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Abstract

A total Roman dominating function on a graph G is a function f :
V (G) → {0, 1, 2} such that every vertex v with f(v) = 0 is adjacent
to i some vertex u with f(u) = 2, and the subgraph of G induced by the
set of all vertices w such that f(w) > 0 has no isolated vertices. The
weight of f is Σv∈V (G)f(v). The total Roman domination number γtR(G)
is the minimum weight of a total Roman dominating function on G. A
graph G is k-γtR-edge-critical if γtR(G + e) < γtR(G) = k for every edge
e ∈ E(G) �= ∅, and k-γtR-edge-supercritical if it is k-γtR-edge-critical and
γtR(G + e) = γtR(G) − 2 for every edge e ∈ E(G) �= ∅. A graph G is
k-γtR-edge-stable if γtR(G + e) = γtR(G) = k for every edge e ∈ E(G)
or E(G) = ∅. For an edge e ∈ E(G) incident with a degree 1 vertex,
we define γtR(G − e) = ∞. A graph G is k-γtR-edge-removal-critical if
γtR(G − e) > γtR(G) = k for every edge e ∈ E(G), and k-γtR-edge-
removal-supercritical if it is k-γtR-edge-removal-critical and γtR(G− e) ≥
γtR(G) + 2 for every edge e ∈ E(G). A graph G is k-γtR-edge-removal-
stable if γtR(G − e) = γtR(G) = k for every edge e ∈ E(G). We investi-
gate connected γtR-edge-supercritical graphs and exhibit infinite classes of
such graphs. In addition, we characterize γtR-edge-removal-critical and
γtR-edge-removal-supercritical graphs. Furthermore, we present a con-
nection between k-γtR-edge-removal-supercritical and k-γtR-edge-stable
graphs, and similarly between k-γtR-edge-supercritical and k-γtR-edge-
removal-stable graphs.
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1 Introduction

We consider the behaviour of the total Roman domination number of a graph G upon
the addition or removal of edges to and from G. A dominating set S in a graph G is a
set of vertices such that every vertex in V (G)−S is adjacent to at least one vertex in
S. The domination number γ(G) is the cardinality of a minimum dominating set in
G. A total dominating set S (abbreviated by TD-set) in a graph G with no isolated
vertices is a set of vertices such that every vertex in V (G) is adjacent to at least one
vertex in S. The total domination number γt(G) (abbreviated by TD-number) is the
cardinality of a minimum total dominating set in G. For S ⊆ V (G) and a function
f : S → R, define f(S) = Σs∈Sf(s). A Roman dominating function (abbreviated
by RD-function) on a graph G is a function f : V (G) → {0, 1, 2} such that every
vertex v with f(v) = 0 is adjacent to some vertex u with f(u) = 2. The weight of
f , denoted by ω(f), is defined as f(V (G)). The Roman domination number γR(G)
(abbreviated by RD-number) is defined as min{ω(f) : f is an RD-function on G}.
For an RD-function f , let V i

f = {v ∈ V (G) : f(v) = i} and V +
f = V 1

f ∪ V 2
f . Thus, we

can uniquely express an RD-function f as f = (V 0
f , V

1
f , V

2
f ).

As defined by Chang and Liu [6], a total Roman dominating function (abbreviated
by TRD-function) on a graph G with no isolated vertices is a Roman dominating
function with the additional condition that G[V +

f ] has no isolated vertices. The total
Roman domination number γtR(G) (abbreviated by TRD-number) is the minimum
weight of a TRD-function on G; that is, γtR(G) = min{ω(f) : f is a TRD-function
on G}. A TRD-function f such that ω(f) = γtR(G) is called a γtR(G)-function, or a
γtR-function if the graph G is clear from the context; γR-functions are defined analo-
gously. Total Roman domination was also studied by Ahangar, Henning, Samodivkin
and Yero [1].

The addition of an edge to a graph has the potential to change its total domination
or total Roman domination number. Van der Merwe, Mynhardt and Haynes [12]
studied γt-edge-critical graphs, that is, graphs G for which γt(G+e) < γt(G) for each
e ∈ E(G) and E(G) �= ∅. Similarly, Lampman, Mynhardt and Ogden [11] defined an
edge e ∈ E(G) to be critical with respect to total Roman domination (abbreviated
TRD-critical) if γtR(G + e) < γtR(G). An edge e ∈ E(G) is supercritical with
respect to total Roman domination (abbreviated TRD-supercritical) if γtR(G+ e) ≤
γtR(G) − 2. A graph G with no isolated vertices is total Roman domination edge-
critical, or simply γtR-edge-critical, if every edge e ∈ E(G) �= ∅ is TRD-critical. We
say that G is k-γtR-edge-critical if γtR(G) = k and G is γtR-edge-critical. Similarly,
if every edge e ∈ E(G) �= ∅ is TRD-supercritical, then G is γtR-edge-supercritical ;
γt-edge-supercritical graphs are defined analogously. An edge e ∈ E(G) is stable with
respect to total Roman domination (abbreviated TRD-stable) if γtR(G+e) = γtR(G).
If every edge e ∈ E(G) is TRD-stable, or if E(G) = ∅, we say that G is γtR-edge-
stable.

The removal of an edge from a graph G also has the potential to change its
total domination or total Roman domination number. Desormeaux, Haynes and
Henning [8] studied γt-edge-removal-critical graphs, that is, graphs G for which
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γt(G − e) > γt(G) for each e ∈ E(G). We consider the same concept for total
Roman domination. An edge e ∈ E(G) is removal-critical with respect to total
Roman domination (abbreviated TRD-ER-critical) if γtR(G) < γtR(G− e). We say
that an edge e ∈ E(G) is removal-supercritical with respect to total Roman domi-
nation (abbreviated TRD-ER-supercritical) if γtR(G) + 2 ≤ γtR(G − e). Note that
the removal of an edge e ∈ E(G) incident with a degree 1 vertex would result in
G − e containing an isolated vertex. For such an edge e ∈ E(G), Desormeaux et
al. [8] defined γt(G− e) = ∞. Likewise, we define γtR(G− e) = ∞ when e ∈ E(G)
is an edge incident with a degree 1 vertex. Furthermore, we define EP (G) ⊆ E(G)
to be the set of edges in G which are not incident with a degree 1 vertex; that is,
the set of edges e such that γtR(G− e) < ∞. Hence every edge e ∈ E(G)− EP (G)
is TRD-ER-supercritical. A graph G with no isolated vertices is total Roman dom-
ination edge-removal-critical, or simply γtR-ER-critical, if every edge e ∈ E(G) is
TRD-ER-critical. We say that G is k-γtR-ER-critical if γtR(G) = k and G is γtR-
ER-critical. Similarly, if every edge e ∈ E(G) is TRD-ER-supercritical, then G is
γtR-ER-supercritical ; γt-ER-supercritical graphs are defined analogously. An edge
e ∈ E(G) is removal-stable with respect to total Roman domination (abbreviated
TRD-ER-stable) if γtR(G) = γtR(G− e). If every edge e ∈ E(G) is TRD-ER-stable,
we say that G is γtR-edge-removal-stable, or simply γtR-ER-stable.

Pushpam and Padmapriea [13] established bounds on the total Roman domina-
tion number of a graph in terms of its order and girth. Total Roman domination
in trees was studied by Amjadi, Nazari-Moghaddam, Sheikholeslami and Volkmann
[2], as well as by Amjadi, Sheikholeslami and Soroudi [3]. The authors of [3] also
studied Nordhaus-Gaddum bounds for total Roman domination in [4]. Campanelli
and Kuziak [5] considered total Roman domination in the lexicographic product of
graphs. We refer the reader to the well-known books [7] and [9] for graph theory
concepts not defined here. Frequently used or lesser known concepts are defined
where needed.

