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Università degli Studi di Padova
Dipartimento di Matematica “Tullio Levi-Civita”

Via Trieste 63, 35121 Padova
Italy

lucchini@math.unipd.it

Abstract

Given a finite group G, the generating graph Γ(G) of G has as ver-
tices the non-identity elements of G, and two vertices are adjacent if and
only if they are distinct and generate G as group elements. Let G be
a 2-generated finite group. We prove that Γ(G) is planar if and only if
G is isomorphic to one of the following groups: C2, C3, C4, C5, C6, C2 ×
C2, D3, D4, Q8, C4 × C2, D6.

1 Introduction

Given a finite group G, the generating graph Γ(G) of G has as vertices the non-
identity elements of G and two vertices are adjacent if and only if they are distinct
and generate G as group elements.

When G is simple many deep results on generation of G in the literature can be
translated to results about Γ(G). For example, the property that G can be generated
by two elements amounts to saying that Γ(G) has at least one edge. The fact due to
Guralnick and Kantor in [8] that every nontrivial element ofG belongs to a generating
pair of elements of G is equivalent to saying that Γ(G) has no isolated vertices. More
recently, Breuer, Guralnick and Kantor proved in [2] that G has spread at least 2, or
in other words Γ(G) has diameter at most 2.

More generally, one can try to characterise finite groups G for which a given
graph-theoretical property holds in Γ(G).

As an illustration, recall that a graph Γ is Hamiltonian (respectively, Eulerian) if
it contains a cycle going through every vertex (respectively, edge) of Γ exactly once.
In [3], Breuer, Guralnick, Maróti, Nagy and the first author have investigated the
finite groups G for which Γ(G) is Hamiltonian. For example they showed that every
finite simple group of large enough order has an Hamiltonian generating graph. In
[9], Marion and the first author have studied generating graphs for the alternating
and symmetric groups on n points proving that they are Eulerian if and only if n
and n− 1 are not a prime congruent to 3 modulo 4.
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The aim of this note is to determine the finite groups G with the property that
Γ(G) is a planar graph. Recall that a graph is said to be embeddable in the plane,
or planar, if it can be drawn in the plane so that its edges intersect only at their
ends. If G cannot be generated with two elements, then Γ(G) contains no edge and
all the vertices are isolated. So we may restrict our attention to the finite groups
that can be generated by two elements. We prove that there are only finitely many
2-generated finite groups G such that Γ(G) is planar. More precisely we have:

Theorem 1.1. Let G be a finite 2-generated group. Then Γ(G) is planar if and only
if G ∈ {C2, C3, C4, C5, C6, C2 × C2, D3, D4, Q8, C4 × C2, D6}, where, as usual, with
Cn we denote the cyclic group of order n, with Dn the dihedral group of order 2n and
with Q8 the quaternion group.

We will prove the previous theorem showing that, with only finitely many excep-
tions, the number e(G) of edges of Γ(G) is at least 3|G|. Some crucial preliminary
results in this direction will be proved in Section 2, where we will compare the ratios
e(G)/|G| and e(G/N)/|G/N | in the particular case when N is a minimal normal
subgroup of G.

2 Preliminary results

Let N be a normal subgroup of a finite group G and choose g1, . . . , gk ∈ G with the
property that G = 〈g1, . . . , gk〉N. By a result of Gaschütz [6] the cardinality of the
set

ΦN (g1, . . . , gk) = {(n1, . . . , nk) ∈ N | 〈g1n1, . . . , gknk〉 = G}
does not depend on the choice of g1, . . . , gk. Let

PG,N(k) =
|ΦN (g1, . . . , gk)|

|N |k .

Denote by PX(k) the probability that k randomly chosen elements of X generate the
finite group X. Notice that if X is a finite 2-generated group, then the number e(X)
of the edges of Γ(X) is |X|2PX(2)/2. It turns out that PG(k) = PG/N (k)PG,N(k),
and PG,N(k) is the conditional probability that k-randomly chosen elements of G
generate G given that they generate G modulo N .

