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Abstract

A construction described by the current author (2017) uses two linear
‘prototype’ graphs to build a compound graph with Ramsey properties
inherited from the prototypes. The resulting graph is linear; and cyclic if
both prototypes are cyclic. However, it will not generate a cyclic graph
from a general linear prototype. Building on the properties of that con-
struction, this paper proves that a general linear prototype graph of or-
der m can be extended using a single new colour to produce a new cyclic
graph of order 3m — 1 which is triangle-free in the new colour, and has
the same clique-number as the prototype in every other colour. The
paper then describes a cyclic Ramsey (3,3,4,4;173)-graph derived by
constrained tree search—thus proving that R(3,3,4,4) > 174. Using a
quadrupling construction to produce a further cyclic graph, it is shown
that R(3,4,5,5) > 693.

A compound cyclic Ramsey (3,7, 7;622)-graph derived by a limited
manual search is then described. Further construction steps produce a
(8,8,8;6131)-graph, showing that R3(8) > 6132. The paper concludes by
showing that R,(7) > 81206 and R4(9) > 630566, implying corresponding
improvements in the lower bounds for R5(7) and R5(9) and beyond.

1 Introduction

This paper addresses the properties of undirected loopless graphs with edge-colourings
in an arbitrary number of colours, and the corresponding multicolour classical Ram-
sey numbers.

The construction described in [5] allows the creation of Ramsey graphs with
specific properties by combining the distance sets of two linear graphs. We refer to
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these graphs as the ‘prototypes’ for the construction. The constructed graph is linear,
and cyclic if both prototypes are cyclic. However, it will not generate a cyclic graph
from a general linear prototype—a property that is useful on occasions if subsequent
constructions require cyclic prototypes. This paper describes a development of the
previous construction (itself based on a construction by Giraud [2]), which does so
in a significant special case. It also records some further computational findings and
results in the construction of linear and cyclic graphs.

Notation is defined in Section 2.

In Section 3, starting from the construction in [5], it is proved that a general
linear prototype graph can be extended using a single new colour to produce a new
cyclic graph of order 3m — 1 which is triangle-free in the new colour, and has the
same clique-number as the prototype in every other colour. This result is of some
practical use in providing graphs with known characteristics for use as prototypes
in further constructions. Its distance profile, and variations on it, provide a broad
theme for the paper.

In Section 4, the distance sets of a cyclic Ramsey (3, 3,4, 4; 173)-graph are listed—
thus proving that R(3,3,4,4) > 174. These sets were found by a non-exhaustive tree
search, subject to a heuristically-derived constraint, which made search times man-
ageable. The form of the constraint was inspired by the broad characteristics of
colourings related to the construction described in Section 3. It is further deduced
that R(3,4,5,5) > 693 using a cyclic ‘quadrupling’ technique related to that de-
scribed in [§].

In Section 5, the existence of a Ramsey (8,8, 8;6131)-graph is established. We
start from a prototype (3,7, 7)-graph, use the quadrupling construction twice, and
then delete vertices. Thus it is proved that R3(8) > 6132.

In Section 6, the key tables from [5] are updated to reflect further work on obtain-
ing linear prototype graphs. It is proved that R4(7) > 81206 and R4(9) > 630566,
noting corresponding improvements in the lower bounds for R5(7) and R;(9) and
beyond. These results follow from the existence (in all cases) of cyclic prototype
subgraphs of the graphs obtained by the most basic Mathon-Shearer ‘doubling’ con-
struction.

Section 7 includes graph specifications for the (3,7,7; 622)-graph and (3,4,5,5;
692)-graph referenced above.

2 Notation

In this paper, K,, denotes the complete graph with order n.

If U denotes a complete graph with m vertices {uo, ..., u,_1}, then a (g-)colour-
ing of U is a mapping of the edges (u;,u;) of U into the set of integers s where
1<s5<qg.

The distance between two vertices w;, u;, or, equivalently, the length of the edge
(ui, uj) connecting them, is defined as | j — i |.
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A colouring of U is linear if and only if the colour of any edge (u;,u;) depends
only on the length of that edge. In such a case the colour of an edge of length [ is
written c(1).

A colouring of U is cyclic if and only if (a) it is linear, and (b) ¢(l) = ¢(m — )
for all { such that 1 <[ <m — 1.

The cliqgue number of graph U in colour s is the largest integer ¢ such that U
contains a subgraph which is a copy of K; in that colour.