We begin with some previous results on the total domination and total Roman
domination numbers of a graph in Section 2, and γtR-edge-critical graphs in Sec-
tion 3. In Section 4, we investigate the existence of connected γtR-edge-supercritical
graphs and demonstrate that each such graph contains a cycle. After characterizing
5-γtR-edge-critical graphs in Section 5, we investigate 6-γtR-edge-supercritical graphs
in Section 6. In Section 7, we characterize γtR-ER-critical graphs. A similar charac-
terization of γtR-ER-supercritical graphs is presented in Section 8, where we also note
that every γtR-ER-supercritical graph is γtR-edge-stable. The analogous result for
γtR-edge-supercritical and γtR-ER-stable graphs is given in Section 9. We conclude
in Section 10 with ideas for future research.

2 Preliminaries

Before investigating γtR-edge-critical and γtR-ER-critical graphs, we present some
basic results relating the domination, total domination, and total Roman domination
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numbers of a graph. Our first result is a direct corollary to Observation 6.42 and
Theorem 6.47 in [9], and provides bounds on the total domination number of a graph
G in terms of its domination number.

Proposition 2.1. [9] For a graph G with no isolated vertices, γ(G) ≤ γt(G) ≤
2γ(G).

As noted in Section 1, total Roman domination was studied by Ahangar et al. [1].
There, they provided two results which bound the total Roman domination number of
a graph in terms of its domination number and total domination number, respectively.
Note the similarities between the bounds in Propositions 2.1 and 2.3.

Proposition 2.2. [1] For a graph G with no isolated vertices, 2γ(G) ≤ γtR(G) ≤
3γ(G).

Proposition 2.3. [1] If G is a graph with no isolated vertices, then γt(G) ≤ γtR(G)
≤ 2γt(G). Furthermore, γtR(G) = γt(G) if and only if G is the disjoint union of
copies of K2.

Note that Proposition 2.3 characterizes the graphs G for which γtR(G) = γt(G).
The problem of determining whether γtR(G) = 2γ(G), γtR(G) = 2γt(G) or γtR(G) =
3γ(G) was shown to be NP-hard by Poureidi and Jafari Rad [14]. Ahangar et al. [1]
also characterized the graphs which nearly attain the lower bound in Proposition 2.3;
that is, the graphs G for which γtR(G) = γt(G) + 1.

Proposition 2.4. [1] Let G be a connected graph of order n ≥ 3. Then γtR(G) =
γt(G) + 1 if and only if Δ(G) = n− 1, that is, G has a universal vertex.

We now consider the graphs with the smallest possible TRD-number, namely 3,
which were characterized by Lampman et al. [11].

Proposition 2.5. [11] For a graph G of order n ≥ 3 with no isolated vertices,
γtR(G) = 3 if and only if Δ(G) = n− 1, that is, G has a universal vertex.

When combined with Proposition 2.4, Proposition 2.5 implies that, for a con-
nected graph G of order n ≥ 3, γtR(G) = γt(G) + 1 if and only if γtR(G) = 3. This
result provides a tighter lower bound on the TRD-number of a connected graph with
no universal vertex with respect to its TD-number.

Observation 2.6. If G is a connected graph of order n ≥ 3 such that Δ(G) ≤ n−2,
then γt(G) + 2 ≤ γtR(G) ≤ 2γt(G).

Lampman et al. [11] also provided an alternate characterization of the graphs G
with total Roman domination number 3, as well as a characterization of the graphs
G with total Roman domination number 4, in terms of the domination and total
domination numbers of the graph.
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Proposition 2.7. [11] If G is a connected graph of order n ≥ 3, then γtR(G) ∈ {3, 4}
if and only if γt(G) = 2. Moreover, γ(G) = 1 when γtR(G) = 3, and γ(G) = 2 when
γtR(G) = 4.

3 γtR-Edge-critical graphs

As noted in Section 1, the addition of an edge to a graph has the potential to change
its total domination or total Roman domination number. Van der Merwe et al. [12]
studied this effect with respect to the total domination number, providing bounds
on the total domination number of the graph G+ e, where e ∈ E(G), in terms of the
total domination number of G.

Proposition 3.1. [12] For a graph G with no isolated vertices, if uv ∈ E(G), then
γt(G)− 2 ≤ γt(G+ uv) ≤ γt(G).

These bounds also hold with respect to the total Roman domination number of
the graph G+ e obtained by adding an edge e ∈ E(G) to G, as shown by Lampman
et al. [11].

Proposition 3.2. [11] Given a graph G with no isolated vertices, if uv ∈ E(G), then
γtR(G)− 2 ≤ γtR(G+ uv) ≤ γtR(G).

For any edge uv ∈ E(G), there are 32 = 9 ways for a TRD-function f to assign
the values in {0, 1, 2} to u and v. However, the following observation restricts the
possible values assigned to a degree 1 vertex and its unique neighbour when f is
a γtR(G)-function. Note that, for a graph G and a vertex v ∈ V (G), the open
neighbourhood of v in G is NG(v) = {u ∈ V (G) : uv ∈ E(G)}, and the closed
neighbourhood of v in G is NG[v] = NG(v) ∪ {v}.

Observation 3.3. For a graph G with no isolated vertices, if deg(u) = 1 and
NG(u) = {v}, then, for any γtR(G)-function f , either f(u) = f(v) = 1, or f(v) = 2
and f(u) ∈ {0, 1}. Furthermore, there exists a γtR(G)-function g such that {g(u),
g(v)} �= {1, 2}.

Similarly, Lampman et al. [11] provided a result restricting the possible values
assigned to the vertices of a TRD-critical edge uv by a γtR-function f on G + uv.
We mildly abuse set-theoretic notation by denoting the case where f(u) = f(v) = i
for i ∈ {0, 1, 2} by {f(u), f(v)} = {i, i}.

Proposition 3.4. [11] Given a graph G with no isolated vertices, if uv ∈ E(G) is a
TRD-critical edge and f is a γtR(G+uv)-function, then {f(u), f(v)} ∈ {{2, 2}, {2, 1},
{2, 0}, {1, 1}}. If, in addition, deg(u) = deg(v) = 1, then there exists a γtR(G+ uv)-
function f such that f(u) = f(v) = 1.

We now consider γtR-edge-critical graphs. Recall that a graph G with no isolated



C.M. MYNHARDT AND S.E.A. OGDEN/AUSTRALAS. J. COMBIN. 78 (3) (2020), 413–433 418

vertices is γtR-edge-critical if γtR(G+ e) < γtR(G) for every edge e ∈ E(G) �= ∅. For
a graph G �= K2, the unique neighbour of an end-vertex of G is called its support
vertex. In this case, the end-vertex is referred to as a pendant vertex, and the edge
incident with it a pendant edge. An endpath in a graph G is a path from a vertex v,
where deg(v) ≥ 3, to a pendant vertex, such that all of the internal vertices of the
path have degree 2. We begin with some results from [11] which provide necessary
conditions for a graph G to be γtR-edge-critical.

Proposition 3.5. [11] For a graph G with no isolated vertices, if G has a pendant
vertex w with support vertex x such that G[N(x) − {w}] is not complete, then G is
not γtR-edge-critical.

Proposition 3.6. [11] For a graph G with no isolated vertices, if G has two endpaths
v0, v1, . . . , vk and u0, u1, . . . , um, where k,m ≥ 3 and vk and um are pendant vertices,
then G is not γtR-edge-critical.