For the remainder of this section we will assume that G is a 2-generated finite
group and N is a minimal normal subgroup of G and we will define

α(G,N) :=
e(G)/|G|

e(G/N)/|G/N | = |N |PG,N(2).

Lemma 2.1. If N is non-abelian, then α(G,N) ≥ 1.

Proof. Assume G = 〈g1, g2〉 and let n ∈ N. We have

G = 〈gn1 , gn2 〉 = 〈g1[g1, n], g2[g2, n]〉,
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hence ([g1, n], [g2, n]) ∈ ΦN (g1, g2). On the other hand, if n1, n2 ∈ N and

([g1, n1], [g2, n1]) = ([g1, n2], [g2, n2])),

then n1n
−1
2 ∈ CG(g1) ∩ CG(g2) = Z(G). Since N is non-abelian, it must be n1n

−1
2 ∈

N ∩ Z(G) = 1, so n1 = n2. We deduce that |ΦN(g1, g2)| ≥ |N |, and consequently
α(G,N) ≥ 1.

Lemma 2.2. If N is non-abelian and G/N is soluble, then α(G,N) > 35.

Proof. It follows from [4, Theorem 17] that if G/N is soluble, then

PG,N(2) = PG/CG(N),NCG(N)/CG(N)(2).

Moreover by [5, Theorem 1.1],

PG/CG(N),NCG(N)/CG(N)(2) ≥ 53

90
.

Since |N | ≥ |Alt(5)| ≥ 60, we conclude

α(G,N) = PG,N(2)|N | ≥ 53

90
· 60 > 35.

Lemma 2.3. Assume that N is abelian. We have |N | = pa, where p is a prime and
a is a positive integer. Let c be the number of complements of N in G. Then

α(G,N) =
p2a − c

pa
≥ pa − pa−1.

In particular

1. α(G,N) = 1 if and only if |N | = 2, N has a complement in G and G/N has
an epimorphic image of order 2.

2. α(G,N) = 3/2 if and only if |N | = 2, N has a complement in G and no
epimorphic image of G/N has order 2.

3. α(G,N) ≥ 2 in all the remaining cases.

Proof. By [7, Satz 2], PG,N(2) = 1− c/p2a, hence α(G,N) = p2a−c
pa

. If c �= 0, then c is

the order of the group Der(G/N,N) of derivations from G/N to N ; in particular c is
a power of p. Moreover, since G is 2-generated, it must be c < p2a and consequently

α(G,N) =
p2a − c

pa
≥ p2a − p2a−1

pa
= pa − pa−1.

In particular we can have α(G,N) < 2 only if |N | = 2 and c �= 0. Let H be a com-
plement of N in G and let K = H ′H2. We have c = |Der(H,N)| = |Hom(H/K,N)|.
Since G is 2-generated, either H/K = 1 or H/K ∼= C2. In the first case c = 1 and
α(G,N) = 3/2, in the second case c = 2 and α(G,N) = 1.
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3 Proof of Theorem 1.1

Our proof of Theorem 1.1 will rely on the following result in graph theory.

Theorem 3.1. [1, Corollary 10.21] A planar graph with n ≥ 3 vertices has at most
3n− 6 edges.

Proof of Theorem 1.1. First we prove that if G ∈ {C2, C3, C4, C5, C6, C2×C2, D3, D4,
Q8, C4×C2, D6}, then Γ(G) is planar. Let Δ(G) be the subgraph of Γ(G) obtained by
removing the isolated vertices. Clearly Γ(G) is planar if and only if Δ(G) is planar.
We have Δ(C2) = K1, Δ(C3) = K2, Δ(C4) = K3, Δ(C5) = K4 and Δ(C2×C2) = K3

(as usual, we denote by Kn the complete graph on n vertices). If G = 〈g〉 is cyclic
of order 6, then Γ(G) = Δ(G) can be drawn as follows:

g5

g2 g3

g

g4

If G is a non-cyclic group of order 8, then Δ(G) has 12 edges and 6 vertices and is
isomorphic to Δ(Q8), which is planar as indicated by the following picture.