A Ramsey graph U(ky, ..., k.;m), with all ks > 2, is a complete graph of order m
with a colouring such that for each colour s, where 1 < s < r, there exists no complete
monochromatic subgraph K, of U in the colour s for any ¢ > k,. Equivalently, the
clique number of U, in any colour s, is strictly less than ks. Such a graph U may
conveniently be described as a (ki, ..., k.;m)-graph.

The Ramsey number R(ky,...,k.) is the unique lowest integer m such that no
U(ky, ..., k-;m) exists.

3 Construction of Cyclic Graphs from Linear Graphs

Theorem 3.1 (Construction Theorem)
Given any linear Ramsey graph U(ky, ka, . . ., k.;m), it is possible to construct a cyclic
Ramsey graph W (ky, ko, ..., kr,3;3m — 1).

The theorem depends on a relatively simple construction process which adds
2m — 1 vertices and their incident edges, including a single new colour, to the linear
prototype graph U.

PROOF: We begin by considering the set of lengths of all the edges of U, consisting
of the integers {1 |1 <1 < m — 1}, which we call L. A linear colouring of L gives
rise to a natural partition of that set into subsets L, containing the lengths of edges
of each colour s. That is, for 1 < s <r:

Ls={1]c(l) = s}.

It is a well-known result that any linear graph U contains a copy of Kj, in colour s
if and only if there exists a subset of the set L, of order ks, — 1 such that each of the
members of the subset and all of their non-zero pairwise differences are contained
in L,. For if such a subset exists, one can construct a set of all the vertices u; € U
having index-numbers ¢ in the subset. Taking the union of that set of vertices with
ug gives us the vertices of a copy of Ky, in U. The converse is essentially proved
by reversing the process, having first selected (using linearity) a copy of Ky, with a
vertex set that includes ug.

This result provides the basis for our proof.

Using the construction in [5] we first construct a linear (ky, k2, . . ., k., 3; 3m—1)-graph
V' with vertices v;, for 0 < ¢ < 3m — 2. The set of lengths of all the edges of V' may
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be called L’ and consists of the integers {1 | 1 <1 < (3m—2) }, which are partitioned
into distinct subsets according to colour, as follows:

We define a subset of L’ which we call L], = {l | m <1 < (2m — 1)} for the new
colour, r + 1.

We further define subsets of L', for each s, where 1 < s < r, as follows:
L={l|leL}U{l+(2m—1)]|l€ Ls}.
It is easy to verify that |J L, = L', where the union includes all colours.

The new graph V is clearly linear. From the proof in [5] it follows that the clique
number of V' in any colour s where 1 < s < r is the same as for U. For colour r + 1
the clique number is clearly 2, since no two members of L, ; can have a difference
inL,.

Now we define a second graph W also with 3m — 1 vertices w;. The set of lengths
of all the edges of W may be called L”.

We define the subset L, = L., for the new colour.
We further define, for each s, where 1 < s <,
L'={l|leLju{(Bm—1)—1]|l€ L}

The new graph W is clearly well-defined and linear. Because each L contains the
complements of all its members with respect to 3m — 1, W is also cyclic.

A simple example of this construction is shown in Figure 1 below.

We have assumed that there is no subset of U that is a monochromatic copy of Kj,
in colour s. We aim to prove there can be no such subset in W.

Assume to the contrary that there is such a copy (H, say) in W. Consider the set
of index-numbers of its vertex-set, {j1, 72, ..., jk. }-

If any pair of these index-numbers has an absolute difference greater than m — 1,
then that difference must be at least 2m. If no such pair exists, then the lengths of
all the edges of H must be less than m and therefore there must be an identical copy
of K in the same colour within U (with the same set of index-numbers): which is a
contradiction.

edge-length= 1 2 3 4 5 6 7 8 9 10 111213 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
Linear (6,3; 12)-graph U 1111 2 1 2 2 2 1 2 ..This'prototype'is the input for construction of the compund graphs below.
Linear (6,3,3;35)-graph V1 1 1 1 2 12 2 2 1233 3333333333111 12122212
Cyclic (6,3,3;35-graph W 1 1 1 1 2 1 2 2 2 123 333333333383321222121111

The reflection of the colour pattern of the prototype is visible in edge-lengths 24 to 34.

Figure 1: A simple example of the construction.
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Therefore H must have at least one edge of length at least 2m. If so, then we can
partition the set of index-numbers of H into two non-empty subsets S; = {j1,...,jp}
and Sy = {Jjp+1,...,Jk. ;- This partition is made on the basis that the length of an
edge joining any member of S; to any member of S5 is of length at least 2m. It is
a straightforward consequence of the colouring that there can be no more than two
such subsets. We may assume without loss of generality that the index-numbers of
these subsets are strictly increasing.

