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Abstract

In this paper we introduce and study the r-Fubini-Lah numbers and
polynomials, in connection with the enumeration of those partitions of a
finite set, where both the blocks and the partition itself are ordered, and
r distinguished elements belong to distinct ordered blocks.

1 Introduction

Bell numbers are well-known objects in enumerative combinatorics. The nth Bell
number B, = Y7 _; {7} (n > 0), where the numbers {7} are Stirling numbers of the
second kind, is the number of partitions of an n-element set into nonempty subsets.

If we count the number of ordered partitions of an n-element set, we obtain the
nth Fubini number F, = Y} _ k!{}} (n > 0). These numbers appeared in several
papers from different points of view. Their first mention is due to Cayley [3] in con-
nection with the enumeration of certain trees. A number theoretical interpretation
was given by James [8], who counted ordered factorizations of square-free integers.
Using equivalent combinatorial definitions, Fubini numbers were also investigated by
Gross [5], Good [4] and Tanny [17]. These authors proved, among others, a recur-
rence, a Dobinski type formula, and derived the exponential generating function of
the sequence of Fubini numbers. We remark that Gross gave an additional geomet-
ric interpretation for Fubini numbers As an extension, Tanny introduced Fubini
polynomials F,(z) = >_p_ k!{}}2* (n > 0), as well. We note that Kereskényi-
Balogh and Nyul [9] gave a graph theoretlcal generalization of Fubini numbers and
polynomials.

Another variant of the above numbers is their r-generalization. The nth r-Bell
number B,, = > ;_,{} } (n,r > 0), defined by Carlitz [2] and Mezé [11], counts
the number of those partitions of a set with n + r elements, where r distinguished
elements belong to distinct blocks. Here {Z}T denotes an r-Stirling number of the
second kind (see [1, 2, 10]) with the parametrization, where {}} is the number
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of partitions of an (n + r)-element set into k& + r nonempty subsets, such that r
distinguished elements belong to distinct blocks.

Again, if we are interested in the number of ordered partitions of an (n + r)-
element set such that r distinguished elements belong to distinct blocks, then we
arrive at the nth r-Fubini number F,, = Y ;_(k + r)!{Z}r (n,7 > 0). These
numbers were studied by Mez6 and Nyul [12], together with the r-Fubini polynomials
Foo(x)=>7_o(k+ T)!{Z}T:ck (n,r >0).

If not the partition itself, but the blocks are ordered, then the counting numbers
are relatives of Lah numbers. By the definition due to Nyul and Récz [14], the nth
summed r-Lah number Ly, = > [}]  (n,7 > 0) is the number of those partitions
of an (n + r)-element set into ordered blocks, where r distinguished elements belong
to distinct ordered blocks. Here LZJT denotes an r-Lah number which counts the
number of partitions on an (n + r)-element set into k + r ordered nonempty subsets
such that r distinguished elements belong to distinct ordered blocks (for more details,
see [13]). In [14], the related r-Lah polynomials L, (z) = Y>_p_ |7] ¥ (n,r > 0)
are also investigated. We note that one can find a graph theoretical interpretation of
summed 7-Lah numbers and r-Lah polynomials in [15], while a further generalization,
the r-Dowling—Lah numbers and polynomials were studied by Gyimesi [6].

In this paper we introduce the Fubini type variants of summed r-Lah numbers and
r-Lah polynomials, which we call »-Fubini-Lah numbers and polynomials. We prove
two recurrences and a Dobinski type formula for them, we determine their exponen-
tial generating functions, finally we give their connection with r-Fubini numbers and
polynomials. Definitions of these notions will be given together with combinatorial
interpretations, which will be used in the proofs when it is possible.

2 r-Fubini-Lah numbers and polynomials

Let n,r be non-negative integers, not both 0. Define the nth r-Fubini—Lah number
FL,, as the number of ordered partitions of an (n + r)-element set into ordered
subsets such that r distinguished elements belong to distinct ordered blocks. Fur-
thermore, let F'Lyo = 1. From this definition it immediately follows that

FL,, = Zn:(/g + )] m

k=0

In addition, for n,r > 0, we introduce the nth r-Fubini—Lah polynomial as

FLy,(z) = Zn:(k: +7)! m T:Ek.

k=0

We can give a combinatorial interpretation for these polynomials when n,r are not
both 0. If ¢ is a positive integer, then FL, .(c) is the number of coloured ordered
partitions of a set with n +r elements into ordered blocks, such that r distinguished
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elements belong to distinct ordered subsets and ordered blocks containing no distin-
guished element are coloured with ¢ colours.

It follows from the above definitions that the polynomial F'L, .(z) is of degree n
with leading coeflicient (n 4 r)!. Since F'L, (1) = FL,,, it will suffice to prove our
results only for polynomials in most cases.