−j k −i

i j

−k

Let G = D3 = 〈a, b | a3, b2, abab〉. Then Δ(G) can be drawn as follows:

b

ba

ba2a a2

Let G = D6 = 〈a, b | a6, b2, abab〉. Then Δ(G) can be drawn as follows:
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b ba ba2 ba3 ba4 ba5

a

a5

Assume now that G is a 2-generated finite group and let e(G) be the number of
edges of the generating graph Γ(G). We have

e(G) =
|G|2PG(2)

2
,

denoting by PG(k) the probability that k randomly chosen elements generate G.
Assume that Γ(G) is a planar graph. Then, by Theorem 3.1,

|G|2PG(2)

2
≤ 3|G| − 6.

In particular
|G|PG(2) < 6. (3.1)

Let 1 = Nt ≤ · · · ≤ N0 = G be a chief series of G. We have

PG(2) =
∏

1≤i≤t

PG/Ni,Ni−1/Ni
(2) and |G| =

∏

1≤i≤t

|Ni−1/Ni|.

So, setting αi = |Ni−1/Ni|PG/Ni,Ni−1/Ni
(2) = α(G/Ni, Ni−1/Ni) for 1 ≤ i ≤ t, we

deduce from (3.1) that ∏

1≤i≤t

αi < 6. (3.2)

It follows from Lemmas 2.1 and 2.3, that αi ≥ 1 for every 1 ≤ i ≤ t. Hence we
deduce from (3.2) that αi < 6 for every 1 ≤ i ≤ t. This implies that G is soluble.
Otherwise we could find j such that G/Nj−1 is soluble and Nj−1/Nj is non-abelian,
and therefore αj > 35 by Lemma 2.2.

Assume that G is cyclic of order n ≥ 7. Then φ(n) ≥ 4, so there exist four different
elements g1, g2, g3, g4 with G = 〈gi〉 for 1 ≤ i ≤ 4. Choose x ∈ G \ {1, g1, g2, g3, g4}.
The subgraph of Γ(G) induced on the subset {g1, g2, g3, g4, x} is isomorphic to K5,
so Γ(G) is not planar. We may so assume that G is not cyclic.

Firstly, assume that C2 × C2 is an epimorphic image of G. It is not restrictive
to assume N0/N2

∼= C2 × C2. Lemma 2.3 implies α1 = 3/2, α2 = 1 and αj ≥ 2
if j > 2 (notice that if j > 2 and Nj−1/Nj has order 2, then Nj−1/Nj cannot be
complemented in G/Nj, otherwise C3

2 would be an epimorphic image of G and G
could not be generated by 2 elements). By (3.2), we must have t ≤ 3. If t = 2, then
G ∼= C2 × C2. If t = 3, then α3 < 4 and, again by Lemma 2.3, |N2| ≤ 4. If |N2| = 2,
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then G is a non-cyclic 2-generated group of order 8, i.e. G ∈ {C4×C2, D4, Q8}. The
possibility |N2| = 4 cannot occur: G would be a group of order 16 and it could not
contain a minimal normal subgroup of order 4. Assume |N2| = 3. If N2 is non-central
in G, then G ∼= D6. If N2 ≤ Z(G), then G ∼= C2 ×C2 × C3: in this case Δ(G) has 9
vertices and 24 edges: since 24 > 3 · 9− 6 = 21, Δ(G) is not planar by Theorem 3.1.

Finally assume that C2×C2 is not an epimorphic image of G. In this case, again
by Lemma 2.3, α1 ≥ 3/2 and αj ≥ 2 if j > 1. By (3.2), we must have t ≤ 2,
and consequently t = 2 since we are assuming that G is not cyclic. By Lemma
2.3, |N1| ≤ 4. Since G is not cyclic, we remain with the following possibilities:
G ∼= C3 × C3, G ∼= Alt(4), G ∼= D3. The first two cases can be excluded by
Theorem 3.1: Δ(Alt(4)) has 48 edges and 11 vertices, Δ(C3 × C3) has 24 edges and
8 vertices.
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[7] W. Gaschütz, Die Eulersche Funktion endlicher auflösbarer Gruppen, Illinois J.
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