We conclude this section by considering the graphs G which have the largest
TRD-number, namely |V (G)|. A subdivided star is a tree obtained from a star on
at least three vertices by subdividing each edge exactly once. A double star is a
tree obtained from two disjoint non-trivial stars by joining the two central vertices
(choosing either central vertex in the case of K2). The corona cor(G) (sometimes
denoted by G◦K1) of G is obtained by joining each vertex of G to a new end-vertex.

Connected graphs G for which γtR(G) = |V (G)| were characterized in [1]. There,
Ahangar et al. defined G as the family of connected graphs obtained from a 4-cycle
v1, v2, v3, v4, v1 by adding k1 + k2 ≥ 1 vertex-disjoint paths P2, and joining vi to an
end-vertex of ki such paths, for i ∈ {1, 2}. Note that possibly k1 = 0 or k2 = 0.
Furthermore, they defined H to be the family of graphs obtained from a double star
by subdividing each pendant edge once and the non-pendant edge r ≥ 0 times.

Proposition 3.7. [1] If G is a connected graph of order n ≥ 2, then γtR(G) = n if
and only if one of the following holds.
(i) G is a path or a cycle;
(ii) G is the corona of a graph;
(iii) G is a subdivided star;
(iv) G ∈ G ∪ H.

Lampman et al. [11] used this result to characterize the connected graphs of order
n ≥ 4 which are n-γtR-edge-critical. For r ≥ 0, they defined Hr ⊆ H as the family
of graphs in H where the non-pendant edge was subdivided r times.

Proposition 3.8. [11] A connected graph G of order n ≥ 4 is n-γtR-edge-critical if
and only if G is one of the following graphs:
(i) Cn, n ≥ 4;
(ii) cor(Kr), r ≥ 3;
(iii) a subdivided star of order n ≥ 7;
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(iv) G ∈ G;
(v) G ∈ H −H0 −H2.

4 γtR-Edge-supercritical graphs

We now consider γt-edge-supercritical and γtR-edge-supercritical graphs. Note that,
by Proposition 3.1, a graph G with no isolated vertices is γt-edge-supercritical when
γt(G+ e) = γt(G)−2 for every e ∈ E(G) �= ∅. Similarly, by Proposition 3.2, a graph
G with no isolated vertices is γtR-edge-supercritical when γtR(G + e) = γtR(G) − 2
for every e ∈ E(G) �= ∅. We begin with a result by Haynes, Mynhardt and Van der
Merwe [10] characterizing γt-edge-supercritical graphs, as well as the lemma required
to prove this result.

Lemma 4.1. [10] If G is a graph with no isolated vertices and u, v ∈ V (G) such
that d(u, v) = 2, then γt(G)− 1 ≤ γt(G+ uv).

Proposition 4.2. [10] A graph G is γt-edge-supercritical if and only if G is the
union of two or more non-trivial complete graphs.

Lampman et al. [11] considered whether an analogous result holds for γtR-edge-
supercritical graphs. They determined that a result analogous to Lemma 4.1 does
not hold with respect to total Roman domination, and thus, even if a result similar
to Proposition 4.2 holds, it cannot be proved via the technique employed by Haynes
et al. in [10]. However, they did establish that an analogous sufficient condition does
hold for γtR-edge-supercritical graphs, which we now present.

Proposition 4.3. [11]

(i) There are no 5-γtR-edge-supercritical graphs.
(ii) If G is the disjoint union of k ≥ 2 complete graphs, each of order at least 3,

then G is 3k-γtR-edge-supercritical.

Lampman et al. [11] left the existence of connected γtR-edge-supercritical graphs
as an open problem, which we investigate here. We begin by demonstrating the
existence of connected 2n-γtR-edge-supercritical graphs for n ≥ 4.

Proposition 4.4. If G = cor(Kn) for n ≥ 4, then G is γtR-edge-supercritical.

Proof. By Proposition 3.7, γtR(G) = 2n. Label the vertices of G such that u1, u2, . . . ,
un are the pendant vertices with support vertices w1, w2, . . . , wn, respectively. Con-
sider uv ∈ E(G). Then at least one of u and v has degree 1 in G; say degG(u) = 1.
Note that we may assume u = u1, without loss of generality. We consider two cases:

Case 1: Suppose v = u2 (without loss of generality). Consider f : V (G) → {0, 1, 2}
defined by f(u1) = f(u2) = 1, f(w3) = f(w4) = · · · = f(wn) = 2, and f(z) = 0
for all other z ∈ V (G).
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Case 2: Suppose v = w2 (without loss of generality). Consider f : V (G) → {0, 1, 2}
defined by f(w2) = f(w3) == f(wn) = 2, and f(z) = 0 for all other z ∈ V (G).

In either case, f is a TRD-function on G + uv with ω(f) = 2n − 2. Hence G is
γtR-edge-supercritical. �

Having proved the existence of connected γtR-edge-supercritical graphs, we now
present the following necessary condition for a graph G to be γtR-edge-supercritical.

Proposition 4.5. If G is a γtR-edge-supercritical graph, then G contains no adjacent
endpaths.

Proof. Suppose for a contradiction that G contains two adjacent endpaths w, v1, . . . ,
vn and w, u1, . . . , um. Since G is γtR-edge-supercritical, Proposition 3.5 implies that
n,m ≥ 2. Moreover, by Proposition 3.6, at least one of n and m is equal to 2; say
n = 2. Consider u1v1 ∈ E(G) and a γtR-function f on G + u1v1. Since n = 2,
Observation 3.3 implies that f(v1) > 0. If f(u1) > 0, define f ′ : V (G) → {0, 1, 2}
by f ′(w) = min{2, f(w) + 1} and f ′(x) = f(x) for all other x ∈ V (G). Otherwise,
if f(u1) = 0, then by Proposition 3.4, f(v1) = 2. Thus, by Observation 3.3, we may
assume without loss of generality that f(v2) = 0. Hence f(w) > 0. Therefore, define
f ′ : V (G) → {0, 1, 2} by f ′(u1) = 1 and f ′(x) = f(x) for all other x ∈ V (G). In
either case, f ′ is a TRD-function on G with ω(f ′) ≤ ω(f)+ 1, contradicting G being
γtR-edge-supercritical. Therefore G contains no adjacent endpaths. �

As a result of Proposition 4.5, every γtR-edge-supercritical graph contains a cycle,
as we now show.

Corollary 4.6. There are no γtR-edge-supercritical trees.

Proof. Suppose for a contradiction that T is a γtR-edge-supercritical tree. By Propo-
sitions 3.7 and 3.8, T cannot be a path. Therefore T contains at least one branch
vertex (that is, a vertex of degree 3 or more), and hence two adjacent endpaths,
contradicting Proposition 4.5. Therefore, there are no γtR-edge-supercritical trees.

�

5 5-γtR-Edge-critical graphs

As seen in Section 2, Lampman et al. characterized connected 4-γtR-edge-critical
graphs in [11]. There, they also provided necessary conditions for a graph G to be 5-
γtR-edge-critical (see Proposition 5.1). In this section, we develop a characterization
of 5-γtR-edge-critical graphs from these necessary conditions.

Proposition 5.1. [11] For any graph G, if G is 5-γtR-edge-critical, then G is either
3-γt-edge-critical or G = K2∪Kn for n ≥ 3, in which case G is 4-γt-edge-supercritical.

Before characterizing 5-γtR-edge-critical graphs, we characterize the connected
graphs with total Roman domination number 5, as follows.
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Theorem 5.2. For a connected graph G, γtR(G) = 5 if and only if γt(G) = 3 and
there exist a γ(G)-set S and a γt(G)-set T such that S ⊂ T .

