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Abstract

The average order of the connected induced subgraphs of a graph G is
called the mean connected induced subgraph (CIS) order of G. This is an
extension of the mean subtree order of a tree, first studied by Jamison.
In this article, we demonstrate that among all connected block graphs
of order n, the path P, has minimum mean CIS order. This extends a
result of Jamison from trees to connected block graphs, and supports the
conjecture of Kroeker, Mol, and Oellermann that P, has minimum mean
CIS order among all connected graphs of order n.

1 Introduction

Jamison [3] initiated the study of the mean subtree order of a tree. A number of
extensions of this mean to other (connected) graphs have recently been considered:

e the mean order of the sub-k-trees of a k-tree [0],

e the mean order of the subtrees (i.e., minimally connected subgraphs) of a
graph [2], and
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e the mean order of the connected induced subgraphs of a graph [4].

For a tree T, all of these means equal the mean subtree order of T. However, for
connected graphs in general, the last two means have rather different behaviour.

In this article, we continue the study of the average order of the connected induced
subgraphs of a graph G, called the mean connected induced subgraph (CIS) order of
G. An in-depth study of the mean CIS order of cographs (i.e., graphs that do
not contain the path P, as an induced subgraph) was undertaken in [4], where the
connected cographs of order n having largest and smallest mean CIS order were
determined (both the maximum and minimum values tend to n/2 asymptotically).
Here, we focus on the mean CIS order of block graphs, i.e., graphs for which every
block is complete. We extend several of Jamison’s results [3] on the mean subtree
order of trees to the more general setting of the mean CIS order of connected block
graphs (note that every tree is a connected block graph).

In particular, Jamison [3] demonstrated that among all trees of order n, the path
P, has minimum mean subtree order (or equivalently, mean CIS order). Our main
result is that the path P, has minimum mean CIS order among all connected block
graphs of order n. This supports the conjecture of Kroeker, Mol, and Oellermann [4]
that the path P, has minimum mean CIS order among all connected graphs of order
n, which has been verified for all n < 9.

A key tool in the proof of our main result is an extension of the “local-global
mean inequality” proven by Jamison [3] for trees. For a given tree T, and every
vertex v of T', Jamison demonstrated that the mean order of all connected induced
subgraphs of T' containing v (i.e., the “local” mean CIS order of T" at v) is at least
as large as the mean CIS order of T (i.e., the “global” mean CIS order of T). It is
known that this inequality between local and global mean CIS orders does not extend
to all connected graphs (at least not at every vertex) [4]. However, we note that it
was recently proven [I], in a more general context, that every graph with nonempty
edge set contains at least one vertex at which the local mean CIS order is larger
than the global mean CIS order (apply [I, Theorem 3.1] to the collection of vertex
sets that induce connected subgraphs of GG). In other words, while the local-global
mean inequality does not necessarily hold at every vertex of a connected graph G, it
must hold at some vertex of GG. In this article, we demonstrate that the local-global
mean inequality does hold at every vertex of a connected block graph. This fact is
essential to the proofs of the three key lemmas used to establish our main result.

We now give a brief description of the layout of the article. In Section Rl we
provide notation and preliminaries that will be used throughout the article. In
Section [, we state three key lemmas (the Vertex Gluing Lemma, the Edge Gluing
Lemma, and the Stretching Lemma), and we use them to prove our main result. We
then describe an interesting connection between the mean CIS order of block graphs
and the mean sub-k-tree order of k-trees, and explain the implications of our main
result in this setting. In Section ], we prove the local-global mean inequality for the
mean CIS order of block graphs. In Section B, we prove the Vertex Gluing Lemma,
the Edge Gluing Lemma, and the Stretching Lemma. We conclude with some open
problems.
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2 Notation and Preliminaries

For a graph G, the vertex and edge sets of G are denoted by V(G) and E(G),
respectively. The order of G is |V (G)| and the size of G is |E(G)|. For U C V(G),
the subgraph of G induced by U is denoted G[U]. The (open) neighbourhood of a
vertex v of G, denoted Ng(v), is the subset of V(G) containing all vertices adjacent
to v.

Let G be a graph of order n. Let Cg denote the collection of connected induced
subgraphs of G. The CIS polynomial of G is given by

Op(z) = Z gV HE = Zaixi,

HeCq =1

where a; is the number of connected induced subgraphs of G of order i for each
i € {1,...,n}. One easily verifies that ®¢(1) is the total number of connected
induced subgraphs of G, and that ®(1) is the sum of the orders of all connected
induced subgraphs of G. Throughout, we use the shorthand notation Ng = ®¢(1)
and Wg = @(1). The mean CIS order of G, denoted Mg, is given by

_ %01 We
oe(1)  Ng'

G

For a vertex v € V(G), let Cg,, denote the collection of connected induced subgraphs
of G containing v. The local CIS polynomial of G at v is given by

where b; is the number of connected induced subgraphs of G of order ¢ containing
v for each i € {1,...,n}. So Ng, = ®¢.(1) denotes the total number of connected
induced subgraphs of G containing v, and Wg, = @ (1) denotes the sum of the
orders of all connected induced subgraphs of G containing v. The local mean CIS
order of G, denoted Mg ,, is given by

d, (1
MGﬂ; _ G,v( ) _ WG,v.
(I)G,v(]-) NG,U

The next lemma gives a recursion for the local mean CIS order of a connected
graph at a cut vertex v. It holds trivially if v is not a cut vertex.

