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Abstract

A graph G is said to be pancyclic if G contains cycles of lengths from
3 to |V(G)|. The bull B(i, j) is obtained by associating one endpoint of
each of the path P, and P;;; with distinct vertices of a triangle. In [M.
Ferrara et al., Discrete Math. 313(2013), 460-467], it was shown that
every 4-connected {K 3, B(i, j)}-free graph with ¢ + j = 6 is pancyclic.
In this paper we show that every 4-connected {Kj 3, B(i, j)}-free graph
with ¢ + 7 = 7 is either pancyclic or it is the line graph of the Petersen
graph.
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1 Introduction

We use [1] for terminology and notation not defined here, and we only consider finite
simple graphs. Let G be a graph. If v € V(G) and S C V(G), we say that G[S] is
the subgraph induced in G by S, N(v) is the neighborhood of v in G, d(v) = |N(v)|,
and N(S) = J,eg V(v). The path with n vertices is denoted by P,. Given a family
F of graphs, G is said to be F-free if G contains no member of F as an induced
subgraph. If F= {Kj 3}, then G is said to be claw-free. A graph G is hamiltonian
if it contains a spanning cycle and pancyclic if it contains cycles of lengths from 3
to |V(G)|. In 1984, Matthews and Sumner [6] conjectured that every 4-connected
claw-free graph is hamiltonian. This conjecture is still open and it has also fostered a
large body of research into other structural properties of cycles for claw-free graphs.
In this paper we are specifically interested in the pancyclicity of claw-free net-free
graphs.

Let L denote the graph obtained by connecting two disjoint triangles with a
single edge, and let N (i, j, k) denote the net obtained by identifying each vertex of
a triangle K3 with an endpoint of three disjoint paths P, Pjy1, Pry1, respectively.
We refer to N(i,7,0) as the generalized bull, and denote it by B(i, j).

Theorem 1.1 (Gould, Luczak, Pfender [4]) Let X and Y be connected graphs on
at least three vertices. If neither X nor Y is Ps and Y is not K3, then every
3-connected {X,Y }-free graph G is pancyclic if and only if X = Ki3 and Y is a
subgraph of one of the graphs in the family

F={P;,L,N(4,0,0), N(3,1,0), N(2,2,0), N(2,1,1)}.
Motivated by the Matthews-Sumner Conjecture and Theorem 1.1, Ron Gould
came up with the following problem at the 2010 STAM Discrete Math Meeting in
Austin, TX.

Problem 1.2 Characterize the pairs of forbidden subgraphs that imply a 4-connected
graph is pancyclic.

Theorem 1.3 (Ferrara, Morris, Wenger [3])  Every 4-connected { K 3, Pio}-free
graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.4 (Lai, Zhan, Zhang, and Zhou[5]) Every 4-connected {K; 3, N(8,0,0)}-
free graph is either pancyclic or is the line graph of the Petersen graph.

Theorem 1.5 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Every 4-conn-
ected {K1 3, B(i,j)}-free graph, where i + j = 6, is pancyclic.

The result of this paper is as follows.
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Theorem 1.6 Every 4-connected { K3, B(i,j)}-free graph with i + j = 7 is either
pancyclic or is the line graph of the Petersen graph.

The line graph of the Petersen graph is 4-connected { K1 3, B(3, j) }-freeif i+j = 7,
but is not {K, 3, B(7, j)}-free if i + j = 6, and it contains no cycle of length 4. So
Theorem 1.6 implies Theorem 1.5.

Figure 1. The line graph of the Petersen graph is the unique 4-connected
{K13, B(i,j)}-free graph with ¢ + j = 7 that is not pancyclic.

In Section 2, we will show that every 4-connected { K 3, B(i, j)}-free graph with
i+j = 7 contains cycles of all lengths from 9 to |V (G)| by showing that if G contains
a t-cycle (t > 10), then G also contains a (f — 1)-cycle. The existence of a 3-cycle
follows immediately from the fact that G is claw-free. For t-cycles with 4 <t < 5,
we use arguments based on the induced graphs N(8,0,0) or Py. For t-cycles with
6 <t <8, we use similar arguments based on the induced graphs Pj5. The proof of
the existence of short cycles (4 <t < 8) will be given in Section 3.

2 Long Cycles

Before we proceed, we introduce some additional notation. For the remainder of
the paper, we will let G[{z,y, 2} U{z1,...,2;} U{y1,...,y;} U{z1,..., 2 }] denote a
copy of N (3,7, k) with central triangle zyz and appended paths zz1 ...z, yy1 ... yj,
and zz1...zx. A copy of the bull B(i,j) is denoted G[{z,y,z} U {z1,...,2;} U
{y1,...,y;}] where zyz is the central triangle with appended paths zz; ...z; and
yy1 - .. y;. The following result allows us to establish the hamiltonicity of the graphs
under consideration.

Lemma 2.1 (Ferrara, Gehrke, Gould, Magnant, and Powell [2]) Let G be a 4-
connected K 3-free graph containing a cycle C' of length t > 4. If C' has a chord
or if there is a verter w € V(G) — V(C) with at least 4 neighbors on C, then G
contains another cycle C' of length t — 1.

Lemma 2.2 Let G be a 4-connected { K 3, B(i, j)}-free graph of order n with i+j =
7T and i,7 # 0 and let C be a cycle of length t > 10 in G. Then G contains another
cycle C" of length t — 1.
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Proof. Assume that G contains no (¢ — 1)-cycles. By Lemma 2.1, C' is chordless,
and if w € V(G) — V(C) with N(w) N V(C) # 0, then |[N(w) N V(C)| < 3. Let
C = vvy... 00

Claim 1. Let z € V(G) —V(C). If N(z) N V(C) # 0, then |N(z) NV (C)| = 3.
Moreover, these three neighbors of x are consecutive on C'.

By contradiction, we assume that |N(z) NV (C)| # 3. Then |N(z) NV (C)| < 2.
Since N(z) N V(C) # 0, we assume that xv; € E(G). As viivi1 € E(G), we
have either v;11x € E(G) or v;_1x € E(G). Without loss of generality, we assume
that xv;_1 € E(G). As |[N(z) NV(C)| < 2, zw ¢ E(G) for w € V(C) — {v;,v;_1}.
As t > 10, the subgraph induced by {z,v;,v;_1} U (V(C) — {v;,v;—1}) contains a
B(i,7)(t + j = T7), a contradiction. Claim 1 holds.

By Claim 1, every vertex with a neighbor on C' has exactly three neighbors
on C' which are consecutive. For 1 < i < t, let V; = N(v;—1) N N(v;) N N(vig1)
t

where indices are taken modulo ¢. If there is a vertex w ¢ V(C) U |J V; that has
i=1

a neighbor w; in some V;, then {w;,v;_1,v;11,w} induces a claw. Thus the sets
{V1,Va, ..., Vi} is a partition of V(G)\V(C). If there is an edge joining V; and V;
when |i — j| > 2(mod t), we assume that w; € V;, w; € V; and w,w; € E(G). Since
G{w;, w;,vi_1,vit1}] # K13, we have either w;v;41 € E(G) or wjv;y € E(G). Thus
|IN(w;) NV (C)| > 4, a contradiction. If there is an edge w;w; 2 between V; and V4o,
then vivy ... v;_qw;w;12v;13 ... v01 18 a cycle of length t — 1, a contradiction. If there
are two nonconsecutive values i < j such that V; = 0 and V; = 0, then {v;,v;} is
a cut set, a contradiction. Therefore, the set {i|V; = 0,7 = 1,2,...,¢} has at most
two elements. If the set has two elements, the indices are adjacent. Without loss of
generality, we assume that for i € {1,2,...,t — 3}, V; # 0. Let w; € V;. By Claim
1, wy, wo, ..., w,_g are distinct vertices. Let C3 = vivewiv; be the 3-cycle. Then we
can get the 4-cycle Cy by inserting wy into C5 as Cy = viwsovowyvy. Inserting vs into
Cy, we can get the b-cycle C5 = viwovzvewivy. Using this method, we can get all
cycles of lengths from 3 to 2t — 5. As t > 10, G has a (t — 1)-cycle, a contradiction.

O

Theorem 2.3 (Lai et al. [7]) Every 3-connected { K3, B(i,j)}-free graph with i +
7 < 8 is hamiltonian.

By Lemma 2.2 and Theorem 2.3, G contains cycles of length |V (G)| through 9.

3 Short Cycles

In this section we will prove that if G is a 4-connected { K} 3, B(1, j) }-free graph with
i+ j = 7 and if G is not the line graph of the Petersen graph, then G has t-cycles,
where 4 <t < 8. Suppose that P, = v1v,...v, is an induced path in G. Since G is
claw-free, the following property follows.



H.-J. LAI ET AL. /AUSTRALAS. J. COMBIN. 76 (3) (2020), 366386 370

(CF1) If x € V(G)\V(P,) is adjacent to v; for i € {2,3,...,n — 1}, then z is
adjacent to either v;11 or v;_;.

(CF2) If x € V(G)\V(P,), then |N(z) N V(P,)| < 4. Furthermore, if |N(z) N
V(P,)| =4, then N(z) N V(P,) = {vi, vis1,v;,vj41} for some 1 <i < j <n.

Lemma 3.1 If G is a 4-connected { K, 3, B(i, ) }-free graph with i + j =7, then G
is the line graph of the Petersen graph or G has a 4-cycle.

Proof. Suppose that G is a 4-connected { K} 3, B(1, j) }-free graph with i+j = 7 and
that G does not have 4-cycles. Since G is claw-free, the neighborhood of any vertex
is either connected or two cliques. Since G is 4-connected, the minimum degree of
G is at least 4. If the neighborhood of a vertex is connected, then it contains a path
of length 3, yielding a 4-cycle. Thus the neighborhood of any vertex is two cliques.
If a vertex has degree at least 5, then one of the cliques has at least three vertices,
yielding a 4-cycle. Thus

(A1) Gis4-regular and, for any v € V(G), G[N(v)U{v}] are two triangles identified
at v.

Since G is B(i, j)-free with i+ j = 7, by Theorem 1.4, we have 7,5 > 1. We prove
the lemma by considering the following three cases.
Case 1. B(i,j) = B(6,1).