Proof. Suppose γtR(G) = 5. By Proposition 2.2, γ(G) ≤ 2. Furthermore, by
Proposition 2.5, G has no universal vertex. Therefore γ(G) > 1, and thus γ(G) = 2.
Moreover, Observation 2.6 implies that γt(G) ≤ 3. By Proposition 2.7, γt(G) �= 2,
and thus γt(G) = 3. Now, consider a γtR(G)-function f such that G[V +

f ] contains
the minimum number of components. If |V 2

f | = 0, then by Proposition 3.7, G ∼= P5

or G ∼= C5. In either case, there exist a γ(G)-set S and a γt(G)-set T such that
S ⊂ T . If |V 2

f | = 2, then V 2
f is a γ(G)-set and V +

f is a γt(G)-set, where V 2
f ⊂ V +

f

as required. Otherwise, assume |V 2
f | = 1; say f(u) = 2. Since f was chosen such

that G[V +
f ] contains the minimum number of components, it is easy to see that

G[V +
f ] is connected. Therefore, G[V 1

f ]
∼= P3 = v, w, x such that uv ∈ E(G) but

uw, ux /∈ E(G). Taking S = {u, w} and T = {u, v, w} gives the required result.

Conversely, suppose γt(G) = 3 and there exist a γ(G)-set S and a γt(G)-set T
such that S ⊂ T . Then γ(G) < 3, and thus γ(G) = 2, as G clearly has no universal
vertex. Therefore, by Proposition 2.2, 4 ≤ γtR(G) ≤ 6. Furthermore, Proposition 2.7
implies that γtR(G) �= 4. Hence γtR(G) ∈ {5, 6}. Suppose for a contradiction that
γtR(G) = 6. Since γt(G) = 3, G[T ] ∼= K3 or G[T ] ∼= P3. Clearly G[T ] � K3,
otherwise G[S] would be connected, contradicting γt(G) = 3. Thus G[T ] ∼= P3; say
G[T ] is the path u, v, w. Since S ⊂ T , clearly S = {u, w}. However, the function
f : V (G) → {0, 1, 2} defined by f(u) = f(w) = 2, f(v) = 1, and f(y) = 0 for
all other y ∈ V (G) is then a TRD-function on G with ω(f) = 5, contradicting
γtR(G) = 6. Therefore γtR(G) = 5. �

The characterization of 5-γtR-edge-critical graphs follows.

Proposition 5.3. A graph G is 5-γtR-edge-critical if and only if either G is 3-γt-
edge-critical and there exist a γ(G)-set S and a γt(G)-set T such that S ⊂ T , or
G = K2 ∪Kn for n ≥ 3, in which case G is 4-γt-edge-supercritical.

Proof. If G is 5-γtR-edge-critical, then the result follows directly from Proposition 5.1
and Theorem 5.2. Conversely, suppose G is 3-γt-edge-critical and there exists a γ(G)-
set S and a γt(G)-set T such that S ⊂ T . Then γt(G + e) = 2 for every e ∈ E(G).
Therefore Proposition 2.7 implies that γtR(G + e) ∈ {3, 4} for every e ∈ E(G).
Since γt(G) = 3 and there exist a γ(G)-set S and a γt(G)-set T such that S ⊂ T ,
Theorem 5.2 implies that γtR(G) = 5, and thus G is 5-γtR-edge-critical. Otherwise,
if G = K2 ∪Kn for n ≥ 3, then G is clearly 5-γtR-edge-critical. �

6 6-γtR-Edge-supercritical graphs

We now consider γtR-edge-supercritical graphs with total Roman domination num-
ber 6, which, by Proposition 4.3, is the smallest TRD-number possible for a γtR-
edge-supercritical graph. We begin by characterizing the disconnected 6-γtR-edge-
supercritical graphs.



C.M. MYNHARDT AND S.E.A. OGDEN/AUSTRALAS. J. COMBIN. 78 (3) (2020), 413–433 422

Proposition 6.1. A disconnected graph G is 6-γtR-edge-supercritical if and only if
G ∼= Kn ∪Km, where n,m ≥ 3.

Proof. First, suppose G is 6-γtR-edge-supercritical. Since γtR(H) ≥ 2 for any graph
H without isolated vertices, with equality if and only if H = K2, G has two or three
components. If G has three components, then G = K2∪K2∪K2 and γtR(G+ e) = 6
for any e ∈ E(G), contradicting G being 6-γtR-edge-supercritical. Thus G has two
components; say H1 and H2. Now, either (say) H1 = K2 and γtR(H2) = 4, or
γtR(H1) = γtR(H2) = 3. In the former case, Proposition 2.5 implies that H2 is not
complete. Thus γtR(H2 + e) ≥ 3 for any edge e ∈ E(H2) �= ∅, contradicting our
assumption that G is 6-γtR-edge-supercritical. In the latter case, Hi has a universal
vertex for i = 1, 2. IfHi is not complete, then γtR(Hi+e) = 3, and thus γtR(G+e) = 6
for each edge e ∈ E(Hi) �= ∅, contradicting G being 6-γtR-edge-supercritical. We
conclude that H1 and H2 are complete graphs of order at least 3, as required. The
converse follows directly from Proposition 4.3. �

We now consider connected 6-γtR-edge-supercritical graphs, beginning with a
result bounding the diameter of such a graph.

Proposition 6.2. If G is a connected 6-γtR-edge-supercritical graph, then

2 ≤ diam(G) ≤ 3.

Proof. Clearly 2 ≤ diam(G), otherwise E(G) = ∅ and hence G is not γtR-edge-
critical. Now, suppose for a contradiction that diam(G) ≥ 4. Let u and v be
vertices such that d(u, v) = 4; say u, x, y, z, v is a u − v path. Since G is 6-γtR-
edge-supercritical, γtR(G + uv) = 4. Consider a γtR-function f on G + uv. By
Proposition 3.4, {f(u), f(v)} ∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}. If f(u) = f(v) = 1,
then, in order to totally Roman dominate {x, y, z}, there exists some vertex w ∈
NG(u) (without loss of generality) such that w ∈ NG(x) ∩NG(y) ∩NG(z). But then
u, w, z, v is a shorter u−v path, a contradiction. Otherwise, if f(u) = 2 (without loss
of generality), then, in order to totally Roman dominate {y, z}, there exists some
vertex w ∈ NG(u) such that w ∈ NG(y) ∩NG(z). Again, u, w, z, v is a shorter u− v
path, a contradiction. Therefore diam(G) ≤ 3. �

In Section 4, we demonstrated the existence of connected 2n-γtR-edge-supercriti-
cal graphs for each n ≥ 4. We now demonstrate the existence of an infinite class of
6-γtR-edge-supercritical graphs. We define the graph Gr below, and show that Gr is
such a graph for each r ≥ 2. Note that diam(Gr) = 3.

Let Gr be the graph constructed from K2r as follows: Label the vertices of K2r as
u1, u2, . . . , ur, w1, w2, . . . , wr, and remove from K2r the perfect matching uiwi where
1 ≤ i ≤ r. Add a vertex disjoint K3 component to K2r, and label the added vertices
x, y, z. Let z be adjacent to both ui and wi, and y be adjacent to ui, for 1 ≤ i ≤ r.
Finally, add two more vertices u0 and w0, such that u0x, u0ui, w0y, w0wi ∈ E(Gr) for
1 ≤ i ≤ r. See Figure 1.

Theorem 6.3. If r ≥ 2, then Gr is 6-γtR-edge-supercritical.
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Figure 1: The graph Gr, where r ≥ 2.

Proof. We first show that γtR(Gr) = 6 for r ≥ 2. By inspection, γ(G) > 2. Therefore,
since {x, y, z} dominates Gr, γ(G) = 3. Furthermore, this is a TD-set on G, and
thus γt(G) = 3. By Proposition 2.2, γtR(G) ≤ 6. Moreover, Proposition 2.7 and
Theorem 5.2 imply that γtR(G) > 5, and hence γtR(G) = 6.

