On the lettericity of paths

ROBERT FERGUSON

Department of Mathematics
University of Florida
Gainesville, Florida
U.S.A.
rferguson940ufl.edu

Abstract

Verifying a conjecture of Petkovšec, we prove that the lettericity of an n-vertex path is precisely $\lfloor \frac{n+4}{3} \rfloor$.

1 Introduction

The concept of lettericity was introduced in 2002 by Petkovšec [2]. We begin by presenting his definitions. Let Σ be a finite alphabet, and consider $D \subseteq \Sigma^2$, which we call the *decoder*. Then for a word $w = w_1 w_2 \dots w_n$ with each $w_i \in \Sigma$, the *letter graph* of w is the graph $\Gamma_D(w)$ with $V(\Gamma_D(w)) = \{1, 2, \dots, n\}$ and for indices i < j, $(i, j) \in E(\Gamma_D(w))$ if and only if $(w_i, w_j) \in D$.

If Σ is an alphabet of size k, we say that $\Gamma_D(w)$ is a k-letter graph. For some graph G, the minimum k such that a G is a k-letter graph is known as the *lettericity* of G, denoted $\ell(G)$. Note that every finite graph is the letter graph of some word over some alphabet, and in particular the lettericity of a graph G is at most |V(G)|.

Petkovšec determined bounds or precise values for the lettericity of a number of different families of graphs, most notably threshold graphs, cycles, and paths. We focus our attention on paths, proving a conjecture of Pekovšec's and giving a precise value for their lettericity. Before we begin our proof, however, we first introduce a few pieces of additional notation.

Given a letter graph $\Gamma_D(w)$ and some letter $a \in \Sigma$, we then say that a encodes the set of vertices that correspond to some instance of a in the word. In particular, these vertices must form a clique if $(a, a) \in D$, and an anticlique otherwise. Further, given a graph G such that $G = \Gamma_D(w)$, we say that (D, w) is a lettering of G, and in particular an r-lettering if w uses an alphabet of size r.

2 Lemmas

We now establish a few lemmas necessary for the proof of our theorem. We begin with a simple but useful property of letter graphs.

Lemma 1. If a letter graph $\Gamma_D(w)$ has some pair of vertices with indices i and k such that i < k and $w_i = w_k$, and this pair is distinguished by some third vertex j (that is, j is adjacent to exactly one of i and k), then i < j < k.

Proof. If it were the case that j < i < k or that i < k < j, then the vertex j of $\Gamma_D(w)$ is adjacent to either both of the vertices i and k or neither of them, depending on whether $(w_j, w_i) \in D$, in the first case, and $(w_i, w_j) \in D$ in the second. Thus i < j < k.

With this established, we now move on to examining matchings. Petkovšec noted that $\ell(rK_2) = r$, and this was explicitly proven by Alecu, Lozin and De Werra [1]. We will reprove this in a different way.

Lemma 2. In any lettering of rK_2 , no letter encodes more than two vertices.

Proof. Suppose there exists some lettering (D, w) of rK_2 with some letter a that encodes at least three vertices of $\Gamma_D(w)$, say i, j, and k with i < j < k. Our graph contains no cliques of size greater than 2, so these vertices form an anticlique. Each of these vertices is incident with a distinct edge, so there must be some vertex, say x, which is adjacent to j but not i or k. Then, by Lemma 1 it must be that i < x < j, but also that j < x < k. This is a clear contradiction, so no such lettering exists. \square

This lemma establishes r as a lower bound for the lettericity of rK_2 . To establish the upper bound, we examine any word w over the alphabet $\Sigma = \{1, 2, ..., r\}$ in which each letter occurs exactly twice, with the decoder $D = \{(1, 1), (2, 2), ..., (r, r)\}$, so that the vertices of each letter form a clique of size two. Then (D, w) is an r-lettering of rK_2 , and we can show further that each r-lettering of rK_2 must be of a similar type.