Since G is a 4-connected K s-free graph and G does not have 4-cycles, by The-
orem 1.5, G has an induced subgraph B(6,0). Let B(6,0) be the graph obtained
from Py = vjvy...vg by adding a vertex v and joining v to v; and vy. By (Al),
let aj,as € V(G) — V(B(6,0)) be the other two adjacent neighbors of v, and let
bi,be € V(G) — V(B(6,0)) be the other two adjacent neighbors of v;.

Let x € {a,a2,b1,b2}. Since G does not have 4-cycles, N(z) N {vq,v3} = 0.
Furthermore, as G[{v, vy, vo} U{vs, ..., vs}U{z}] # B(6,1), N(x)N{vy, vs,...,vs} #
0. If N(a;) NV(B(6,0)) = {v,vs, v7}, then vy, vg, v7,v8 & N(az), since G has no 4-
cycles. By (CF1), vy & N(az), a contradiction. Therefore N(z) N {vy,vs,...,v8} #
{v,v6,v7}, and N(x) N {vy,vs,..., 08} € {{vs,v5},{vs,v6}, {v7, 08}, {vs}}. Without
loss of generality, we may assume that N(ai;) N V(B(6,0)) = {v,vs,v5}, N(ag) N
V(B(6,0)) = {v,v7,vs}, N(by) NV (B(6,0)) = {v1,vs,v6} and N(by) NV (B(6,0)) =
{v1,vs}.

Let ¢; € N(b2) N N(vg). Since G does not have 4-cycles, vg, v7,v9 & N(c1). Since
Gl{c1,ba, vs} U {v1,v9,v3, 04, 5,06} U{az}] # B(6,1), we have N(c;) NV (B(6,0)) =
{vs,v3,v4}. By (Al), there is co € N(vg) N N(v7). If N(c2) NV(B(6,0)) = {vg, v7},
then G[{cq, vs, v7} U {vs, vy, v3, 09, v1,b2} U {az}] is a B(6,1), a contradiction. So
N(e2)NV(B(6,0)) = {va,v3,v6,v7}. Then G is the line graph of the Petersen graph.

Case 2. B(i,j) = B(5,2).

Since G is a 4-connected K s3-free graph and G does not have 4-cycles, by Theo-
rem 1.5, G has an induced subgraph B(5,1). Let B(5,1) be the graph obtained from
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Py = v1v, ... vg by adding a vertex v and joining v to vy and vs. By (A1), let ay, as be
two adjacent neighbors of v; and a3 € N(v1) N N(vg). Then v,v3 & N({a1,as,as3}).

Suppose that N(az) N V(B(5,1)) = {v1,v2}. Let by,by € V(G) — V(B(5,1))
be two adjacent neighbors of as. Let z € {ay,a2} and y € {b;,bs}. Then N(x) N
{v4,v5,v6,v7, 08} # O and N(y) N {v4, vs, v6,v7,v8} # O (otherwise, G[{v,vq,v3} U
{v4,v5,v6,v7,v8} U {s,t}] is a B(5,2), where s = v if t € {a1,as}, or s = ag if
t € {b1,by}, a contradiction). Furthermore, vy € N({ay,as,b1,bs}) (otherwise, by
symmetry of by, by and ay,as, we have N(a;) NV (B(5,1)) = {v,vs,v6}, N(az) N
V(B(5,1)) = {v1,vs}, N(b1) NV (B(5,1)) = {vs,v6}, and N(by) NV (B(5,1)) = {vs}.
Thus ajvsbivga is a 4-cycle in G, a contradiction). Without loss of generality, we
assume that byvy, € E(G). By (CF1), byvs € E(G). Notice that G has no 4-cycles.
By symmetry of a; and ap, we may assume that N(a;) NV (B(5,1)) = {v1,vs,v6}
and N(az) N V(B(5,1)) = {v,vs}. Thus N(by) N V(B(5,1)) = {vr,vs}. Thus
G[{v, va,v3} U{vy, v5,v6,v7,b0} U {v1,a2}] is a B(5,2), a contradiction. Therefore,
N(a,g) N V(B(5, 1)) 7é {1)1, 1)2}.

Assume that vy & N({a1,a2}). Then, without loss of generality, we assume
that N(ay) N V(B(5,1)) = {v1,vs,v6} and N(ag) N V(B(5,1)) = {v1,vs}. Thus
N(a3) N V(B(5,1)) = {vi, v}, a contradiction. So vy € N({ai,as}). We assume
that vy € N(ay). Then N(ay )NV (B(5,1)) = {v1,v4,v5}. Thus N(a)NV(B(5,1)) =
{v1,vs} and N(a3) NV (B(5,1)) = {v1, ve, v, v7}.

Since d(v) = 4, let N(v) = {wvy,v3,b1,b2}. Then by € E(G), and N(b;) N
{vs,v4} = 0(i = 1,2). Thus N(b;) N {vs,ve,v7,v8} # O (otherwise, axb; ¢ E(G) as
bivs € E(G). Thus G[{as, vs, v7}U{vs, v4,v3, v, b;}U{vs, az}] is a B(5,2), a contradic-
tion). Since G has no 4-cycles, we may assume that N(b;) NV (B(5,1)) = {v, vs, v}
and N(by) NV (B(5,1)) = {v,vs}. Since G[{vs,vr, b, as}] # K13, asby € E(G). Let
N(vsg) = {bs, v7, a2, z}. Then zvs, xvy € E(G)(Otherwise, {z,vs3,v4} is a 3-cut in G).
By (A1), zv; € E(G). Therefore, V(G) = V(B(5,1)) U{a1, as,as, by, by, x} and G is
the line graph of the Petersen graph.

Case 3. B(i,j) = B(4,3).

By Theorem 1.3, G has an induced subgraph Py = v1vs...v19. By (Al), suppose
that a; € N(vs) N N(vg), az € N(vg) N N(vs) and az € N(vg) N N(v7). Since G does
not have 4-cycles, ay, as, as are all distinct non-adjacent vertices.

Consider N(aj). Since G does not have 4-cycles, N(ay) N {v3, vy, v7,08} = 0.
Since G is B(4, 3)-free, we have either N(ay) N {vi,v2} # 0 or N(ay) N {vg,vip} #
(. Without loss of generality, we assume that N(a;) N {v,v.} # 0. By (CF2),
N(a1) N {vg,v10} = 0. Since G[{ay,vs,ve} U {v7, vs,v9, 010} U {vy4,v3,v2}] is not a
B(4,3), ajve € E(G). By (CF1), N(ay) = {v1, va,v5, v}

Consider N(ay). Since G has no 4-cycles, N(ag) N {v1,vq,v3,v6,v7} = 0. Since
G is B(4,3)-free, N(az) N {uvs,v9} # 0. By (CF1), agvg € E(G). If agug € E(G),
then ayvig € E(G). Thus G[{ag, vy, v10} U {v4, v3,v9,v1} U {vs, v7,06}] is a B(4,3), a
contradiction. So asvg € E(G). Therefore, N(ag) = {vs, vg, V4, Vs }.

Consider N(az). Since G has no 4-cycles and vs € N(a;) N N(as), it follows
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that N(as) N {v1,va,vs,v9, V4, v5,a1,a2} = (. By (CF1), vzaz ¢ E(G). Since
Gl{as, ve,v7} U {vs, 04, v3, 2} U {vs, vg, v19] is not a B(4,3), azviy € E(G), and so
N(az) N (V(Pro)U{ar, as}) = {vs, v7,v10}. Therefore, G[{az, vs, vo} U{vy, v3, vo, v1 }U
{v10,a3,v6}] is a B(4,3), a contradiction. O

Lemma 3.2 If G is a 4-connected { K1 3, B(i,j)}-free graph with i +j =7, then G
has a 5-cycle.

Proof. Suppose that G is a 4-connected {K 3, B(i,j)}-free graph with i +j5 =7
and that G does not have 5-cycles. By Theorem 1.4, 7,5 > 1. By Theorem 1.3, G
has an induced subgraph Pjg = v1vs ... v1p.

(B1) If N(v;) N N(v;) # 0(1 <i < j<10), then j —i & {2,3}.

Let x € N(v;) N N(v;). Since G does not have 5-cycles, j —i # 3. If j —i = 2,
then w € N(viy1) — {z,v;, vi42}. By (CF1), we have either v;w € E(G) or v;ow €
E(G). Thus the 4-cycle zv;v; 10,100 can be extended to 5-cycle xv;wv; v 0 or
TV;V; 11w 2%, a contradiction. (B1) holds.

Case 1. B(i,j) = B(6,1)

Assume that v3 and vy have more than one common neighbor. Let a; and as be
two common neighbors of v3 and vy. By (B1), fori = 1,2, N(a;)N{v1, va, vs, v6, 07} =
(). Since G is B(6,1)-free, N(a;) N{vs, vy, v19} # 0. Since G has no 5-cycle, N(ai) N
N(ag) N{vs, vy, v10} = 0. Thus, by symmetry and (CF1), we have vgag, voas € E(G)
and ajvyg € E(G). Therefore, ajvsasvgvipa; is a b-cycle, a contradiction. So v
and v, have at most one common neighbor. Similarly, v, and v3 have at most one
common neighbor. Therefore, d(v3) = 4, and v3 and v, have exactly one common
neighbor. Similarly, d(vs) = 4, and v; and vg have exactly one common neighbor.

Let N(vs) = {vg,v4,a1,a2} and N(vg) = {v7,v9,b1,b2}. By (CF1), we assume
that a1 € N(v3) N N(vy), as € N(ve) N N(v3), by € N(vz) N N(vg), and by € N(vs) N
N(vg). Since G is B(6,1)-free, by (B1), N(a;) NV (Pig) C {v3, v, vs,v9,v10} and
N(az) NV (Pro) C {wvg,vs,v7, 08, V9, v10}. Since G has no 5-cycles, N(a;) NV (Py) =
{1)3,?}4,?}10} and N(ag) N V(Plo) = {Ug,vg,v'y,vg}. Slmllarly, N(bl) N V(Pl()) =
{v7,v8,v1} and N(bs) NV (Pyg) = {uvs,v9,v3,v4}. Thus, asvsvgbavsas is a 5-cycle
in GG, a contradiction.