Now, consider any edge vv′ ∈ E(Gr). Consider the following cases:

Case 1: Let v = u0. Then, without loss of generality, v′ ∈ {y, z, w0, w1}. If v′ ∈
{y, w1}, consider the function f : V (Gr) → {0, 1, 2} defined by f(v′) = f(z) = 2
and f(b) = 0 for all other b ∈ V (Gr). Otherwise, if v′ ∈ {z, w0}, consider the
function f : V (Gr) → {0, 1, 2} defined by f(v′) = f(y) = 2 and f(b) = 0 for all
other b ∈ V (Gr).

Case 2: Let v = z. Then v′ = w0. Consider the function f : V (Gr) → {0, 1, 2}
defined by f(u1) = f(z) = 2 and f(b) = 0 for all other b ∈ V (Gr).

Case 3: Let v = y. Then, without loss of generality, v′ = w1. Consider the function
f : V (Gr) → {0, 1, 2} defined by f(y) = f(u1) = 2 and f(b) = 0 for all other
b ∈ V (Gr).

Case 4: Let v = w0. Then, without loss of generality, v′ ∈ {x, u1}. Consider the
function f : V (Gr) → {0, 1, 2} defined by f(v′) = f(z) = 2 and f(b) = 0 for all
other b ∈ V (Gr).

Case 5: Let v = x. Then, without loss of generality, v′ ∈ {u1, w2}. Consider the
function f : V (Gr) → {0, 1, 2} defined by f(u1) = f(w2) = 2 and f(b) = 0 for
all other b ∈ V (Gr).

Case 6: Let v = u1 (without loss of generality). Then v′ = w1. Consider the function
f : V (Gr) → {0, 1, 2} defined by f(y) = f(u1) = 2 and f(b) = 0 for all other
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b ∈ V (Gr).

In each case, f is a TRD-function on Gr+vv′ with ω(f) = 4. Therefore, by Propo-
sition 3.2, γtR(Gr + e) = 4 for any e ∈ E(Gr). Thus Gr is 6-γtR-edge-supercritical.

�

Corollary 6.4. For r ≥ 2, there exists a connected 6-γtR-edge-supercritical graph on
5 + 2r vertices.

7 γtR-Edge-removal-critical graphs

We now consider the effect that the removal of an edge has on the total Roman
domination number of a graph. The following observations follow directly from
Propositions 3.2 and 3.4, and Observation 3.3.

Observation 7.1. Given a graph G with no isolated vertices, if uv ∈ EP (G), then
γtR(G) ≤ γtR(G− uv) ≤ γtR(G) + 2.

Observation 7.2. For a graph G with no isolated vertices, if uv ∈ E(G) is a TRD-
ER-critical edge, then, for any γtR(G)-function f , {f(u), f(v)} ∈ {{0, 2}, {1, 2},
{2, 2}, {1, 1}}.

As with TRD-ER-critical edges, we now present a result restricting the possible
values assigned to the vertices of a TRD-ER-supercritical edge e ∈ E(G) by a γtR-
function f on G.

Proposition 7.3. For a graph G with no isolated vertices, if uv ∈ E(G) is a
TRD-ER-supercritical edge, then there exists a γtR(G)-function f such that {f(u),
f(v)} ∈ {{2, 2}, {2, 0}, {1, 1}}.

Proof. Let G′ = G − uv. By Observation 7.2, {f(u), f(v)} ∈ {{2, 2}, {2, 1}, {2, 0},
{1, 1}} for any γtR(G)-function f . Suppose for a contradiction that {f(u), f(v)} =
{1, 2} for every γtR(G)-function f , and consider one such function. Say f(u) = 2
and f(v) = 1. Then by Observation 3.3, degG(u) > 1 and degG(v) > 1. Now, f is a
RD-function on G′, with u and v being the only possible isolated vertices in G′[V +

f ].

Note that at least one of u and v must be isolated in G′[V +
f ], otherwise f is also a

TRD-function on G′, contradicting uv being TRD-ER-critical.

Suppose for a contradiction that v is isolated in G′[V +
f ]. That is, f(x) = 0 for

all x ∈ NG(v) − {u}. Since degG(u) > 1, there exists some w ∈ NG(u) − {v}. But
f(w) = 0 for each such w, otherwise f ′ : V (G) → {0, 1, 2} defined by f ′(v) = 0 and
f ′(z) = f(z) for all other z ∈ V (G) would be a TRD-function on G, contradicting the
minimality of f . That is, u is also isolated in G′[V +

f ]. But then g : V (G) → {0, 1, 2}
defined by g(v) = 0, g(w) = 1 for some w ∈ N(u) − {v}, and g(z) = f(z) for all
other z ∈ V (G) is a γtR(G)-function with g(u) = 2 and g(v) = 0, contradicting our
assumption.
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Therefore u is the only isolated vertex in G′[V +
f ]. But then g : V (G) → {0, 1, 2}

defined by g(w) = 1 for some w ∈ NG(u) − {v} and g(z) = f(z) for all other
z ∈ V (G) is a TRD-function on G with ω(g) = ω(f) + 1, contradicting uv being a
TRD-ER-supercritical edge. �

Corollary 7.4. For a graph G with no isolated vertices, if uv ∈ E(G) is a TRD-
supercritical edge, then there exists a γtR(G+uv)-function f such that {f(u), f(v)} ∈
{{2, 2}, {2, 0}, {1, 1}}.

We now consider γt-ER-critical and γtR-ER-critical graphs. Recall that a graph
G with no isolated vertices is γt-ER-critical if γt(G− e) > γt(G) for every e ∈ E(G),
and similarly γtR-ER-critical if γtR(G− e) > γtR(G) for every e ∈ E(G). Connected
γt-ER-critical graphs G were characterized in [8]. There, Desormeaux et al. defined
T to be the family of trees T such that T is either a nontrivial star, or a double star,
or can be obtained from a subdivided star by adding zero or more pendant edges to
the non-leaf vertices.

Proposition 7.5. [8] A connected graph G is γt-ER-critical if and only if G ∈ T .

Note that a disconnected graph G is γt-ER-critical if and only if each component
of G is itself γt-ER-critical. As a result, Proposition 7.5 provides the following
characterization of all γt-ER-critical graphs.

Observation 7.6. A graph G is γt-ER-critical if and only if G is the union of k ≥ 1
graphs Gi ∈ T , for 1 ≤ i ≤ k.

We investigate whether a similar characterization holds for γtR-ER-critical graphs.
Note that as with γt-ER-critical graphs, a disconnected graph G is γtR-ER-critical if
and only if each component of G is itself γtR-ER-critical. Similarly, a disconnected
graph G is γtR-ER-supercritical if and only if each component of G is itself γtR-
ER-supercritical. As a result, we focus specifically on connected γtR-ER-critical and
γtR-ER-supercritical graphs. We begin with a result restricting the values that a
γtR(G)-function f can assign to the vertices of a γtR-ER-critical graph based on their
degree.

Proposition 7.7. Let G be a connected γtR-ER-critical graph. For any γtR-function
f on G, if f(u) = 0, then deg(u) = 1. Moreover, δ(G) = 1.