The 0-Fubini-Lah polynomials and numbers are simply F L, o(z) = nlz(z+1)""*
and F'L, o = n!2""! (n > 1), which can be proved easily: Starting from a permutation
of the n elements, we colour the ordered block of the first element with ¢ colours,
then we have ¢+ 1 possibilities for each of the other n — 1 elements, since it can open
a new ordered block and this ordered block is coloured with ¢ colours, or it belongs
to the ordered block of the previous element. Moreover, 1-Fubini—Lah polynomials
and numbers clearly satisfy ©F' L, ;(z) = FLy110(x) and FL,3 = FLyi10 (n > 0).
In contrast to these, for » > 2, r-Fubini-Lah polynomials and numbers become much
more interesting.

The r-Fubini-Lah polynomials and numbers satisfy the following formulas, which
are recurrences simultaneously in n and r.

Theorem 1. Ifn >0 andr > 1, then

n—

FL, (z) =71 Zn: (”) (n—j+1)IFLj, y(z)+2

1
§=0 J §=0

(") 0= nF Lo (o),

n n—1
n n
FLy, =1y (j) (n—j+)FLj,1+ Y (j) (n— ) FL;,.

J=0 J=0

Proof. Let ¢ > 1. We count the number of coloured ordered partitions of a set with
n + r elements into ordered subsets such that r distinguished elements belong to
distinct ordered blocks, and we colour the ordered blocks containing no distinguished
element with ¢ colours.

Consider the first ordered block. If it contains a distinguished element, then we
can choose it in r ways. Let 5 be the number of those non-distinguished elements,
which do not belong to this ordered subset (j = 0,...,n). The number of coloured
ordered partitions of these elements, together with the other » —1 distinguished ones,
into ordered subsets, where the ordered blocks containing no distinguished elements
are coloured with ¢ colours, is FL;,_1(c). The remaining n — j non-distinguished
elements will be placed into the first ordered block. In this ordered block we can
permute the elements in (n — j + 1)! ways. Therefore, the number of possibilities is
r(5)(n =3+ DIFL;, 1 (c) for a fixed j.

Similarly, if the first ordered block does not contain any distinguished element,
then let j be the number of those non-distinguished elements, which do not belong
to this ordered block (7 =0,...,n —1). The number of ordered partitions of these j
elements together with the distinguished elements into ordered subsets, and colour-
ings of the ordered blocks containing no distinguished element with ¢ colours, is
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FL;,(c). The remaining n — j non-distinguished elements will be placed into the
first ordered block, which can be done in (n — j)! ways, but this ordered block has to
be coloured. This means that now the number of possibilities is c(?) (n—Jj)NFL;,(c)
for a fixed j. O

We can prove another recurrence for r-Fubini-Lah polynomials, where the only
running parameter is n. Here the derivative of the polynomials also appears.

Theorem 2. Ifn,r > 0, then
FLyii,(x)=((r+1)x+n+2r)FL,,(z)+ (2% + x)FL;”(x)
Proof. We use [13, Theorem 3.1] and some special values of r-Lah numbers to obtain

that

n+1

Flyan(e) = (k+7)! {” ! 1J o

k=0

n

(k +7)! m o

k=1 r

k=1 r
— (n—I—QT)Z(k‘—FT)!{ZJ xk—kZ(k—i—r-l—l)!{ZJ gh !
k=0 r k=0 r
_ n
+x k(k+r)! zFt
M)

n

= n T X T A T " :L‘k
= (n+2r)FLy,(z)+ (r+1) ko(k:+ )'MT

+2? Y " k(k +1)! m 2t 4 aF L (x)
k=1 r

= (n+2r)FL,,(z)+ (r + 1)aF Ly, (z) + 2°FL, (z) + xF L), ().
0

The following Dobinski type formula holds for r-Fubini-Lah polynomials and
numbers.
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Theorem 3. Ifn,r >0, then

s J
- x
FLnr — nr ,
#() x+1xrz‘7+r (x—l—l)

Jj=0
o0
j + 7"
2]+1
j=0

Proof. First we prove the identity for polynomials. Using [13, Theorem 3.2] and the
binomial series, we have that

[e.e]

> G+t = ZJ:L’]ZH(J'—T)'“
j=0 k=0 r
B k+r B n n 0 j .
- R[] o] 2 (1)
j=0 k=0 Jj=k+r
& n jt+k+r k
— | Jt+k+r
Z(kﬂn)' k Z( k+r )
k=0 - ST 5=0
— Z(k:+r)! Z xk+r2( " )(—x)J
k=0 LA j=0 J
- Z(mr)!z 2T (1 — )R
k=0 L
B 1 T ri(/ﬂ—i—?“)' n x F
l-2z\l—-=x Lk 11—z
k=0 r
1 T
= L) FL,, (—).
l—2z\1—-2 "\l—=x
If we substitute —= for x, then we get

(x+1)2"FL,,(z) = i(j + )75t ( ° )j ,

= r+1

which completes the proof for polynomials.