We now define a mapping from the vertices of W to the vertices of V' as follows:

For 1 <t < p, define wj, — v;,_j,. Thus if there is an edge in W joining w;, and
wj,, both index-numbers being members of Sy, then the length of the edge in V' that
joins their images is the same as in W, and the colours of those two edges are both s.

For p+1 <t < s, define wj, — v(sm—-2)—(ji—j,))- Again, if there is an edge in W
joining w;, and wj,, both index-numbers being members of Sy, then the length of
the edge in V' that joins their images is the same as in W, and the colours of those
two edges are both s.

It now remains only to consider the case of an edge joining w;, and w;, , where j, € S;
and j, € S;. We can see that 2m < (j, — j,) < 3m — 2. Since W is cyclic, we note
that the colour of this edge is the same as an edge of length (3m —1) — (j, — j.) also
in W.

In that case, the image in V' of the edge is of length (5m —2) — (j, — jp) — (Jp — Ju) =
(5m — 2) — (jy — jx). Therefore its colour is the same as the colour of an edge in V'
of length (3m — 1) — (j, — j»). Therefore we that the colours of the edge in W and
its image in V' are again both s.

Thus the image of H in V' is a copy of K}, in colour s, which is another contradiction.
This completes the proof. O

This quite simple result has been of some practical use in providing cyclic graphs
with known characteristics for use as prototypes in further constructions. The overall
profile of the distances — with one colour concentrated in a mid-range, sometimes
also featuring some outlying distances — is a theme of all the constructions featured
in this paper. The existence of outliers provides scope for defining broader search
spaces, as illustrated in Sections 4 and 5.

4 New Lower Bounds for R(3,3,4,4) and R(3,4,5,5)

The distance sets for a cyclic (3, 3,4, 4;173)-graph derived by the author are listed
below. Colours for distances greater than 86 are implied by the symmetry. The
implied lower bound of 174 for R(3,3,4,4) exceeds the current best lower bound
quoted in [4].
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Colour 1:
2, 6, 9, 10, 17, 21, 24, 25, 28, 32, 39, 40, 55, 62, 75

Colour 2:
49, 56, 59, 63, 64, 66, 67, 69, 70, 71, 72, 73, T4, 76, 77,
78, 79, 80, 81, 82, 83, 84, 85, 86

Colour 3:
i, b5, 11, 12, 15, 19, 20, 22, 27, 29, 30, 34, 37, 38, 44,
48, 50, 51, 54, 58, 60, 61, 68

Colour 4:
3, 4, 7, 8, 13, 14, 16, 18, 23, 26, 31, 33, 35, 36, 41,
42, 43, 45, 46, 47, 52, 53, 57, 65

Table 1: Distance Sets for a Cyclic (3,3,4,4;173)-graph.

This graph was one of several discovered through a non-exhaustive constrained
tree search. The constraint imposed was merely that colour 2 (one of the triangle-
avoiding colours) cannot be used for a distance less than 48.

This simple heuristic constraint follows the observation that in generating large
triangle-free linear graphs with defined Ramsey properties, it is often effective in
reducing search times, for a cluster of distances in the mid-range to be constrained
of a single common colour. The lesser and greater distances must then largely avoid
that colour. Previous papers featuring distance-based searches (notably [1]) have
demonstrated this feature.

Searches with lower exclusion thresholds have not yet yielded better lower bounds.
Exhaustive searches have not been possible because of the resulting time constraints.

By application of a cyclic ‘quadrupling’ construction closely related to that fea-
tured in Corollary 3 in [8], a (3,4, 5,5;692)-graph can be constructed, proving that
R(3,4,5,5) > 693.

5 A New Lower Bound for R3(8)

The construction described in Section 3 can be usefully varied by modifying the
definition of L;, ; in particular cases so that the order of the resulting graph W is
increased.

In the case where the prototype is the well-known (7,7; 202)-graph obtained by
the basic Mathon-Shearer ‘doubling’ construction, an interesting result is obtained
by defining:

L, , = L5 ={202,203,...,207,219,220,...,403,415,416, ... ,420}.

It can be seen that this retains the general shape of a cluster of distances in the

mid-range, as mentioned in Section 4, while leaving some gaps in order to include
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outliers. By doing this it has so far proved possible to extend the order of the
resulting cyclic (3,7, 7)-graph to 622 using only a short manual search. The colours
of distances from 1 to 201 are the same as those of the (7,7;202)-graph, as are the
colours of distances from 421 to 621. The colours of distances from 208 to 218 are
copies of those from 6 to 16 and the colours of distances 404 to 414 are a reflection
of them.