Proof. Let G be a connected k-γtR-ER-critical graph of order n, and f any γtR(G)-
function. Suppose for a contradiction that there exists u ∈ V (G) such that f(u) = 0
and deg(u) ≥ 2. Then there exist v, w ∈ NG(u). By Observation 7.2, f(v) = f(w) =
2. But then f is also a TRD-function on G− uv, contradicting uv being TRD-ER-
critical. Hence deg(u) = 1. Now, if δ(G) ≥ 2, then V 1

f = V (G); that is, k = n. But
then Observation 7.1 implies that γtR(G−e) = n = k for all e ∈ E(G), contradicting
our assumption that G is γtR-ER-critical. Hence δ(G) = 1. �

Note that Proposition 7.7 implies that every component of a γtR-ER-critical graph
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contains at least one degree 1 vertex. We now present a result demonstrating that a
connected γtR-ER-critical graph G cannot contain any cycles.

Proposition 7.8. If G is a connected γtR-ER-critical graph, then G is a tree.

Proof. Suppose for a contradiction that G is a connected γtR-ER-critical graph which
contains a cycle; say v1, v2, . . . , vk, v1, for k ≥ 3. Consider a γtR-function f on G.
By Proposition 7.7, f(vi) > 0 for 1 ≤ i ≤ k. But then f is also a TRD-function on
G − v1v2, contradicting G being γtR-ER-critical. Hence G cannot contain a cycle,
and thus, since G is connected, G is a tree. �

Our next result restricts the distance between any two vertices of a γtR-ER-critical
graph G which are in V +

f for some γtR(G)-function f .

Proposition 7.9. Let G be a connected γtR-ER-critical graph. If u, v ∈ V (G) and
f is a γtR-function on G such that f(u) > 0 and f(v) > 0, then d(u, v) ≤ 2.

Proof. Let G be a connected γtR-ER-critical graph. Then, by Proposition 7.8, G is a
tree. Let f(u) > 0 and f(v) > 0, and suppose for a contradiction that u, w1, . . . , wk, v
is the unique path from u to v, where k ≥ 2. Consider a γtR-function f on G. Then
Proposition 7.7 implies that f(wi) > 0 for all 1 ≤ i ≤ k. But then f is a TRD-
function on G− w1w2, contradicting G being γtR-ER-critical. �

Corollary 7.10. Let G be a connected γtR-ER-critical graph. If u, v ∈ V (G) such
that deg(u) > 1 and deg(v) > 1, then d(u, v) ≤ 2. Moreover, diam(G) ≤ 4.

We now present a characterization of the graphs G which are γtR-edge-removal-
critical. Consider for a moment a star graph Sn, which is defined to be the complete
bipartite graph K1,n, with n ≥ 1. Let Fn be the family of graphs constructed from
Sn by appending k1, k2, . . . , kn (where k1 ≥ k2 ≥ · · · ≥ kn ≥ 0) pendant vertices to
each pendant vertex of Sn. In what follows, we label the vertices of a graph G ∈ Fn

as follows: Let c be the central vertex (choosing either central vertex in the case of
S1), and ui (1 ≤ i ≤ n) the pendant vertices, in the original star Sn. For each such
vertex ui, let vi,1, vi,2, . . . , vi,ki be the pendant vertices added to ui. See Figure 2.

Theorem 7.11. A connected graph G with no isolated vertices is γtR-ER-critical if
and only if G is a member of Fn, for some n ≥ 1, such that k1, k2, . . . , kn �= 1.

Proof. Let G be a connected γtR-ER-critical graph. We begin by showing that G ∈
Fn for n ≥ 1. By Proposition 7.8, G is a tree. Let S = {v ∈ V (G) : degG(v) > 1}.
If G ∼= Sn for n ≥ 1, then G ∈ Fn as required. So assume |S| ≥ 2. We claim that
G[S] ∼= Sn for n ≥ 1. Suppose for a contradiction that EP (G[S]) �= ∅. Then there
exist u, v ∈ S such that d(u, v) ≥ 3. But then, by definition of S, diam(G) > 4,
contradicting Corollary 7.10. Hence G[S] ∼= Sn for n ≥ 1, and thus G ∈ Fn.

Now, consider a graph G ∈ Fn for some n ≥ 1. In what follows, let the vertices
of G be labelled as described in the definition of Fn.
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Figure 2: Examples of graphs in F4

Case 1: Suppose G ∈ Fn for some n ≥ 1 such that k1, k2, . . . , kn �= 1. If G is a star
or a double star, then G is clearly γtR-ER-critical. Therefore, assume n ≥ 2 and
k1 ≥ k2 ≥ 2. Let 2 ≤ l ≤ n be such that ki = 0 if and only if i > l. Note that
EP (G) = {cui : 1 ≤ i ≤ l}. We consider two cases.

Case A: Suppose l = n. Then it can be easily seen that f : V (G) → {0, 1, 2}
defined by f(c) = 1, f(ui) = 2 for all 1 ≤ i ≤ n, and f(b) = 0 for all
other b ∈ V (G) is a γtR(G)-function. If n ≥ 3, then G− cui (1 ≤ i ≤ n) is
the disjoint union of a star on at least 3 vertices with a graph H ∈ Fn−1,
where n − 1 ≥ 2. Otherwise, if n = 2, G − cui is the disjoint union of
two stars, each on at least 3 vertices. In either case, it can be easily seen
that f ′ : V (G) → {0, 1, 2} defined by f ′(vi,1) = 1 and f ′(z) = f(z) for all
other z ∈ V (G) is a γtR(G − cui)-function with ω(f ′) = ω(f) + 1, for each
1 ≤ i ≤ n.

Case B: Suppose l < n. Then it can be easily seen that f : V (G) → {0, 1, 2}
defined by f(c) = 2, f(ui) = 2 for all 1 ≤ i ≤ l, and f(b) = 0 for all other
b ∈ V (G) is a γtR(G)-function. Since 2 ≤ l < n, we have n ≥ 3. Hence
G − cui (1 ≤ i ≤ l) is the disjoint union of a star on at least 3 vertices
with a graph H ∈ Fn−1, where n − 1 ≥ 2. Thus, it can be easily seen
that f ′ : V (G) → {0, 1, 2} defined by f ′(vi,1) = 1 and f ′(z) = f(z) for all
other z ∈ V (G) is a γtR(G − cui)-function with ω(f ′) = ω(f) + 1, for each
1 ≤ i ≤ l.

Therefore, in each case, G is γtR-ER-critical, as required.

Case 2: Otherwise, suppose G /∈ Fn for any n ≥ 1 such that k1, k2, . . . , kn �= 1. Thus
G ∈ Fn for n ≥ 1 where ki = 1 for some 1 ≤ i ≤ n. If n = 1, then G is also
a member of F2. Therefore, it suffices to consider n ≥ 2. Consider a γtR(G)-
function f such that |V 2

f | is a minimum. Then f(ui) = f(vi,1) = 1. Moreover,
Proposition 7.7 implies that f(c) > 0. Suppose first that n = 2, and let j �= i.
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If kj = 0, then f(uj) = f(c) = 1 by our choice of f . If kj ≥ 1, then f(uj) > 0 by
Proposition 7.7. Otherwise, suppose n ≥ 3. If kj = 0 for all j �= i, then G is also
a member of F2 with k1 = n− 1 ≥ 2 and k2 = 0, contradicting our assumption.
Hence there exists j �= i such that kj ≥ 1, and thus by Proposition 7.7, f(uj) > 0.
Note that, in each case, there exists j �= i such that f(uj) > 0. But uj, c, ui, vi,1
is a path in G, contradicting Proposition 7.9. Hence G is not γtR-ER-critical.

�

Corollary 7.12. A graph G with no isolated vertices is γtR-ER-critical if and only
if G is the disjoint union of m ≥ 1 graphs Gi ∈ Fni

, for some ni ≥ 1 such that
k1, k2, . . . , kni

�= 1, for 1 ≤ i ≤ m.

8 γtR-Edge-removal-supercritical graphs

Having classified γtR-ER-critical graphs, we now classify the graphs G which are
γtR-ER-supercritical.

