and a /∈ N++
D (s). Since a /∈ K,

then a ∈ Mj and thus s ∈ Mj . By the definition of G, us is not a missing edge of D.
But (u, a) ∈ E(D) and a /∈ N++

D (s), then by Lemma 4.2 we get that b ∈ N++
D (u).

Subcase VII.6.2.c. If (a, b) ∈ E(T )−E(D′), then b ∈ K and (a, b) is a convenient
orientation with respect to D′. Since u → a in D and so in D′, there exists a vertex
v′ such that u → v′ → b in D′. Since (v′, b) ∈ E(D′) and b ∈ K, then v′ /∈ C.
Since v′ /∈ C and (u, v′) ∈ E(D′), then (u, v′) ∈ E(D). But this is already treated in
Subcase II.6.1.c.1 and Subcase II.6.1.c.2.

Case VII.7. f ∈ V (G)− (Y ∪M ∪C) = A∪ (X −X1) = A∪ (X − Y1). This is the
same as Case III.11, so the proof is left to the reader.

Therefore, f has the SNP in D when Δ[E(C)] is a directed cycle of length 5. ♦
In view of the preceding, f has the SNP in D. This completes the proof.

As immediate consequences of the previous theorem, we may conclude the following:

Corollary 4.6. (Ghazal [5] ) Every oriented graph missing a comb satisfies the SNC.

Corollary 4.7. (Ghazal [7]) Every oriented graph missing a threshold graph satisfies
the SNC.

Corollary 4.8. Every oriented graph missing a generalized comb satisfies the SNC.

Corollary 4.9. Every oriented threshold graph satisfies the SNC.

Proof. Let D be an oriented graph whose underlying graph G is a threshold graph.
Then the missing graph of D is the complement of G minus its isolated vertices,
which is in its turn a threshold graph. Thus, due to Corollary 4.7, D has a vertex
with the SNP.

Since threshold graphs and generalized combs are
−→P -forcing graphs, C5 is a

−→P ∪−→C5-forcing graph, {C4, C4, S3, chair and chair}-free graphs are −→P ∪−→C5-forcing graphs
and any oriented graph missing one of the graphs mentioned before satisfies the SNC,
we end this article by asking the following:

Problem 2. Does every oriented graph missing a
−→P ∪ −→C5-forcing graph satisfy the

SNC?
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