Case 2. B(i,j) = B(5,2)

Assume that v4 and vs have more than one common neighbor. Let a; and as be
two common neighbors of vy and vs. By (B1), Na;) N {v1, v2, vs, v6, v7,vs} = () for
i =1,2. Since G is B(5, 2)-free, N(a;)N{vg, v10} # 0. By (CF1), vipa1, v10a2 € E(G).
Thus aqvi9agvsv4ay is a 5-cycle, a contradiction. So v, and vs have at most one
common neighbor. Similarly, v3 and vs have at most one common neighbor. Thus,
d(vy) = 4, and vy and vs have exactly one common neighbor.

Let N(vy) = {v3,v5,a1,a2}. By (CF1), we assume that a; € N(vs) N N(vs) and
as € N(v3)NN(vg). Since G is B(5,2)-free, by (B1), N(ai;)NV (Pig) C {v4, v5, vg, v10}
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and N (az) NV (Pyo) C {vs, vy, vs,v9,v10}. Since G has no 5-cycles, N(ay) N N(az) N
{Ug,vg,vlo} == @ By (CFl), N(al) N V(Pl()) == {U4,U5,U10} and N(ag) N V(Plo) ==
{v3, v4, v, V9 }. Thus, asvgvigaivas is a 5-cycle in G, a contradiction.

Case 3. B(i,j) = B(4,3)

Assume that vs and vg have a common neighbor. Let a; be a common neigh-
bor of vs and vg. By (B1), N(a1) N {ve, v3,v4,v7, 08,09} = 0. Since G is B(4,3)-
free, ayv1,a1v10 € E(G), contrary to (CF2). Thus vs and vg have no common
neighbors. Let aj,as € N(vs) — {vy,v6}; then ajas, ajvy, avy € E(G). By (Bl),
N(a;) N {vy,ve,v3,v6,v7,v8} = () for i = 1,2. Since G is B(4, 3)-free, vga,voas €
E(G). Thus ajvgasvsvsay is a 5-cycle, a contradiction. O

Lemma 3.3 If G is a 4-connected { K, 3, B(i,j)}-free graph with i + j =7, then G
has a 6-cycle.

Proof. Suppose that G is a 4-connected {K 3, B(i, j)}-free graph with i +j = 7
and that G does not have 6-cycles. By Theorem 1.4, 7,5 > 1. By Theorem 1.3, G
has an induced subgraph Py = v1vs ... v1p.

(C1) If N(v;) N N(v;) # 0 (1 <i<j<10), then j —i & {2,3,4}.

Let x € N(v;) N N(v;). Since G does not have 6-cycles, j —i # 4. If j —i = 3, let
w € N(viy1) — {x,v;, vir2}. By (CF1), we have either v;w € E(G) or vi0w € E(Q).
Thus the 5-cycle zv;v;11v;12v; 137 can be extended to a 6-cycle zv;wv; 1v;12vV;137 Or
TV V; 4 1WV; 12V 3%, a contradiction. So j — i # 3.

Assume that j —¢ = 2. Let N(viy1) — {z,v;, 0340} = {wy,...,w}. By (CF1),
either wyv; € FE(G) or wsv;1e € E(G) for s = 1,...,t. Assume that ¢ > 2. If
w1V, Wavie € E(G), then xvwiv;1wov; 07 is a 6-cycle in G, a contradiction. So
we may assume that wyv;, wov; € E(G) and wiv;i2, wev;re ¢ E(G). Since G is
claw-free, wywy € E(G). Thus zv;wiwyvi 110427 is a 6-cycle in G, a contradiction.
Sot =1. As G is 4-connected, N(v;41) = {w1,v;, vi42,2}. Consider T = N(z) —
{vi, Viv1, Vigo, w1}, T # 0, let y € T. Then either yv; € E(G) or yvi2 € E(G).
Thus G[{z,v;, vi11, w1, V1o, y}] must contain a 6-cycle, a contradiction. So T = () and
N(z) = {vi, Vi1, Viro, w1 }. Therefore, {wy,v;,vi42} is a 3-cut in G, a contradiction.
So j —1i# 2. (C1) holds.

Case 1. B(i,j) = B(4,3).

Assume that v; and v have a common neighbor. Let a; € N(v5) N N(vg). By
(C].), N(al) N V(Plo) = {U5,U6}. Thus G[{al, Us, 1)6} U {1)1, Vg, 1)3,?}4} U {U7,U8,U9}]
is a B(4,3), a contradiction. So vs and vg do not have common neighbors. Let a; €
N(vs) N N(vs). By (C1), N(ay) N {vy, ve,v3, 06, v7, 08,09} = 0. Thus G[{ay, vy, vs} U
{vg, v7,v8, v9} U{v1,v2,v3}] is a B(4,3), a contradiction.

Case 2. B(i,j) = B(5,2).
Let x € N(vq) N N(vs). By (C1), N(x) N {v1, v, v3, 06, v7,08,09} = 0. As G is
B(5,2)-free, zv19 € E(G). Similarly, yvg € E(G) for any y € N(vs) N N(vy).
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Assume that vy and vs have more than one common neighbor. Let aj,as €
N(vg) N N(vs). Then ajas, vigar,vipas € E(G). As G has no 6-cycles, N(aj) U
N(ag) — {a1, a2} = {vy,v5,v10}, and so {vy, v5,v10} is a 3-cut in G, a contradiction.
So vy and vs have at most one common neighbor. Similarly, v3 and v4 have at most
one common neighbor.

Consider N(vy), and let {vs,vs,a1,a2} € N(vg). Then we may assume that
a; € N(vg) N N(vs) and ay € N(v3) N N(vy). Then ayvig,a2v9 € E(G). Thus
a1V10V9G2V4Usay 18 & 6-cycle, a contradiction.

Case 3. B(i,j) = B(6,1).

Let # € N(v3) N N(vy). By (C1l), N(z) N {vq, v, vs,v6, 07,08} = 0. As G is
B(6,1)-free, N(x) N {vg,vi9} # 0. By (CF1), zvyg € E(G). Similarly, yvg € E(G)
for any y € N(vy) N N(vs3).

Assume that vz and v, have more than one common neighbor. Let aj,as €
N(v3) N N(vg). Then ajag, vipar, vipas € E(G). As G has no 6-cycles, N(a;) U
N(ag) — {a1,a2} = {vs,v4,v10}, and so {vs, vy, v10} is @ 3-cut in G, a contradiction.
So v3 and v, have at most one common neighbor. Similarly, vo and vz have at most
one common neighbor.

Consider N(v3), and let {va,v4,a1,a2} € N(vs). Then we may assume that
a; € N(vs) N N(vy) and ay € N(vg) N N(vs). Then ayvig,a0v9 € E(G). Thus
a1V10V9aoV3V4a is a 6-cycle, a contradiction. O

Lemma 3.4 If G is a 4-connected { K, 3, B(i,j)}-free graph with i +j =7, then G
has a 7-cycle.

Proof. Suppose that G is a 4-connected {K 3, B(i, j)}-free graph with i +j = 7
and that G does not have 7-cycles. By Theorem 1.4, 7,5 > 1. By Theorem 1.3, G
has an induced subgraph Pjg = v1vs ... v1p.

(D1) If N(v)) N N(v;) £ B(1 < i < j < 10), then j — i # {3, 4,5}.
(D2) For 1 <i <8, |N(v;)) N N(vi42)] < 1.
(D3) For 1 <i < 7,if N(v;) N N(vi2) # 0, then N(v;41) N N(viy3) = 0.

Let z € N(v;) N N(v;). Since G does not have 7-cycles, j —i # 5. If j —i = 4,
let w € N(viy1) — {vi,viy2}. By (CF1), we have either wv; € E(G) or wv;io €
E(G). Thus the 6-cycle xv; ...v;x can be extended to a 7-cycle zv,wv;i; ... v;x or
TV Vg1 W42 . .. V;&, a contradiction. So j — i # 4. Assume that j = ¢+ 3. Let
T = N(vit1) UN(vi42) — {x, v;, vi43}. Since G is 4-connected, |T'| > 1. If |T'| > 2, let
y1,y2 € T. By (CF1) and the fact that G is claw-free, G[{v;, V11, Vita, Viv3, T, Y1, Yo }]
must contain a 7-cycle, a contradiction. So |T'| = 1. Assume that 7" = {y}. Since
G is 4-connected, N(viy1) = {vi, viz2,y, 2} and N(vi12) = {viy1, virs, y, x}. Since
G is claw-free and G does not have 7-cycles, N(z) C {v;, vit1, Viyo, Virs, ¥}, and so
{vi, Vi3, y} is a 3-cut of G, a contradiction. Therefore, j —i # 3. (D1) follows.
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Suppose that z,y € N(v;)NN(v;12). By (D1) and (CF1), z,y € N(v;11) and xy €
E(G). Then G has the 5-cycle zvv;41v;10yx. Since G is claw-free and G does not
have 7-cycles, |(N({z,y, vit+1}) — {vi, Vize, x,y, vix1}| < 1 and then N({z,y,vi41}) —
{z,y,v;11} is a 2-cut or 3-cut, a contradiction. So (D2) follows.

Suppose that x € N(v;) N N(vi32) and y € N(v;11) N N(vi3). By (D1) and
(CF1), 2vi41,yvipe € E(G). Since G is claw-free and G does not have 7-cycles,
N{z,y,vis1,Visa}) — {2, Y, V5, Vis1, Vira, Virs} = 0, which implies that {v;,v;13} is a
2-cut of G, a contradiction. So (D3) follows.

Case 1. B(i,j) = B(4,3).

Assume that vs and vg have more than one common neighbor. Let aj,as €
N(vs) N N(vg). For i = 1,2, by (D1), N(a;) N V(Py) C {v4,vs,06,v7}. Since
G is B(4,3)-free, N(a;) N {vy,v7} # 0, contradicting (D2) or (D3). So vs and vg
have at most one common neighbor. Similarly, v4 and vs have at most one common
neighbor, and vg and v; have at most one common neighbor. Thus d(vs) = d(ve) = 4.
Let N(vs) = {vy, v, a1, a2} and N(vg) = {vs,v7,a1,a3}. By (D1), N(a;) NV (Py) =
{vs,v6}, and G[{aq, vs, vs} U{v7, vs, vg, v10} U{vg, v3, v} is a B(4, 3), a contradiction.
Case 2. B(i,j) = B(5,2).