Theorem 8.1. A connected graph G with no isolated vertices is γtR-ER-supercritical
if and only if G is either a non-trivial star, or a double star where each non-pendant
vertex has degree at least 3.

Proof. Suppose G is γtR-ER-supercritical. If EP (G) = ∅, then G = Sn for n ≥ 1.
Otherwise, assume EP (G) �= ∅. We claim that |EP (G)| = 1. Suppose for a contra-
diction that |EP (G)| ≥ 2, and consider a path u, v, w, x, y in G. Let f be a γtR(G)-
function. Then, by Proposition 7.7, v, w, x ∈ V +

f . Moreover, since Proposition 7.8
implies that G is a tree, by Corollary 7.10, deg(u) = deg(y) = 1. Thus Observa-
tion 3.3 implies that f(u) ≤ 1 and f(y) ≤ 1. But then g : V (G) → {0, 1, 2} defined
by g(u) = 1 and g(z) = f(z) for all other z ∈ V (G) is a γtR(G− vw)-function with
ω(g) ≤ ω(f)+1, contradicting vw being TRD-ER-supercritical. Hence |EP (G)| = 1,
and thus G is a double star.

Conversely, G = Sn for n ≥ 1 is, by definition, γtR-ER-supercritical. Otherwise,
suppose G is a double star. Then γtR(G) = 4. Moreover, EP (G) = {uv} where u and
v are the two non-pendant vertices. If each non-pendant vertex has degree at least
3, then by Proposition 2.5, γtR(G − uv) = 6, since the removal of the non-pendant
edge disconnects the graph into two stars each on at least 3 vertices. Therefore G
is γtR-ER-supercritical. Otherwise, if G has a non-pendant vertex of degree 2, then
γtR(G − uv) ≤ 5, since since the removal of the non-pendant edge disconnects the
graph into two stars, at least one of which is on only two vertices. Therefore G is
not γtR-ER-supercritical. �

Corollary 8.2. A graph G with no isolated vertices is γtR-ER-supercritical if and
only if G is the disjoint union of m ≥ 1 graphs Gi such that, for each 1 ≤ i ≤ m,
Gi is either a non-trivial star, or a double star where each non-pendant vertex has
degree at least 3.
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We conclude this section by observing a link between connected γtR-ER-super-
critical and γtR-edge-stable graphs, which follows directly from the previous theorem.

Corollary 8.3. If G is a connected k-γtR-edge-removal-supercritical graph, then G
is k-γtR-edge-stable.

9 γtR-Edge-removal-stable graphs

We now consider graphs G which are γtR-edge-removal-stable. Recall that a graph
G is γtR-ER-stable when γtR(G − e) = γtR(G) for all e ∈ E(G). We begin with
two observations that follow directly from the definitions of γtR(G− e), where e is a
pendant edge of G, and a TRD-ER-stable edge, respectively.

Observation 9.1. If G is a γtR-ER-stable graph, then δ(G) > 1.

Observation 9.2. If G is a γtR-ER-stable graph, then for any e ∈ E(G) there exists
a γtR-function f on G such that f is also a γtR(G− e)-function.

Consider again the graph Gr defined in Section 6. There, we showed that, for
r ≥ 2, Gr is 6-γtR-edge-supercritical. In addition, it can be shown that Gr is γtR-
ER-stable. Furthermore, note that the union of k ≥ 2 complete graphs each of
order at least 3 is both 3k-γtR-edge-supercritical (by Proposition 4.3) and 3k-γtR-ER-
stable (by Proposition 3.7). Similarly, cor(Kn) for n ≥ 4 is 2n-γtR-edge-supercritical
(by Proposition 3.8) and every non-pendant edge e ∈ E(G) is TRD-ER-stable (by
Proposition 3.7). In light of these results, we present the following theorem.

Theorem 9.3. If G is a γtR-edge-supercritical graph, then every non-pendant edge
e ∈ E(G) is TRD-ER-stable.

Proof. Let G be a γtR-edge-supercritical graph. Then G contains no K2 components.
Suppose for a contradiction that there exists a non-pendant edge uw ∈ E(G) that is
TRD-ER-critical. Then deg(u) ≥ 2 and deg(w) ≥ 2. Let v ∈ NG(w)− {u}.
Claim: NG[u] �= NG[w].

Proof of Claim: Suppose for a contradiction that NG[u] = NG[w]. Let S = NG[u]−
{u, w}. Then v ∈ S. Consider a γtR(G)-function f . By Observation 7.2, {f(u), f(w)}
∈ {{2, 2}, {2, 1}, {2, 0}, {1, 1}}. We claim that G[S] has no universal vertex. Suppose
for a contradiction that v is a universal vertex of G[S]. Note that possibly S = {v}.
If f(u) = f(w) = 1 and f(v) = 0, consider f ′ : V (G) → {0, 1, 2} defined by
f ′(u) = f ′(w) = 0, f ′(v) = 2 and f ′(b) = f(b) for all other b ∈ V (G). Otherwise, if
f(u) = f(w) = 1 and f(v) > 0, consider f ′ : V (G) → {0, 1, 2} defined by f ′(w) = 0,
f ′(v) = 2 and f ′(b) = f(b) for all other b ∈ V (G). Finally, if f(u) = 2 (without loss
of generality), consider f ′ : V (G) → {0, 1, 2} defined by f ′(u) = f(v), f ′(v) = f(u)
and f ′(b) = f(b) for all other b ∈ V (G). In any case, f ′ is a γtR(G)-function.
Moreover, f ′ is also a TRD-function on G − uw, contradicting uw being TRD-ER-
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critical. Therefore G[S] has no universal vertex, and thus there exists some vertex
x ∈ S − {v} such that vx ∈ E(G).

Now, consider a γtR-function g on G + vx. By Proposition 3.4, {g(x), g(v)} ∈
{{2, 2}, {2, 1}, {2, 0}, {1, 1}}. If g(x) > 0 and g(v) > 0, then g′ : V (G) → {0, 1, 2}
defined by g′(u) = min{2, g(u) + 1} and g′(b) = g(b) for all other b ∈ V (G) is a
TRD-function on G with ω(g′) ≤ ω(g)+1, contradicting vx being TRD-supercritical.
Hence {g(x), g(v)} = {2, 0}; say g(v) = 2 and g(x) = 0 (without loss of generality).
Then g(u) = g(w) = 0, otherwise g′ : V (G) → {0, 1, 2} defined by g′(x) = 1 and
g′(b) = g(b) for all other b ∈ V (G) would be a TRD-function onG with ω(g′) = ω(g)+
1, contradicting vx being TRD-supercritical. Hence h : V (G) → {0, 1, 2} defined
by h(u) = h(x) = 1 and h(b) = g(b) for all other b ∈ V (G) is a γtR(G)-function,
which, since uw is TRD-ER-critical, contradicts Observation 7.2. Therefore, NG[u] �=
NG[w]. (�)

As a result of the above claim, we can choose v ∈ NG(w)− {u} such that uv ∈
E(G). Now, consider a γtR-function f on G+uv. By Proposition 3.4, {f(u), f(v)} ∈
{{2, 2}, {2, 1}, {2, 0}, {1, 1}}. If f(u) > 0 and f(v) > 0, then f ′ : V (G) → {0, 1, 2}
defined by f ′(w) = 1 and f ′(b) = f(b) for all other b ∈ V (G) is a TRD-function
on G with ω(f ′) ≤ ω(f) + 1, contradicting uv being TRD-supercritical. Hence
{f(u), f(v)} = {2, 0}. We show that f(u) = 0 and f(v) = 2.

