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Abstract

Verifying a conjecture of Petkovšec, we prove that the lettericity of an
n-vertex path is precisely

⌊
n+4
3

⌋
.

1 Introduction

The concept of lettericity was introduced in 2002 by Petkovšec [2]. We begin by
presenting his definitions. Let Σ be a finite alphabet, and consider D ⊆ Σ2, which
we call the decoder. Then for a word w = w1w2 . . . wn with each wi ∈ Σ, the letter
graph of w is the graph ΓD(w) with V (ΓD(w)) = {1, 2, . . . , n} and for indices i < j,
(i, j) ∈ E(ΓD(w)) if and only if (wi, wj) ∈ D.

If Σ is an alphabet of size k, we say that ΓD(w) is a k-letter graph. For some
graph G, the minimum k such that a G is a k-letter graph is known as the lettericity
of G, denoted �(G). Note that every finite graph is the letter graph of some word
over some alphabet, and in particular the lettericity of a graph G is at most |V (G)|.

Petkovšec determined bounds or precise values for the lettericity of a number of
different families of graphs, most notably threshold graphs, cycles, and paths. We
focus our attention on paths, proving a conjecture of Pekovšec’s and giving a precise
value for their lettericity. Before we begin our proof, however, we first introduce a
few pieces of additional notation.

Given a letter graph ΓD(w) and some letter a ∈ Σ, we then say that a encodes
the set of vertices that correspond to some instance of a in the word. In particular,
these vertices must form a clique if (a, a) ∈ D, and an anticlique otherwise. Further,
given a graph G such that G = ΓD(w), we say that (D,w) is a lettering of G, and in
particular an r-lettering if w uses an alphabet of size r.

2 Lemmas

We now establish a few lemmas necessary for the proof of our theorem. We begin
with a simple but useful property of letter graphs.
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Lemma 1. If a letter graph ΓD(w) has some pair of vertices with indices i and k
such that i < k and wi = wk, and this pair is distinguished by some third vertex j
(that is, j is adjacent to exactly one of i and k), then i < j < k.

Proof. If it were the case that j < i < k or that i < k < j, then the vertex j of
ΓD(w) is adjacent to either both of the vertices i and k or neither of them, depending
on whether (wj , wi) ∈ D, in the first case, and (wi, wj) ∈ D in the second. Thus
i < j < k.

With this established, we now move on to examining matchings. Petkovšec noted
that �(rK2) = r, and this was explicitly proven by Alecu, Lozin and De Werra [1].
We will reprove this in a different way.

Lemma 2. In any lettering of rK2, no letter encodes more than two vertices.

Proof. Suppose there exists some lettering (D,w) of rK2 with some letter a that
encodes at least three vertices of ΓD(w), say i, j, and k with i < j < k. Our graph
contains no cliques of size greater than 2, so these vertices form an anticlique. Each
of these vertices is incident with a distinct edge, so there must be some vertex, say x,
which is adjacent to j but not i or k. Then, by Lemma 1 it must be that i < x < j,
but also that j < x < k. This is a clear contradiction, so no such lettering exists.

This lemma establishes r as a lower bound for the lettericity of rK2. To establish
the upper bound, we examine any word w over the alphabet Σ = {1, 2, . . . , r} in
which each letter occurs exactly twice, with the decoder D={(1, 1), (2, 2), . . . , (r, r)},
so that the vertices of each letter form a clique of size two. Then (D,w) is an r-
lettering of rK2, and we can show further that each r-lettering of rK2 must be of a
similar type.

Lemma 3. In every r-lettering of rK2, each letter encodes the two vertices of a K2.

Proof. That each letter encodes exactly two vertices follows easily from Lemma 2.
Now suppose rK2 has some other r-lettering, and choose a to be the earliest occurring
letter that encodes an anticlique. In particular, suppose it first occurs at index i.
Then vertex i is adjacent to some vertex encoded by a different letter, say b. Then
b also encodes an anticlique, and by our choice of a, both of the vertices it encodes
must lie after i in the word. They then must both be adjacent to i; since rK2 has
no vertices of degree two, no such r-lettering exists.

3 Theorem and Proof

We now prove our main result.

Theorem 4. For n ≥ 3, the lettericity of Pn is
⌊
n+4
3

⌋
.

Proof. We begin with the lower bound; it suffices to examine a path Pn with n =
3r + 1, which our theorem claims has lettericity r + 1. Label the vertices of Pn

as i1, i2, . . . , i3r+1 so that its edge set is E(Pn) = {(ii, i2), (i2, i3) . . . (i3r.i3r+1)}, and
consider its subgraph Pn[i2, i3, i5, i6, . . . , i3r−1, i3r] = rK2, as shown below.
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Suppose, for the sake of contradiction, that Pn has some r-lettering (D,w). Then
rK2 is a letter graph for some subword of w, which must still require an alphabet
of size r. By Lemma 3, this is only possible if each letter is assigned to a distinct
adjacent pair. The vertices encoded by each letter thus form cliques; they then do
so in ΓD(w) as well. As ΓD(w) contains no cliques of size larger than 2, no such
lettering exists, and so �(Pn) ≥ r + 1.

The upper bound has already been established by Petkovšek, but here we show
how this bound is obtained from an r + 1-lettering of rK2. Take an ordering of the
adjacent pairs in rK2, and take the lettering of rK2 which assigns to the ith adjacent
pair the letters i, i+ 1. Since we have r pairs, this requires r + 1 letters in total.
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The graph above is the letter graph of the word 21324354 . . . r(r−1)(r+1)r with
the decoder D = {(2, 1), (3, 2), . . . (r + 1, r)}.

We now add r − 1 new vertices, giving the jth new vertex the label j + 1 and
connecting it to the vertex in the jth pair labelled j and the vertex in the j + 1st
pair labeled j + 2. Finally, we add a vertex labeled 1 adjacent to the vertex in the
first pair labeled 2 and a vertex labeled r + 1 adjacent to the vertex in the last pair
labeled r.
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This new graph, shown above, is the letter graph of the word 21321432543 . . . (r+
1)r(r−1)(r+1)r with the same decoder D = {(2, 1), (3, 2), . . . (r+1, r)}. This gives
us a path on 3r + 1 vertices; to obtain a path on 3r vertices we remove the first
instance of 1 in our word, and to obtain a path on 3r− 1 we additionally remove the
last instance of r + 1.
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