Now we prove the theorem for r-Fubini-Lah numbers. Let £ be a random variable
with probability distribution

We calculate the expected value

E((6+7)"€) = >0+ )5
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which, using [13, Theorem 3.2] and the identity E{™ = n! (see, e.g., [9]), also satisfies

E((6+r)¢) = (Z ] e Na)

n

"\ |n . n
= O LﬁJTEgk—l— _ Z \‘kJr(k;—}-r)! =FL,,.

k= k=0

O

The next theorem gives the exponential generating functions of the sequences of
r-Fubini—Lah polynomials and numbers.

Theorem 4. Forr > 0, the exponential generating function of (F Ly, (x)),_, is

i FL,,.(x) , B 7l

— ol (=) (L =y — )t
while the exponential generating function of (FLy,) _, is
Z FLn T om r!
¥y = _ r—1 _ r+1°
—~ (L—y) (1 —2y)

Proof 1. We begin with the proof for polynomials. Using [13, Theorem 3.10] and the
binomial series, we can obtain that

FLM nl L1 . o P T
Z ZZ k+r)! L{:J " Y —Z(k+7“)!x ZL{:J Y
n=0 n=0 k=0 k=0 n=k r

- 1 Y F 1\ 7! = (k+r Ty F
FA A Yy

— FI\1-y/ \1-y (I—ypr &=\ k 1—y
_ r! i —r—1 —xy k: r! LY -l

(I—y)re=\ k 1—y (1—y)* 1—y

rI(1 — )t

(1=y)*(1—y—ayr+t

Now we prove the theorem for r-Fubini-Lah numbers by induction on r.
If r = 0, then using F L, o =n!l2""' (n > 1), we get

[e o]

FL,o SN Y l1—y
Oyn =1 gn=lyn — 1 - .
2 Y +Zl vt T Ty T 1oy

Assume that » > 1, and the statement is true for » — 1. Then for r, if n > 0, it
follows from Theorem 1 that

2F L, =71y (?) (n—j+DIFLj, 1+ (?) (n— HIFL;,.

j=0 Jj=0
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Let f.(y) be the exponential generating function of (FL, )2 ,. Then the above
formula implies that

1 1
m‘i‘fr(y)ﬂ-

Using the induction hypothesis for f._1(y), after some calculation we arrive at the
equality

2fr(y) = rfrai(y)

r!
(1 —y)r=H(1—2y)

frly) =
O

Proof 2. For r-Fubini-Lah numbers we can provide another proof, where we use
[7, Theorem 2.1], the so-called r-compositional formula.

The exponential generating functions of the sequences

0 ifn=0
gi(n) =(n+1), go(n) = ' . h(n)=(n+r)
n! ifn>1
are ) |
Y r!
respectively.

Then F'Ly, =1, and for n > 1 we have

FLyy =Y g0 (Vi) g1 (1Y:) g2 (1Z1]) -+~ 92 (1Z]) (),

where the sum is taken for all partitions {Y; U{a1},..., Y, U{a.},Z1,..., Z} of
the (n+r)-element set {aq,...,a., b1,...,b,} with distinguished elements ay, ..., a,.

Then, according to [7, Theorem 2.1], the exponential generating function of the

sequence (F'Ly,) " is
. B 1 . 7! _ ri(1 —y) !
(Gl(y>> H (GZ(y)) - (1 - y)g,« <1 B 1L)r-i-l (1 _ y)gr(l _ 2y)7~+1‘

0

The last identity shows that the sequence of r-Fubini-Lah polynomials is the
r-Stirling transform of the first kind of the sequence of r-Fubini polynomials, and
the same holds for numbers (for r-Stirling numbers of the first kind [}] > see [1,2,10]).
We note that a very special case of this formula, namely for 0-Fubini-Lah numbers,
appeared in [16].

Theorem 5. Ifn,r > 0, then
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Proof. Let ¢ > 1. We count the number of coloured ordered partitions of a set
with n+r elements into ordered blocks such that r distinguished elements belong to
distinct ordered subsets and we colour the ordered blocks containing no distinguished
element with ¢ colours.

First we arrange the elements into j+r disjoint cycles (j = 0, ..., n), such that the
distinguished elements belong to distinct cycles, this can be done in [?]T ways. After
that, we partition these cycles in an ordered way such that the cycles containing a
distinguished element belong to distinct blocks, and we colour the blocks containing
no cycles with a distinguished element with ¢ colours. The number of such coloured
partitions is Fj,(c). If we multiply the cycles in each block, we get a coloured
ordered partition into ordered blocks of the original (n + r)-element set. Therefore,
the number of possibilities is [?]TFJT(C) for a fixed j. O
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