Suppose for a contradiction that f(u) = 2 and f(v) = 0. Clearly f(w) = 0,
otherwise f ′ : V (G) → {0, 1, 2} defined by f ′(v) = 1 and f ′(b) = f(b) for all other
b ∈ V (G) would be a TRD-function on G with ω(f ′) = ω(f) + 1, contradicting uv
being TRD-supercritical. Hence g : V (G) → {0, 1, 2} defined by g(w) = g(v) = 1
and g(b) = f(b) for all other b ∈ V (G) is a γtR(G)-function. However, since u is
not isolated in G[V +

f ], g is also a TRD-function on G− uw, contradicting uw being
TRD-ER-critical. Hence f(u) = 0 and f(v) = 2.

Now, f(NG(u)) = 0, otherwise f ′ : V (G) → {0, 1, 2} defined by f ′(u) = 1 and
f ′(b) = f(b) for all other b ∈ V (G) would be a TRD-function on G with ω(f ′) =
ω(f)+1, contradicting uv being TRD-supercritical. Furthermore, since degG(u) ≥ 2,
there exists some vertex y ∈ NG(u)− {w}. Note that f(y) = 0. Hence f ′ : V (G) →
{0, 1, 2} defined by f ′(y) = f ′(u) = 1 and f ′(b) = f(b) for all other b ∈ V (G) is a
γtR(G)-function. However, f ′ is also a TRD-function on G − uw, contradicting uw
being TRD-ER-critical. Therefore degG(u) = 1; that is, uw is a pendant edge. �

Corollary 9.4. If G is a γtR-edge-supercritical graph with δ(G) ≥ 2, then G is
γtR-ER-stable.

10 Future Work

Consider for a moment connected 6-γtR-edge-supercritical graphs. We showed in
Section 6 that, for any connected 6-γtR-edge-supercritical graph G, 2 ≤ diam(G) ≤
3. Furthermore, note that each graph Gr, with r ≥ 2, introduced in Section 6
has diameter 3. We now consider the 6-γtR-edge-supercritical graphs G for which
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diam(G) = 2. We begin with the following lemma, which provides a lower bound
for the minimum degree of a connected graph G with diameter 2, based on its TRD-
number.

Lemma 10.1. If G is a connected graph with diam(G) = 2 and γtR(G) = k, then
δ(G) ≥ �k

2
�.

Proof. Suppose for a contradiction that there is a vertex v ∈ V (G) with deg(v) < �k
2
�.

Since diam(G) = 2, NG(v) is a dominating set of G. Thus the function f : V (G) →
{0, 1, 2} defined by f(v) = 1, f(x) = 2 for all x ∈ NG(v), and f(z) = 0 for all
other z ∈ V (G) is a TRD-function on G with ω(f) ≤ 2(�k

2
� − 1) + 1. That is,

ω(f) ≤ 2�k
2
� − 1 < k, contradicting γtR(G) = k. �

Corollary 10.2. If G is a connected γtR-edge-supercritical graph with diam(G) = 2,
then δ(G) ≥ 3.

The previous corollary follows directly from Proposition 4.3. In light of this
result, we present the following proposition which provides necessary conditions for a
connected graph G with diam(G) = 2 to be 6-γtR-edge-supercritical. Characterizing
connected 6-γtR-edge-supercritical graphs with diameter 2, and indeed with diameter
3, remain open problems.

Lemma 10.3. If G is a connected 6-γtR-edge-supercritical graph with diam(G) = 2,
then G is 3-γt-edge-critical and 3-γ-edge-critical.

Proof. Let G be a connected 6-γtR-edge-supercritical graph with diam(G) = 2.
Then, for any edge e ∈ E(G), γtR(G+ e) = 4. Thus, by Proposition 2.7, γt(G+ e) =
γ(G + e) = 2. Now, Proposition 2.7 also implies that γt(G) > 2. Furthermore,
by Proposition 3.1, γt(G) ≤ 4. If γt(G) = 4, then G is 4-γt-edge-supercritical,
which, since G is connected, contradicts Proposition 4.2. Hence γt(G) = 3. Now,
by Proposition 2.1, 2 ≤ γ(G) ≤ 3. Suppose for a contradiction that γ(G) = 2, and
consider a γ(G)-set S = {u, v}. Note that, since γt(G) = 3, uv ∈ E(G). However,
since diam(G) = 2, there exists some w ∈ NG(u) ∩NG(v). Hence T = {u, v, w} is a
γt(G)-set. But then S ⊂ T , contradicting Theorem 5.2. Hence γ(G) = 3, and thus
G is 3-γt-edge-critical and 3-γ-edge-critical. �

Question 1. Do there exist connected 6-γtR-edge-supercritical graphs with diameter
2?

Having demonstrated the existence of connected 6-γtR-edge-supercritical graphs
with diameter 3 in Section 6, we now consider the γtR-functions on these graphs Gr,
where r ≥ 2.

Proposition 10.4. For r ≥ 2, if v ∈ V (Gr), then there exists a γtR(G)-function f
such that v ∈ V +

f .
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Proof. Let v ∈ V (Gr), where r ≥ 2. Then, without loss of generality, v ∈
{x, y, z, u0, u1, w0, w1}. If v ∈ {x, y, z} consider the function f : V (Gr) → {0, 1, 2}
defined by f(x) = f(y) = f(z) = 2 and f(b) = 0 for all other b ∈ V (Gr). Oth-
erwise, if v ∈ {u1, w1}, consider the function f : V (Gr) → {0, 1, 2} defined by
f(u1) = f(w1) = f(z) = 2 and f(b) = 0 for all other b ∈ V (Gr). Otherwise, if v = u0,
consider the function f : V (Gr) → {0, 1, 2} defined by f(u0) = f(u1) = f(w2) = 2
and f(b) = 0 for all other b ∈ V (Gr). Otherwise, if v = w0, consider the function
f : V (Gr) → {0, 1, 2} defined by f(x) = f(y) = f(w0) = 2 and f(b) = 0 for all other
b ∈ V (Gr). In any case, we have a γtR(G)-function f such that v ∈ V +

f , as required.
�

Corollary 10.5. For r ≥ 2 and n ≥ 3, Gr ∪Kn is 9-γtR-edge-critical.

Proof. Consider the graph H ∼= Gr∪Kn where r ≥ 2 and n ≥ 3. Clearly γtR(H) = 9.
Consider an edge uv ∈ E(H). If uv ∈ E(Gr), Theorem 6.3 implies that uv is
supercritical, and thus critical, with respect to total Roman domination. Otherwise,
suppose that u ∈ V (Gr) and v ∈ V (Kn). By Proposition 10.4, there exists a γtR(Gr)-
function g such that u ∈ V +

g . Consider the function f : V (Gr) → {0, 1, 2} defined
by f(w) = g(w) for all w ∈ V (Gr), f(v) = 2, and f(x) = 0 for all other x ∈ V (Kn).
Then f is a TRD-function on H + uv with ω(f) = 8, and hence H is 9-γtR-edge-
critical. �

By Propositions 4.3 and 6.1, the disjoint union of a disconnected 6-γtR-edge-
supercritical graph G and Kn for n ≥ 3 is γtR-edge-supercritical, and thus γtR-edge-
critical. Moreover, it can be easily seen that the union of cor(Km) and Kn, with
m ≥ 4 and n ≥ 3, is also γtR-edge-critical. In light of our previous result, we pose
the following conjectures. Note that the second conjecture would be a direct result
of the first.

Conjecture 1. If G is a γtR-edge-supercritical graph and v ∈ V (G), then there exists
a γtR(G)-function f such that v ∈ V +

f .

Conjecture 2. If G is a k-γtR-edge-supercritical graph, then G∪Kn is (k+3)-γtR-
edge-critical, for n ≥ 3.
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