Assume that vy and vs have more than one common neighbor. Let aj,as €
N(vg) N N(vs). For i = 1,2, by (D1), N(a;) N {vy,va,v7, 08,09, 010} = 0. Since G is
B(5,2)-free, N(a;) N {vs,v6} # 0, contradicting (D2) or (D3). So vy and vs have at
most one common neighbor. Similarly, v3 and v, have at most one common neighbor.
Thus d(vy) = 4. Let N(vy4) = {v3,vs5,a1,a2}. Without loss of generality, we assume
that a; € N(vy) N N(vs), as € N(v3) N N(vy). Similarly, let N(v7) = {ve, vs, b1, b2},
where by € N(vg) N N(v7),bs € N(v7) N N(vs).

By (D1), N(ay) N {1, va,v7,v8,v9,v10} = B. Since G is B(5,2)-free, N(aj) N
{v3,v6} # 0. Similarly, N(az)N{vq,v5} # 0. By (D2) and (D3), we have ajvg, agvy €
E(G). Similarly, bjvs, bovg € E(G), contradicting (D3).

Case 3. B(i,j) = B(6,1).

Assume that v3 and vy do not have common neighbors. Since G is 4-connected,
let aj;,as € N(vy) N N(v3) and by,by € N(vg) N N(vs). Then ayaz,biby € E(G),
vy &€ N(a1) U N(az) and vs &€ N(by) U N(by). Since G has no 7-cycles, a;b; ¢ E(G)
for i,7 € {1,2}. For i = 1,2, by (D1), N(a;) N {vs,ve,v7,08} = O and N(b;) N
{v1,v9,v7, 08, V9, 010} = 0. By (D2), we may assume that vya;,veb; € F(G). Since G
is B(6, 1)-free, we have ajvg € E(G). Thus G[{a1, v, v3}U{v1 }U{vg, vs, v7, 6, V5, b1 }]
is a B(6,1), a contradiction. So vs and v4 have a common neighbor. Similarly, v,
and vg have a common neighbor.

Claim 1. Assume that v and vy have exactly one common neighbor. Let a; €
N(v3) N N(vg), az € N(vy) N N(v3) and a3 € N(vy) N N(vs). Then

(i) N(ay) N {vy,va,v6, v7, 08,09} = (). Therefore, either N(a;) NV (Pig) = {vs,v4,v5}
or N(al) N V(Plo) = {Ug,’U4,’Ulo}.

(ii) N(ag) NV (Pyo) = {v1, v2,v3}.
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By (D1), N(ay)N{v1,vg, v7, 08,09} = (). Assume that a;ve € E(G). By (D1), (D2)
and (D3), N(ag) N {vy, vy, vs, v6, v7,v8} = 0. Since G is B(6,1)-free, agvy € E(G).
By (CF1), asvig € E(G). Since G has no 7-cycles, ajvs, ajv19 € E(G). If there is
y € N(ay) — {ag,ve,v3, 04}, then yvy € E(G) or yvy € E(G). 1If yuy € E(G), since
vs and vy have exactly one common neighbor, by (CF1), yvs € E(G). This implies
a 7-cycle yvsazvqvzvaaqy, a contradiction. So yvy ¢ E(G) and yvy € E(G). Since G
has no 7-cycles, yv; € E(G) and so yvs € E(G). By (D1), (D2) and (D3), N(y) N
{vg, 5,06, 07,08} = 0. As G is B(6,1)-free, yvg € E(G). By (CF1), yviy € E(G).
Thus yvgvigasvevsary is a 7-cycle in G, a contradiction. So N(ay) C {az, va, v3,v4}.
By the symmetry of a; and vs, N(v3) C {a1, ag, v2,v4}, and so {ag, vo,v4} is a 3-cut
of G, a contradiction. Claim 1(i) holds.

Assume that av; € E(G). Since G is B(6, 1)-free, asvg € E(G), and so asvig €
E(G). Thus N(az2) NV (Pi) = {va, v3,v9,v10}. Since G has no 7-cycles, vig & N(ay).
By Claim 1(i), N(a;) NV (Py) = {vs,vs,v5}. By (D3), asvg ¢ E(G). By (D1)
and (D2), N(a3) NV (Py) = {v4,v5}. Since G has no 7-cycles, asas ¢ E(G). Thus
Gl{ag, va,v3} U {vg, vg, v7,v6, 05, a3} U {v1}] is a B(6,1), a contradiction. So agv; €
E(G). By (CF2), N(ay) NV (Py) = {v1,v9,v3}. So Claim 1(ii) holds.

Claim 2. Assume that v and v, have more than one common neighbor. Let aq, as €
N(v3) N N(vy). Then, for i = 1,2, N(a;) N {vy, va,vg, v7,v8,v9} = (. Therefore, by
symmetry, N(a;) NV (Py) = {vs,v4,v5} and N(az) NV (Pyg) = {vs, va, V10}-

By (D1), N(a;) N {v1,ve, v7, 08,09} = 0. Without loss of generality, we assume
that a;ve € E(G). By (D2) and (D3), asve, asvs ¢ E(G). Since G is B(6,1)-free,
asvyy € E(G). Since G[{vy,a1,as2,v5}] is not a claw, ajas € E(G). Since G is
4-connected, there is a vertex y € (N({a1,v3}) — {a1,v3}) — {ve, ag, v4}.

If ya; € E(G), by considering G[{a1, y, va, v4}], we have N(y)N{uve,vs} # 0. As G
has no 7-cycles, N(y)N{vy, vs, vg, v7, Vs, Vg, 10} = 0. If yvy & E(G), then yvy € E(G)
and yvs € E(G) by (CF1), and so G[{y, ve, v3}U{v4, vs, Ug, v7, Vs, v }U{v1 }] = B(6,1),
a contradiction. If yvy € F(G), then yvy & E(G) by (D2) and yvs € E(G) by (CF1),
therefore G[{y, vs, vs} U{vs, vg, v7, V3, Vg, v10} U{v2}] = B(6,1), a contradiction. This
implies yvs € FE(G). By considering G[{vs, as,y,v2}], we have yvy, € E(G). By
(D2), yvy € E(G). As G has no 7-cycles, N(y) N {vy, vs, v, v7, U, Vg, v19} = . Thus
G{y, ve, v3} U{v, vs, v6, 7, U7, 09} U{v1 }] is & B(6, 1), a contradiction. Claim 2 holds.

Claim 3. Suppose that a; € N(v3) N N(vy) and by € N(v7) N N(vg). If N(aq) N
V(Plo) = {1)3, Uy, 1)10}, then N(bl) N V(Pl()) 7é {U17U7, Ug}.

Assume that N(by) NV (Pyg) = {v1, v7,vs}. If there is y € N(vs) N N(vg), since G
does not have 7-cycles, yay, yby ¢ E(G). By (D1), N(y)NV(Pio) C {vy, vs, v, v7}. If
N(y)NV(Py) = {vs,v6}, then G has a B(6,1) = G[{ay, v3, v4 }U{v10, vg, s, V7, V6, y }U
{v2}], a contradiction. By (D1), suppose that N(y) NV (Py) = {v4,vs,v6}. Let 3/ €
N(vs) — {v4,v6,y}. By (D2) and (D3) and the same discussion as y, y' & N(vg). So
y' € N(vg) NN (vs). By (D1) and (D3), N(y')NV(Pio) = {v4,vs}. Since G has no 7-
cycles, y'ay,y'by & E(G). Thus G[{y', va, vs} U {vs, v, v1, by, vs,v9} U{v}] = B(6,1),
a contradiction. So N(vs) N N(vg) = (. Therefore, there are ag, az € N(vy) N N(vs).
By (D1), N(a;) N V(Py) C {vs,v4,v5}(i = 2,3). Since G does not have 7-cycles,
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ashy, asby ¢ E(G). By (D2), one of ay and a3 has N(a;)NV (Py) = {v4, vs}, resulting
a B(6,1) = G[{a;, va, v5} U{v3, v, v1, b1, 05,09} U{vg}] again, a contradiction. Claim
3 holds.

By Claims 2 and 3, since G is B(6, 1)-free, either v3 and vy have exactly one
common neighbor, or v; and vg have exactly one common neighbor.

Claim 4. wv3 and v, have exactly one common neighbor, and v; and vg have exactly
one common neighbor.

By symmetry, we assume that v3 and vy have exactly one common neighbor,
and v; and wvg have two or more common neighbors. Let a3 € N(vs) N N(vy),
a3 € N(vy) N N(vs), and by,by € N(v7) N N(vg). By Claim 2, we assume that
N (b)) NV (Pyo) = {v1,v7,v8}, and N(by) NV (Pyg) = {v7,vs,v9}. By Claims 1(i) and
3, we have N(ay) NV (Py) = {vs,v4,v5}.By (D1), (D2) and (D3), N(a3) NV (Py) =
{v4,v5}. Since G has no T-cycles, asby,asby ¢ E(G). Thus G has a B(6,1) =
G[{as,v4,v5} U{vs,v9,01,b1, 08,09} U{vg}], a contradiction. Claim 4 holds.

By Claim 4, let a; € N(v3) N N(v4), ag € N(v2) N N(v3) and a3 € N(vg) NN (vs),
and let by € N(v7) N N(vg), bo € N(vg) N N(vg) and b3 € N(vg) N N(v7). By Claim
]_(11), N(ag) N V(Plo) = {1)1, 1)2,?}3} and N(bg) N V(Plo) = {1)8,7}9,?}10}.

Claim 5. N(al) N V(Pl()) = {1)3,?}4,?}5} and N(bl) N V(Pl()) = {UG,U7,U8}.

Assume that N(a;) NV (Py) # {vs,vs,v5}. By Claim 1(i), N(a1) NV (Py) =
{vs,v4,v10}. By Claims 1(i) and 3, N(by) N V(Py) = {vs,v7,vs}. By (D1), (D2)
and (D3), N(b3) NV (Pyy) = {vs,v7}. Since G has no 7-cycles, a;bs ¢ E(G). Thus
G[{bs, vs, v7} U{vs, v9, V10, a1, v3,v2} U{vs}] is a B(6,1), a contradiction. So N(a;)N
V(Py) = {vs, v4,v5}. By symmetry, N(by) NV (Py) = {vs, v7,vs}. Claim 5 holds.