Next, we broadly follow the process of Theorem 7 in [7]. By applying the qua-
drupling construction featured in Corollary 5 in [8] twice in succession, we obtain
firstly a (5,7,8;2488)-graph and then a (9, 8,8;9952)-graph. By inspection of the
construction at each stage, we can see that the degree of the first vertex in these
graphs in colour 3 is 1214 and 6131 respectively. (In fact, the degrees of all vertices
are equal in any colour, but that is not necessary to the proof.) These degrees have
been validated by computer testing. Consider the subgraph induced in the latter
case on the vertices forming the neighbourhood of the first vertex in colour 3. Since
k1 = 9 this must be an (8,8, 8;6131)-graph, which demonstrates that R3(8) > 6132.
This again exceeds the current best lower bound quoted in [4].

6 Further Results from an Earlier Construction

The tables below update the results of the previous paper [5], allowing for the inclu-
sion of linear isomorphic images of the well-known (7, 7;202)- and (9, 9; 562)-graphs
obtained by the most basic form of the Mathon-Shearer ‘doubling’ construction. The
reader should refer to [3] and [6] for the basic construction: the subgraphs can be
obtained from all such graphs by a straightforward rearrangement of vertices.

k 3 4 5 6 7 8 9
r
1 2 3 4 5 6 7 8
2 5 17 41 101 202 281 562
3 14 127 414 1069 2217 3647 8423
4 45 633 3281 20201 81205 157361| 630565
5 161 4175 33494 214769| 893250 2045687| 9458468
6 537 32005| 341965| 4060301
7 1681 160023 2712974

Table 2: Highest order of linear Ramsey graphs known to the author. Results in blue font
extend the table shown in [5]. Orders shown in blue bold font for » = 4 imply R4(7) > 81206
and R4(9) > 630566.
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k 3 4 5 6 7 8 9

1 3.000 5.000 7.000 9.000 11.000 13.000 15.000

2 3.000 5.745 9.000 14.1774 20.0749 23.6854 33.5112

3 3.000 6.3247 9.3865 12.881

4 3.071

5 3.172

6 3.1996

7 3.190

Table 3: Factors gi calculated from the data in Table 2.

Numbers revised since the publication of [5] are shown in blue. As before, bold
text indicates numbers exceeding those shown in the Radziszowski Dynamic Sur-
vey [4].

The inclusion of these graphs allows the proof that R4(7) > 81206 and R4(9) >
630566 by straightforward application of the methods of [5], with correspondingly
improved lower bounds for R5(7) and R5(9) consistent with Table 2. Obviously there
are further implied improvements in R,.(7) and R,(9) for higher values of r.

The factors g in Table 3 that are highlighted in bold indicate lower bounds for
the limiting growth rate of R,.(k) as r increases, i.e. lim,_, Rr(k,’)l/ " > g for relevant

r, k. Factors for » = 1 indicate what was possible using the Giraud construction
(see [2]).

7 Graph Specifications

The specifications of the larger key graphs mentioned above are included below. The
format is simply a list of colours for edge-lengths from 1 upwards.

(3,4,5,5; 692)-graph

43224343434433443322231323244324434323434322333243
14234423223314232343243332331243132342331423132323
43143312431323124312431423332314331233144314431233
12231343134314331423143312231433144314431223113312
43124314331433122333231143144312231143123312432323
11231133442311431133323321432123113321234123114333
33214341234143214321231123213341334143414321444123
41434143314331232113212341234143214341233333411321
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43212331132123412332333113411324433113211323234213
32134113221344134113233322133413341342134213311322
13441344133413221334132413341343134313221332134413
44133213341323332413421342132313421334134323231324
13324323134213323334234323241332232443241342333223
43432343442344232313222334433443434342234

(7,7,3; 622)-graph

22112112221221112221212122121122221122121222222222
11111111121211221111221211212121112221121112212211
11122122111211222111212121121221111221121211111111
12222222221212211222211212212121222111221222112112
23333331122212211133333333333333333333333333333333
33333333333333333333333333333333333333333333333333
33333333333333333333333333333333333333333333333333
33333333333333333333333333333333333333333333333333
33311122122211333333221121122212211122212121221211
22221122121222222222111111111212112211112212112121
21112221121112212211111221221112112221112121211212
21111221121211111111122222222212122112222112122121
212221112212221121122
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