Lemma 3. In every r-lettering of rK_2 , each letter encodes the two vertices of a K_2 .

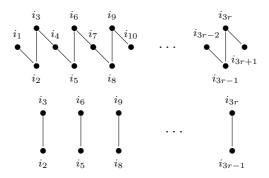
Proof. That each letter encodes exactly two vertices follows easily from Lemma 2. Now suppose rK_2 has some other r-lettering, and choose a to be the earliest occurring letter that encodes an anticlique. In particular, suppose it first occurs at index i. Then vertex i is adjacent to some vertex encoded by a different letter, say b. Then b also encodes an anticlique, and by our choice of a, both of the vertices it encodes must lie after i in the word. They then must both be adjacent to i; since rK_2 has no vertices of degree two, no such r-lettering exists.

3 Theorem and Proof

We now prove our main result.

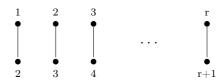
Theorem 4. For $n \geq 3$, the lettericity of P_n is $\lfloor \frac{n+4}{3} \rfloor$.

Proof. We begin with the lower bound; it suffices to examine a path P_n with n = 3r + 1, which our theorem claims has lettericity r + 1. Label the vertices of P_n as $i_1, i_2, \ldots, i_{3r+1}$ so that its edge set is $E(P_n) = \{(i_i, i_2), (i_2, i_3), \ldots, (i_{3r}, i_{3r+1})\}$, and consider its subgraph $P_n[i_2, i_3, i_5, i_6, \ldots, i_{3r-1}, i_{3r}] = rK_2$, as shown below.



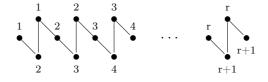
Suppose, for the sake of contradiction, that P_n has some r-lettering (D, w). Then rK_2 is a letter graph for some subword of w, which must still require an alphabet of size r. By Lemma 3, this is only possible if each letter is assigned to a distinct adjacent pair. The vertices encoded by each letter thus form cliques; they then do so in $\Gamma_D(w)$ as well. As $\Gamma_D(w)$ contains no cliques of size larger than 2, no such lettering exists, and so $\ell(P_n) \geq r + 1$.

The upper bound has already been established by Petkovšek, but here we show how this bound is obtained from an r + 1-lettering of rK_2 . Take an ordering of the adjacent pairs in rK_2 , and take the lettering of rK_2 which assigns to the *i*th adjacent pair the letters i, i + 1. Since we have r pairs, this requires r + 1 letters in total.



The graph above is the letter graph of the word 21324354...r(r-1)(r+1)r with the decoder $D = \{(2,1), (3,2), ..., (r+1,r)\}.$

We now add r-1 new vertices, giving the jth new vertex the label j+1 and connecting it to the vertex in the jth pair labelled j and the vertex in the j+1st pair labelled j+2. Finally, we add a vertex labelled 1 adjacent to the vertex in the first pair labelled 2 and a vertex labelled r+1 adjacent to the vertex in the last pair labelled r.



This new graph, shown above, is the letter graph of the word 21321432543...(r+1)r(r-1)(r+1)r with the same decoder $D = \{(2,1), (3,2), ...(r+1,r)\}$. This gives us a path on 3r+1 vertices; to obtain a path on 3r vertices we remove the first instance of 1 in our word, and to obtain a path on 3r-1 we additionally remove the last instance of r+1.

References

- [1] B. Alecu, V. V. Lozin and D. de Werra, The micro-world of cographs, In *Combinatorial Algorithms*, (Eds.: L. Gąsieniec, R. Klasing and T. Radzik), *Lec. Notes in Comp. Sci.* Vol. 12126, Springer, Cham, Switzerland, 2020, pp. 30–42.
- [2] M. Petkovšek, Letter graphs and well-quasi-order by induced subgraphs, *Discrete Math.* 244 (1-3) (2002), 375–388.

(Received 8 July 2020; revised 1 Aug 2020)