Now we finish the proof of Case 3. Since G does not have 7-cycles, | N (a3 )UN (vq)—
{a1,v4,v3,05,a3}| < 1. Since G is 4-connected, |N(a1) UN (vy) —{a1, v4, v3,v5,a3}| =
1. Let ay € N(ay) U N(vy) — {aq,v4,v3,vs5,a3}. Since G has no 7-cycles, ayvs, agvg &
E(G). Thus aqvy € E(G) (if a1a4 € E(G), then either aqvs € E(G) or ayvs € E(G).
By (CF1), aqvs € E(G)). By Claim 4, N(ay) NV (Pig) = {v4,v5}. Since G is claw-
free, G[{a1,as,as,v4,v5}] is a K5, and so N(ay) = {vs, vy, v5,a3,a4} and N(vy) =
{v3,v5,a1,as,a4}. Similarly there is by € N(by) U N(v7) — {vs, vs, b3} with N(bs) N
V(Py) = {vs,v7}, and N(by) = {ve,v7,vs,b3,bs} and N(v7) = {vs,vs, b1, b3, ba}.
Since G has no 7-cycles, a;b; & E(G) for i,5 =1,2,3,4.

Let N(v1) — {az,v2} = {c1,¢2,...,¢5}(s > 2), and let ¢ € {1,...,s}. Then
N(¢;) N{ay,vg,b1,v7} = . Since G has no 7-cycles, N(¢;) N {vs,vg, a3, a4} = 0. If
civs € E(G), then, by (CF1), ¢vg € E(G). By Claim 1(ii), ¢;v190 € E(G), and so
{v1,v8, 09,010} C N(c;)NV (Pyo), contrary to (CF2). So c;us € E(G). If ciug € E(G),
then c;v19 € E(G). Since G[{¢;, vg, 19} U{vs, v7, g, U5, V4, v3} U{v1}] is not a B(6, 1),
we have cu3 € E(G), contrary to (D2). So cue & E(G). If cuyg € E(G), by
symmetry, ¢;vq,c;v3 & E(G). Thus G[{as, vy, vs} U {vg, v7, vs, Vg, V10, ¢;} U {v3}] is
a B(6,1), a contradiction. So c¢;vi9 € E(G). If ¢;bs € E(G), as G has no 7-cycles,
cive, civy & E(Q), so G[{bs, ve, vz} U{c;, v1, va, 03,04, a3} U{vg}] is a B(6,1). So ¢;b3 &
E(G). If c;uy & E(G), then ¢;u3 € E(G), so G[{bs, v, v7}U{vs, vy, 3, v, v1, ¢; }U{vg}]
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is a B(6,1). This shows that ¢;uvs € E(G). By (D2), ¢ivs ¢ E(G). Therefore,
N(c;) NV (Py) = {v1,v2}, and G[{c1,¢a,...,cs}] is a K. Since G has no 7-cycles,
s =2

Consider N(az) and N(vq). Since G has no 7-cycles, we have N(vq) = {v1,v3, c1,
¢o,a} and N(ag) C {cy, 2, v1,v9,v3}. Thus {cy, ¢, v3} is a 3-cut in G, a contradic-
tion. ]

Lemma 3.5 If G is a 4-connected { K, 3, B(i,j)}-free graph with i +j =7, then G
has an 8-cycle.

Proof. Suppose that G is a 4-connected {K 3, B(i,j)}-free graph with i +j5 =7
and that G does not have 8-cycles. By Theorem 1.4, 7,5 > 1. By Theorem 1.3, G
has an induced subgraph Py = v1vs ... v1p.

(E1) If N(v;)) N N(v;) #0 (1 <i < j <10), then j —i ¢ {4,5,6}. Therefore, for
some & € V (Pigy, if {vi, viy2} € N(2)NV(Py) (2 <1 < 7), then zvq € E(G),
and if {v;, vi43} € N(x) NV (Py) (2 <i <6), then zv; 41, 2042 € E(G).

(E2) Let 2 € N(v;) " N(vis2) —{vis1} (1 <i < 7). Then N(viy1) N N(viy3) C {z}.
Therefore, there do not exist x,y € V(G) — V(Py) such that (N(z) UN(y)) N
V(Plo) = {UZ',’UZ‘Jrl, Vit2, Uz’+3} and mm(\N(x) N V(Plo)‘, ‘N( ) N V(Plo)‘) > 3,
where 1 <17 < 7.

(E3) Assume that aj,as € N(v;) N N(vi41) N N(vigo) (2 < i < 7), and let T =
N({ah ag, Uz’+1}) - {ah a2, Vi41, Uz'avi+2}-
(i) For y € T, yvi11 € E(G).
(ii) Let y € T and w € N(y) N {v;, vira}, Gl{a1,a2,y,vi41, w}] is a complete
graph.
(iii) |T| = 2, and for any y € T, |[N(y) N{v;, vize}| = 1. If T = {y1,y2}, then
N(al) = {az,UHl,yl,yQ,UuUHQ}, N(GQ) = {al,vi+1,y1,yz,vi,vi+z}, N(’Ui+1) =
{a1, a2, 91, Y2, vi, viya}

e |

Vi Uiyl Vig2 Uy Ui41 Uig2

Figure 2. Graph for (E3)

(E4) Assume that N(z) NV (Py) = {vi, Viy1,vize}, and y € N(x) — {v;, 011, Viga}-
Then yv;13 € E(G)ifi < 7and yv;_1 € E(G) ifi > 2. Therefore, for 2 <1i <7,
yviy1 € E(G), and N({z,vi11}) = N(vip1) = N(z).
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Let x € N(v;) N N(v;). Since G has no 8-cycles, j —i # 6. If j —i = 5,
then let w € N(vip1) — {vi,vi40,2}. By (CF1), either wv; € E(G) or wuig €
E(G). Thus the 7-cycle zv;...v;x can be extended to an 8-cycle xv;wv;i;...vx
O TVVj41 W42 ...0;T. S0 j — 14 # 5. Assume that j —¢ = 4. Consider the set
S = (N({vis1,vir2, virs}) —{vis1, Vire, vigs}) —{x, vs, vira}. Then |S| > 1. If |S] = 1,
let S = {y}. Since G is 4-connected, we have z € N(v;y;) for [ = 1,2, 3, therefore
|IN(z) N V(Py)| > 5, contradicting (CF2). So |S| > 2. Let wy,ws € S. Then, by
(CF1) and G is claw-free, the 6-cycle xv;v;41 ... v;x can be extended to an 8-cycle
by inserting w; and wy, a contradiction. So j — i # 4. (E1) holds.

Assume that y € N(vi41) N N(viy3) and y # x. Let S = (N({z, ¥, vig1, Viza}) —
{,y,vi41,vi42}) — {vi, viy3}. Since G is 4-connected, |S| > 2. Let wy,wp € S. If
wy, wy € N(z)UN(y)U(N(v;) YN (vi41)) U (N (vig2) YN (vi43)), then we can insert w;
and wq into the 6-cycle v;v;11Yv; 1304 22v; to have an 8-cycle. Otherwise, by (CF1),
we may assume that w; € N(v;41) N N(vi42). Since wqv;, wyviy3, iz, w1y € E(G),
xy, TVt 3, yv; € E(G). Then we can insert w; and wy into either v;v; 110420, 13yxV;,
YUi 11012V 43TV;Y, OF T2V 110;YV+3T to have an 8-cycle, a contradiction. (E2)

holds.

By (E2), a1v;_1, 01043, a2v;_1, 020,43 ¢ FE(G). Thus ajay € E(G). Since G
is 4-connected, |T| > 2. Let y € T and assume that yv;; ¢ E(G). Without
of loss of generality, we assume that yay € E(G). Since G is claw-free, we have
either yv; € E(G) or yvio € E(G). We assume that yv;1o € E(G). By (CF1),
yvips € E(G). Since |T| > 2, let z € T — {y}. If 2 € N(ay), then we can insert
z into the cyle v;a1v;1 201 3ya2v; 1 1v; to have an 8-cycle; if z € N(v;yq), we can
insert z into the cycle v;v; 110,100 13yasa1v; to have an 8-cycle. We may assume
that z € N(az) — (N(a1) U N(viy1)). If zv; € E(G), then we have an 8-cycle
Vi 2G9Y Vi 43V 12V 1010;; if zv; € E(G), then zv,,9 € E(G). Since G is claw-free,
yz € F(G). Then we have an 8-cycle v;v;410;420;13y2a2a1v;, a contradiction. So
yviy1 € E(G). By (CF1), we assume that yv; € E(G). By (E2), yv;_1 € E(G).
Since G is claw-free, ya,yas € E(G). Thus G[{ai,as,y,vit1,v;}] is a complete
graph, so (E3)(ii) holds. Notice that G' has no 8-cycles and is claw-free, |T'| = 2, and
N(Ch) = {a2,Ui+1,y1,y2,Uz‘,Ui+2}, N(GQ) = {al,vz‘+1,y1,y2,vz‘,vi+2}, and N(U¢+1) =
{ar, a2, 41,92, vi, viva}. Let T = {y1, 42} If yavi,yivipe € E(G), then N(y,) =
{Y2, Vi, Vis1, Viya, a1, a2} and so {ya,v;,v;42} is a 3-cut in G, a contradiction. So
IN(y1) N {vi, vire}| = 1. Similarly, |N(y2) N {v;, vis2}| = 1. (E3) holds.

Assume that yv, 3 € E(G). By (E2), yvi1 € E(G). Since d(viyq) > 4, let
z € N(vip1) — {vi,vis2,2}. Then we have either zv; € E(G) or zv,o € E(G).
Let C' = zvzvi104203yx if zv; € E(G), or C = 2004120420 13yx if 20,09 €
E(G). Then C is a 7-cycle in G. Notice that G has no 8-cycles, N({x,vi11,vi42} —
{z,vis1, 00} C {y,z,v;,v03}. Thus {y,z,v;,v;13} is a 4-cut in G. Therefore,
N(y) — {x, 2,0, Vit1, Vir2, Viy3} # 0. Since C is a T-cycle in G and G does not have
8-cycles, xv;13 € E(G), a contradiction. So yv;3 € E(G). Similarly, yv;_1 € E(G).
Since G is claw-free, by (CF1), yv;11 € E(G). So (E4) holds.

We will prove the lemma by considering the following three cases.
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Case 1. B(i,j) = B(4,3).

Assume that vs and vg have more than one common neighbor. Let aj,as € N(vs)N
N(vg). By (E1), N(a;) N{vy,vq, 09,010} = 0. If vza; € E(G), by (El), via; € E(G).
By (E1) and (E2), ayvs, agvy, agvr, agvg & E(G). So G[{ag,vs, ve} U{{v7, vs,vg, v10} U
{v4,v3,v9}] is a B(4, 3), a contradiction. So vga; ¢ E(G). Similarly, asvs, ajvs, asvg &
E(G). Since G is B(4,3)-free, a; N {vy,v7} # 0. By (E2), we may assume that
N(a1) NV (Pyo) = N(az) NV (Pig) = {vg,vs,v6}. By (E3), let T'= N({ay,az,vs5}) —
{a1, az,v5,v4,v6} = {y1,y2}. Then |[N(y1) N {vy, v6}| = 1. By symmetry, we assume
that y1v4 € E(G). By (E1) and (E2), N(y1)N{v1,vs, v, 08,09} = 0. By (CF1), yyvs &
E(G). So G[{y1,v4,vs} U{ve, v7, 08,09} U {v3,09,v1}] is & B(4, 3), a contradiction.

Assume that vz and vg have one common neighbor. Let a; € N(vs) N N(vg),
as € N(vg) N N(vs) and a3 € N(vg) N N(v7). Then agvg, agvs ¢ E(G). By (E1) and
(CF]_), N(CLQ)QV(PN) Q {Ug, V3, Uy, U5} and N(al)ﬂV(Plo) Q {1)3,?}4,?}5,?}6, U7, Ug}. If
v € N(ay), then by (CF1), vy € N(ay). By (CF2), N(ay) NV (Py) = {vs3, v4, v5, 06},
and so G[{a1,vs, v} U {v7,vs,v9, 010} U {v3,va,v1}] is a B(4, 3), a contradiction. So
ajvs € E(G). Similarly, ajvg € FE(G). Notice that N(ay) N {vg,v7} # 0. By
symmetry, we assume that ajvy € E(G). Consider N(ag). By (E2), ayvs € E(G).
By (CF1), veay ¢ E(G). Thus N(az) NV (Py) = {vs4,v5}, and so G[{az,vs,v5} U
{vg, v7,v8, U9} U {v3,va,v1}] is a B(4,3), a contradiction. So vs and vg do not have
common neighbors.

Let aj,as € N(vs) N N(vs). By (E1), N(a;) N {v1,vs,v9,v10} = 0. Since
ve & N(a1) U N(ag), by (CF1), v; & N(a1) U N(az). Thus ajay € E(G). If vya; €
E(G), by (CF1), vsa; € E(G). By (E2), asvs,asv3 & E(G). Thus G[{ag, v4,v5} U
{ve, v7,v8,v9} U {v1,v9,v3}] is a B(4,3), a contradiction. So ayvy ¢ E(G). Simi-
larly, asve € E(G). Since G is B(4,3)-free, N(ay) NV (Py) = N(az) NV (Py) =
{vs,vg,v5}. By (E3), let S = (N({a1,a2,v4}) — {a1,a2,v4}) — {v3,v5} = {v1, 92}
Then y1v4,y0v4 € E(G). For i = 1,2, if N(y;) N {vs,vs,v5} = {v4,v5}, then,
by (E1) and (E2), G[{y:,vs,vs5} U {vg,v7,vs,09} U {v3, 09,01} = B(4,3), a con-
tradiction. So N(y;) N {vs,vs,v5} = {vs,v4}. By (El), (E2) and (E3), N(y;) N
V(Pwo) = {vs,va}, N(a1) = {ag,v3,04,05,91,%2}, N(az) = {a1,v3,v4,05,91, Y2},
and N(vy) = {a1,a9,v3,v5,y1,y2}. Since vs and vg do not have common neigh-
bors, N(vs) = {a1,a2,v4,v6}. Similarly, let by,bs € N(vg) N N(v7). Let T =
(N(bl) U N(bg) U N(U7) - {bl, b27U7}) - {1)6, Ug} = {21, ZQ}. Then N(Zl) N V(Pl()) =
N(z)NV (Pyg) = {vr,vs}, G[{b1, ba, 21, 22, v7, 08 }] is a K¢, and N (vg) = {b1, ba, v5, v7},
N(v7) = {b1, b, 21, 20, 06,08}, N(b1) = {ba, 21, 22, V6, v7,v8} and N(by) = {by, 21, 22,
vg, U7, Vs } (see Figure 3).

Ve ] Vg V10

Figure 3.
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Now let us consider N(vy). Let € N(v1) — {va}. Then N(x) N {ay,ag, by, b, vy,
vs, Vg, v7} = (. Since G has no 8-cycles, xy;,xy, € E(G). If © € N(vy), then, by
(CF1), zvs ¢ E(G). Since G[{y1,vs,vs} U {vs,vs, v7, 08} U {v9,v1,2}] # B(4,3),
we have zvg € E(G). Similarly, zz;,220 € E(G). This would result in the 8-
cycle vgvrv2921b1b9v6. So x € N(vg), and N(z) NV (Py) C {v1, v2,v3,v9,v10} and
21,229 € E(Q).

Let W = N({Ulav%UB}) - {U17U27/U37a17a27U4ay17y2}7 Wl = {lC ‘ S N(Ul) N
N(vg) N N(v3)}, Wo={z | x € N(vy) N N(vg) — N(v3)} and W5 = {z |z € N(vg) N
N(Ug) — N(Ul)} Then N(’Ug) = W1 U W2 U W3 U {Ul, Ug}, N(’Ul) = W1 U WQ U {’Ug}.
Also, G[Wy U {vy,v2}], G[W; U W5 U {vq,v3}] are complete subgraphs in G, and
NWy) — Wy = Wo U W3 U {vy,v9,v3}. Thus Wy U Wy U {wve} is a cut in G. For
i=1,2,3, let w; = |W;]. Since G is 4-connected, we have w; + wy > 3.

Since G is 4-connected, |[N(Ws) — (Wo U {v1,v9})| > 2. Consider Wj = N(Wy) —
(W1 U W3 U {vy,v9,v3}). If Wi = 0, then W3 U {v3} is a cut in G, and so w3z > 3.
Thus wy + we + w3 > 6. Therefore, G[W U {vy, v9,v3}] must contain an 8-cycle, a
contradiction. So Wj # (). Let d € W) and ¢ € W, with ed € E(G). Then duy, dvs ¢
E(G). Clearly, N(d) N {vy,vs, v, v7} = 0. Since G has no 8-cycles, cy1,dy; € F(G).
Since G[{y1,vs,v4} U {vs,v6, v7, 08} U {ve,c,d}] # B(4,3), dvs € E(G). Similarly,
dz1,dzy € E(G). Thus vgbybavgdzaziv7v6 is an 8-cycle in G, a contradiction.

Case 2. B(i,j) = B(5,2).

Assume that vs and vg do not have common neighbors. Let aj,ay € N(vg) N
N(vs). By (E1), N(a;) N {v1,vs,v9,v50} = 0. Since vg & N(ay;) U N(az), by
(CF1), v; € N(ay1) U N(az). If vea; € E(G), by (CF1), vsa; € E(G). Then
G{ai, vy, v5} U {vg, v7,vs8, 09,010} U {va,v1}] is a B(5,2), a contradiction. So ajve &
E(G). Similarly, asvy ¢ E(G). Since G is B(5,2)-free, N(ay) NV (Py) = N(ag) N
V(Py) = {vs,vs,v5}. By (E3), let S = (N({a1,a2,v4}) — {a1,a2,v4}) — {v3, 05} =
{ylva}a N(al) = {vg,v4,v5,y1,y2,a2}, N(CL?) = {U37U47U5ay1ay27a1}7 and N(U4) =
{vs, vs, a1, as,y1,y2}. Also, |[N(y1) N {vs,vs}| = 1. Notice that G has no 8-cycles. If
y1v3 € E(G), then, by (E1), (E2), N(y1) NV (Pio) = {vs,v4}, and so G[{y1, vs,v4} U
{vs, v6, V7, U8, V9 } U {vg,v1}] = B(5,2); if yyvs € E(G), then, by (E1), (E2), N(y1) N
V(Pi) = {v4,v5}, and so G[{y1,v4,v5} U {vs, v7, V8, 09,010} U {v3,12}] = B(5,2), a
contradiction.

Assume that vz and vg have one common neighbor. Let a; € N(vs) N N(vg),
as € N(vg)NN(vs) and a3 € N(vg) NN (v7). Then asvg € E(G). By (E1) and (CF1),
N(CLQ) mV(Plo) Q {1)2, V3, U4, U5}. Since G[{a,g, V4, U5}U{U6, U7, Vs, Vg, Ulo}U{Ul, 1)2}] =
B(5,2) if agvy € E(G) and G[{ag, v4, vs} U {vs, v7, U8, V9, 10} U {09, v3}] = B(5,2) if
asvy € E(G), we have N(ay) NV (Py) = {vs3,vs,v5}. Consider S = N({az,v4}) —
{ag,v3,v4,v5}. Let y € S. By (E4), yvy, € E(G). We want to prove that y €
N(v3) N N(vy) N N(vs). Otherwise, we have yuvg, yvs € E(G), but yvs ¢ E(G). By
(E1) and (E2), N(y)N{va, v7,vs, v9, 010} = 0, and so yvg & E(G) by (CF1). Since G is
B(5,2)-free, vy € E(G). Let w € N(vy). Thus we have an 8-cycle vy wuyvzasvsviyvy
Or V1 VWV3A2V5V4YV1, & contradiction. So, for any y € S, y € N(vs) N N(vy) NN (vs).
Therefore, {vs,v5} is a 2-cut in G, a contradiction.
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Therefore, v5 and vg have more than one common neighbor. Let aj,as € N(vs) N
N(vg). For i = 1,2, by (E1), N(a;) NV (Pi) C {vs, vs, v5, 06, v7,0s}. If v3 € N(a;),
then by (CF1), vy € N(a;). Thus G[{a;, vs,vs} U {ve, v7,vs, 09,010} U {v1,v2}] is a
B(5,2), a contradiction. So vsa; ¢ E(G). Similarly, vsa; € E(G). So, for i € {1,2},
N(a;) NV (Pyp) C {vy,vs,v6, v7}.

Claim 2.1. Both |N(a1) N V(P10)| S 3 and |N(CL2) N V(P10)| S 3.

Assume that N(ay) NV (Py) = {v4,vs,06,v7}. By (E2), N(az) N V(Py) =
{vs,v6}. Let ag € N(vy). Then agvs ¢ E(G) (otherwise, by (E1) and (E2),
N(a3) N {vs, v, v7, v, Vg, v19} = 0. Since G is B(5,2)-free, veaz € E(G). This would
result in the 8-cycle vyazvsvgvravv3v9, a contradiction). By (CF1), azvz € E(G).
By (El) and (E2), N(a3) N {vs,vs, 07,0, 09,010} = 0. Since G is B(5,2)-free,
N(az)N{vi,v2} # 0. Let x € N(vy)— {'02} By (E1), N(z)N{vs,vs,v7} = 0. Since G
has no 8-cycles, N(x)N{vs,a1,as} = 0. Thus N(z)NV (Py) C {v1,ve, v3, v, Vg, V10 }

We claim that via3 € E(G). Otherw1se N(a3z) NV (Pyo) = {ve,v3,v4}. Consider
N(vy) = {ve,c1,¢a, ...t }(t > 3). By (El), civs € E(G). By (CF1), cuy & E(G).
Since G[{az,vs,v6} U {va,v3,v2,01,¢;} U {v7,v8}] # B(5,2), ¢;va € E(G). Thus
N(c;) NV (Py) = {v1,v2} and so G[N(v1) U {v1}] is a complete subgraph in G.
Since G is 4-connected, there is a vertex z such that z¢; € E(G) but zve € E(G)
for some ¢;. Since G has no 8-cycles, N(2) N {ay,as,vs,vy4,vs5,06, 07,08} = 0. So
G[{az, vs, v6}U{vg, v3, v, ¢;, 2} U{v7,vs}] = B(5,2), a contradiction. So v1a3 € E(G).

Let N(v1) = {wvg,as,dy,...,ds}(s > 2). Since G has no 8-cycles, N(d;) N
{vs,v6,v7,v8} = (0. Since G[{az,vs,ve} U {v4,v3,v2,v1,d;} U{vr,vs}] # B(5,2), we
have N(d;) N {vg,v3,v4} # 0. If djvy € E(G), as dyvs € E(G), we have d;uz € E(G).
By (E2), agvy, djvy ¢ E(G). Thus the 6-cycle vid;v a3v3vav; can be extended to an 8-
cycle by considering the two neighbors of v, which are not in V' (Pyg), a contradiction.
So divs & E(G). By (CF1), dyvy € E(G). By (E2), divs & E(G). Thus G[N(v1)] is a
complete subgraph in G. The 7-cycle vid;dyvov3v4a3v1 can be extended to an 8-cycle
by considering a neighbors of v3 which are not in {vs, v4, a3}, a contradiction.

Claim 2.2. |N(CL1) N V(P10)| =2 and |N(CL2) N V(P10)| = 2.

Assume that N(a;) NV (Py) = {v4,vs,v6}. By (E2), agv; &€ E(G). Thus N(az)N
V(Pro) C {vy,vs,v6}. Consider N(v7). Let y € N(v7) — (V(Pio) U{a1,as}). Assume
that yus € E(G). By (E1) and (E2), N(y) N {vs, vs, va,v1,v10} = 0. Thus yv, &
E(G). Since G[{y,vs,v7} U {vs, v4,v3,v2,v1} U {vs,v9}] is not a B(5,2), N(y) N
{vg,v9} # 0. If yvg € E(G), then G[{y,vs,v7} U {vs, v4,v3, 02,01} U {vg,v10}] is a
B(5,2), a contradiction. So N(y) NV (Py) = {vg,vr,vs}. Let S = N(y) U N(v7) —
{ve,vs}, and let w € S. By (E4), wv; € E(G). Then w € N(vg) N N(v7) N N(vs)
(Otherwise, we have wvg € FE(G) by considering the method we just used above for
y € N(v7). By (CF1), wvg € E(G). Since G has no 8-cycles, by (E1) and (E2),
N(w) N {vy,vg,v3,v4,v5,09} = 0. Since G is B(5,2)-free, wvyg € E(G). Thus the
T-cycle vgyvgvgvigwvrve can be extended to an 8-cycle by considering a neighbor of
vg, a contradiction). Hence, {vg,vs} is a 2-cut in G, a contradiction. So, for any
y € N(vr), yvs & E(G).

Let as,aqs € N(v7) — {vs,vs}. Then, for i = 3,4, aug € E(G), and N(a;) N
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{v1,v9,v3, 04,05} = 0 by (E1) and (E2). Since G is B(5,2)-free, N(a;) N{vy, vip} # 0
(1 = 3,4). Assume that azvg € E(G). Then azvig € E(G). By (E2), aqvg ¢ E(G),
and so a4vyg € E(G). Thus the 6-cycle vvgvgvigasasvy can be extended to an 8-
cycle by considering two neighbors of vg, a contradiction. So azvg € E(G). Similarly,

asvg € E(G). By (E1) and (E2), N(a;) NV (Py) = {vr,vs,v9}. Then azay € E(G).

Let S = N({as,aq,vs}) — {as, a4, vs,v7,09}. Since G is 4-connected, let S =
{c1,¢9,...,¢}(t > 2). Fori=1,2,...,t, by (E4), cius € E(G). By (CF1), we have
either ¢;u; € E(G) or ¢iug € E(G), and so t = 2. Furthermore, ¢;u; ¢ FE(G) (oth-
erwise, N(¢;) NV (Py) = {vr,vs,v9} and so {c1,ce,v7,v9} — {¢;} is a 3-cut in G, a
contradiction). Thus G[{as, ay, vs, vo, 1,2 }] is a complete subgraph in G, N(a3) =
{1)7,?}8,?}9,(14,01,02}, N(a4) = {1)7,?}8,?}9,(13,01,02}, N(Ug) = {1)7,1)9,(13,(14701,02}.
Since G has no 8-cycles, by (E1) and (E2), N(¢;) N {vq, v3, vy, v5, v, 07,010} = 0
(i=1,2).

For i = 1,2, consider C; = N(¢;) — {vs, vg, as, aq, c1, c2}. Since G is 4-connected,
C; # 0. Let d; € C;. Since G has no 8-cycles, C; N Cy = 0, and there are no
edges between Cy and Cy. Thus didy ¢ E(G). Let e; € N(d;) — {c;}. Since G
has no 8-cycles, e; and ey are different vertices, ejes & E(G), N(e1) N N(eg) = 0,
N(d;) N{vs,v4,...,09} = 0 and N(e;) N {vg,vs,...,v9} = 0. Since G[{¢;, vs,v9} U
{v7,v6,v5,v4,v3} U {d;, e;}] is not a B(5,2), e;v3 € E(G), a contradiction. So Claim
2.2 holds.

By Claim 2.2, we have N(a;) NV (Pyg) = N(az) NV (Py) = {vs,v6}. Actually,
for any x € N(vs) N N(vg), N(z) N V(Py) = {vs,v6}. Let y € N(vyg). Assume
that yvs € E(G). Then yvs ¢ E(G) by Claim 2.2. By (E1) and (E2), N(y) N
{v1, v8, 9, v10} = 0. Thus yv; € E(G). Since G[{y, v4, vs}U{ve, ..., v10} U{v2,v3}] #
B(5,2), N(y) N {vg,v3} # 0. Notice that G[{y,vs,v5} U {vs,...,v10} U {v1,v2}]
would be a B(5,2) if yvy € E(G). So yve € E(G) and then yvs € E(G). Consider
S = N(y) U N(vy) — {vs,vs}, and let z € S. By (E4), 2 € N(vy). Next we
want to prove that z € N(vs) N N(vy) N N(vs). Otherwise, we have zvs ¢ E(G) and
zv3 € E(G). By (E1) and (E2), N(z)N{vg, vs, v7, Vs, Vg, v10} = . If zv; € E(G), then
the 7-cycle vivovsyvsvzv can be extended to an 8-cycle by considering a neighbor
of vy. This tells us that zv; € E(G). Thus G[{z,vs,v4} U{vs,...,v9} U{v1,v2}] is a
B(5,2), a contradiction. Thus z € N(v3) N N(vg) N N(vs), and so {vs,vs} is a 2-cut
in G, a contradiction. So, for any y € N(vy), yvs € E(G).

Let N(v4) — {vs,v5} = {c1,¢2,...,¢}(t > 2). Then c;us € E(G), c;vs € E(Q)
for i =1,2,...,t, and ¢;c; € E(G) for 1 < ¢ < j <t. By (El) and (E2), N(¢;) N
{vr,v8,v9,v10} = 0. By (CF1), cyug € E(G). If ¢;u; € E(G) for some i, then the
cycle vicicit1 ... cecq ... ;104030901 can be extended to an 8-cycle by considering
neighbors of vy. So, for i = 1,2,...,t, vy € E(G). Thus v, € E(G) since
G{ci,v3, v} U{vs, ..., v10U{v1, v12}] # B(5,2). Similarly, |N(v7) NN (vs) NN (vg)| >
2. Let dy,dy € N(v7) N N(vg) N N(vg). Then dyids € E(G).

Consider S = N({c1,¢a,...,¢,v3}) — {c1,¢2, ..., ¢, 09,03, 04}, and let w € S.
Then wvy, ¢ E(G). By (E4), wus € E(G). By (CF1), wvy € E(G). By (E1) and
(E2), N(w)N{vy,vs,vq, v7,08,09} = 0. Let Vi = N(v) —{vo} = {e1,e9,...,€5} (s >
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3). Since G has no 8-cycles, N(e;) N {ci,...,c,w,v3,04,...,07} = 0. Considering
G{w, v, v3} U {uvy, vs, v6, v7,v8} U {v1,€;}], we have N(e;) N {vq,v3} # 0. Since G
has no 8-cycles, |{¢; | e;vs € E(G)}| < 1. (Otherwise, assume that ejvs, eqvs €
E(G). By (CF1), ejvg, 209 € E(G). Thus vrvgeivieavgdadivy is an 8-cycle in G, a
contradiction.) So we assume that, for ¢ = 2,3,...,s, we have e;us ¢ E(G), and so
€Uy € E(G)

Let Vo = N({ea,...,es}) — {e1,ea, ..., e5,v1,02}. Since G is 4-connected, |Va| >
2. Furthermore, there are two vertices in V, adjacent to two different vertices in
{ea,...,es}. Without loss of generality, we assume that f,, f3 € V5 such that
eafa,esfs € E(G). Then fouy, fsvn € E(G). For i = 2,3, if fivs € E(G), then
fivs € E(G). Thus vie; fiuzvscacivovy is an 8-cycle in G, a contradiction. So
fava, fave & E(G). Since G has no 8-cycles, N(f;) N {w,vs, vy, v5, 05,07} = O(i =
2,3). Notice that G[{w, va, v3} U {vg, vs, v6, v7, 08} U {e;, fi} # B(5,2) for i = 2,3,
fivs € E(G) and so fivg € E(G). This would result in an 8-cycle vyey fovgvg fezvavy,
a contradiction. This finishes the proof of Case 2.

Case 3. B(i,j) = B(6,1).
Claim 3.1. Let x € (N(v3) — {v2,v4}) — N(v4), and let y € (N(vg) — {v7,v9}) —
N(v7). Then N(x) NV (Pyy) = {v1,v2,v3} and N(y) NV (Pyo) = {vs, vg, v10}

Since zvy € E(G), by (CF1), zvy € E(G). By (E1), N(x)N{vs, v7,vs,v9} = 0. By
(CF1), zvs € E(G). Since G is B(6, 1)-free, xv, € E(G). By (CF2), N(z)NV (Py) =
{v1,v9,v3}. Similarly, N(y) NV (Py) = {vs, vg, v10}. Claim 3.1 holds.

Claim 3.2. Let W3 = (N(v3)—{vq,v4})—N(vs) and V3 = (N (vs)—{v7,v9})—N(v7).
Then W5 = V5 = 0.

Assume that © € Wj3. By Claim 3.1, N(z) N V(Py) = {vi,vs,v3}. Further-
more, if ' € N(v1) N N(vy) N N(v3), then 2'vy € E(G) (otherwise, G[{z’, vs,v4} U
{vs, v6, V7, U3, Vg, V19 } U {v1}] = B(6, 1), a contradiction). So W5 = N(v1) N N(vgy) N
N(vs). Let Wy = N(v2) N N(v1) — N(vs) and Wy = (N(v1) — {ve}) — N(vg),
and let w; = |[W;| (i = 1,2,3). Then N(vy) = Wo U W3 U {vy,v3}, and N(vy) =
Wiy UWeUWs U {vg}. Clearly, G[W; U {v1}], GIW5 U {v1,v9}], and G[Wj3] are com-
plete graphs.

Let y € N(W3) — {vi,v2,v3}. By (E4), yuy & E(G). If yvg € E(G), then
y € Ws; if yug € E(G), then yv; € E(G), and so y € Wy U Wy, This imples that
N(W3) C W3 UW UWyU{vy,v9,v3}, and Wy UW,y U {vs} is a cut in G. So we have
wy +wy > 3. As N(vg) = Wo U W3 U {wvy,vs}, it follows that we + wg > 2. If we = 0,
then wy > 2 and wy > 3. 1 As N(W3) — (W3 U {v1,vg,v3}) € Wy U Wy = Wy, there
is an edge joining W, and W5. Thus G[W; U W3 U {v1, v9, v3}] contains an 8-cycle, a
contradiction. So wqe > 1.

Consider S = N(Wy) — (W1 UWo U W3 U {v1,v9,v3}. If S =0, then Wi U {v3} is
a cut in GG. Thus wy; > 3. It is clear that there is an edge joining W; and Wy U W3
(otherwise, {v1, vq,v3} is a cut in G, a contradiction). So G[W,UWoUW3U{wvy, va, v3}]
contains an 8-cycle, a contradiction. So S # 0. Let y; € W,. Also, let 2; € S.
Then yyvs, 101, 2102 ¢ E(G). By (E1), N(y1) N {vs,v5, 07,08} = 0. By (CF1),
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y1v4 € E(G). Since G has no 8-cycles, N(z1) N {vs,vg, 07} = 0. If 203 € E(G),
since 2109 € E(G), we have zjvy € E(G). By (E1), N(z1) N {vs,vg,v10} = 0. Thus
G[{z1, v3,v4} U {vs, v6, v7,vs, Vg, v10} U {vo}] = B(6,1), a contradiction. So zjv3 ¢
E(G). By (CF1), zyus € E(G). Since G[{y1,v1,v2} U {vs, vy, vs5,v6, V7,08 U {21}] #
B(6,1), z1vs € E(G). By Claim 3.1, N(z1) NV (Pyo) = {vs, v9,v10}-

Let Vo = N(vg) N N(v19) — N(vg) and Vi = (N(v19) — {vo}) — N(vg). As for the
discussion on Wy, Wy and Wi, there are yo € Vo and 2z € N(V,) — (Vi U Vo U V3 U
{vs, vg, v10}) such that yezo € E(G) and N(z9) NV (Pyg) = {v1,v9,v3}. Now we have
an 8-cycle 11 21 UgVgU10Y22202Y1, a contradiction. So Wy = (). Similarly, V3 = (). Claim
3.2 holds.

By Claim 3.2, v3 and v, have more than one common neighbor, and v; and
vg have more than one common neighbor. Let aj,a2 € N(vsz) N N(vy), and let
bl,bg S N(U7)QN(U8). By (E].), N(ai)ﬂ{w,vg,vg,vm} = @ (Z = ]_,2) If U1 € N(al),
then N(a;) NV (Py) C {v1,ve,v3,v4} and then G has a B(6,1) = G[{a1,vs,v4} U
{v1} U {ws, vs, v7, vs, 9, v10}], & contradiction. So vy € N(ay). If vg¢ € N(ay), by
(E2), agvs, agvg, agve ¢ E(G). Thus G[{az,vs,vs} U {vs, vg, v7, vs, Vg, v10} U {va}}] is
a B(6,1), a contradiction. So ajvg ¢ FE(G), and N(ai) NV (Pi) C {vg, v3, vy, v5}.
Similarly, N(ag) NV (Py) € {vg,v3,v4,v5}. Since G is B(6,1)-free, by (E2), we
have either N(ay) N V(Pyy) = N(ag) NV (Pyy) = {vg,v3,v4} or N(ay) NV (Py) =
N(CLQ) N V(Plo) = {Ug, Uy, 1)5}.

Suppose that N(a;) NV (Py) = N(az) NV (Py) = {va, v3,v4}. By (E3), let T} =
(N({a1, a2, v3}) — {ar, a2, vs3}) — {v2,va} = {y1, 92}, N(a1) = {v2,v3,v4, 51,02, a2},
N(ag) = {va,v3,04,91,y2,a1}, and N(v3) = {va,v4,a1,a0,y1,y2}. Also, |N(y;) N
{vg, 04} = 1. If yyus € E(Q), then G[{y1,vs,vs} U {vs, vs, v7, Vs, Vg, v10} U {vo}] =
B(6,1); if yyvy € E(G), then G[{y1, v2,v3} U {vy, vs, v6, V7, 05,09} U {v1}] = B(6,1),
a contradiction. So N(ay) NV (Py) = N(ag) NV (Py) = {vs,v4,v5}. Similarly,
N(bl) N V(Plo) = N(bg) N V(Pl()) = {U67U7, Ug}.

By (E3) again, let Ty = (N({a1,az2,v4}) — {a1,a2,v4}) — {vs,v5} = {21, 22},
N(afl) = {/037/047/0572172270’2}7 N(G/Q) = {'03,’114,115,21,22,@1}, and N(U4) = {/037/057
ay,as, z1, 22 f. Also, |N(z;) N{vs,vs}| =1 (1 =1,2). If z;u3 € E(G), then

G[{zi, v3,va} U {vs, v, v7, 08,09, v10} U {v2}] = B(6, 1),

a contradiction. So for i = 1,2, zvs € E(G). Since G has no 8-cycles, N(v3) =
{a1, as,ve,v4}. Similarly, by (E3), let T3 = (N ({b1, ba, v7}) — {b1, ba, v7}) — {vs, vs} =
{wl,wg}, N(bl) = {U67U7,Ug,w1,w2, bg}, N(bg) = {UG,U'y,Ug,wl,wg, bl}, and N(U7) =
{vg, vs, b1, ba, w1, wa }. Also, for : = 1,2, N(w;) N{vg,vs} = {ve}. By (E1) and (E2),
fori=1,2, N(z;) NV (Py) = {vs,v5} and N(w;) NV (Pyg) = {vs, v7}. Also, we have
N(vs) = {v7,v9,b1,b2}. Since G is 4-connected, let ¢; € N(z1) — {v4, vs, a1, a2} and
Co € N(Zg) — {v4,v5,a1,a2}. Then N(CZ) N V(Plo) = @ (Z = ]_,2)

Consider N(vyg). Let z € N(vig) — {vg}. Then N(z) N {vs,vy,v7, 08} = 0.
Since G has no 8-cycles, N(z) N {vs,ve, 21,22} = 0, and |[N(z) N {vs,c1,c0}] <
1. Without loss of generality, we assume that c;xz € E(G). Since G[{z1,v4,v5} U
{ve, v7,v8, V9, V10, 2} U {c1}] # B(6,1), zvg € E(G). Since xvgs ¢ E(G), it follows
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that G[N(v10)] is a complete graph. Since G is 4-connected, let d € N(N(v1g)) —
{vs,v9,v10}. Also, we assume that dr € E(G), where © € N(vyp). Since G has no
8-cycles, |[N(d) N {c1, ca,v3}| < 1. Hence |(N(d)UN(x))N{c1, co,v3}| < 2. Thereis a
vertex u € {cy, ¢y, v3} with u & N(d)UN (x). Thus G[{z1, v4, v5 }U{vg, v7,vs, vg, x, d}U

{u}] = B(6, 1), a contradiction. O
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