Lemma 2.1. Let G be a connected graph with vertex v, and let Hy, ..., Hy be the
components of G —v. Fori € {1,...,k}, let G; = G[V(H;) U{v}]. Then

k
MG,U = [Z MGi,v
=1

—(k—1).

Further, we have
MG,v Z MGi,v

forallie{l,... k}.
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Proof. By a straightforward counting argument,

k
(I)G,v(x) = # H q)Gi,U(x)‘
i=1
Taking the natural logarithm on both sides and differentiating with respect to x, we

obtain
V(o) _ (3 nla)] k-1
doo(r) P, 0(T) x
Substituting « = 1 yields

i=1

k
Mg, = [Z MGM] —(k—1).
i=1
Since Mg,, > 1 for all i € {1,...,k}, it follows that Mg, > Mg, , for all i €
{1,...,k}. O

For a graph G, let U be a subset of V(G). We extend the notion of the local
mean CIS order of GG in two natural ways.

(i) Let Mgy denote the mean order of all connected induced subgraphs of G con-
taining every vertex of U, and let ®¢ /() denote the corresponding generating
polynomial. So we have

O (1)

" Dau(1)

(ii) Let M¢; denote the mean order of all connected induced subgraphs of G
containing at least one vertex of U, and let ®f ;(7) denote the corresponding

Mau

generating polynomial. Finally, let N§ ;; = & (1) and W, = <I>Z:7U(1). So
we have ,

() W

O u(1)  Ney

Note that if U contains only a single vertex u, then Mgy = M¢ v = Mg .

Lemma 2.2. Let G be a block graph, and let U = {uy, ... ,ui} be the vertex set of
a single block B of G. For each i € {1,...,k}, let G; be the connected component of
G — E(B) containing u;. Then

* p—
Mgy =

S (1)

Proof. By a straightforward counting argument,

k
>kG,U(l') +1= H [1 + qDGz,uz(x)] :

=1

The proof is now completed by an argument similar to the one used in the proof of
Lemma 2.1 O
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A key idea that we use in many of our arguments is that if the connected induced
subgraphs of a graph G can be partitioned into two or more sets, then Mg is a
convex combination (or weighted average) of the mean orders of each of the sets in
the partition. This tool was used by Jamison [3, Lemma 3.8] for the mean subtree
order of a tree. For example, since every connected induced subgraph of G either
contains a given vertex v, or does not contain v, we can write

ég(l‘) = @GW(ZL') + (I)G_U(ZL‘).

It follows that Mg is a convex combination of Mg, and Mg_,. Another useful
application of this principle is to disconnected graphs. If GG is a disconnected graph
with components Gy, ..., G, then Mg is a convex combination of Mg, ..., Mg, . It
follows that min{ Mg, } < Mg < max{Mg,}.

3 Proof of the Main Result

In this section, we show that among all block graphs of order n, the path has mini-
mum mean CIS order. We use three key lemmas, namely the Vertex Gluing Lemma,
the Edge Gluing Lemma, and the Stretching Lemma, which are proven in Section
We state these lemmas here, and provide illustrations depicting how they are used
in the proof of the main result (see Figure[l). By gluing two vertices from disjoint
graphs, we mean the process of identifying these two vertices.

The Vertex Gluing Lemma (Lemma [5.7])

Let H be a connected block graph of order at least 2 having vertex v. Fix a natural
number n > 3. Let P : uy...u, be a path of order n. For s € {1,...,n}, let G4 be
the block graph obtained from the disjoint union of P, and H by gluing v to us. If
1<i<j< then Mg, < Mg,.

In the notation of the Vertex Gluing Lemma, G4 = G,,_s11. Thus, it follows from
the Vertex Gluing Lemma that G; = G,, has strictly smaller mean CIS order than
G, for all 2 < s <n —1 (see Figure . We note that the Vertex Gluing Lemma
extends the Gluing Lemma of [5] from trees to block graphs.

To simplify the statement of the Edge Gluing Lemma, we will refer to a leaf
as a vertex of degree at most 1 (so that the single vertex of the path of order 1 is
considered a leaf).

The Edge Gluing Lemma (Lemma [5.2))

Let H be a connected block graph of order at least 3 with adjacent non-cut vertices
w and v. Fiz a natural number n > 4. For s € {1,2,...,n — 1}, let G4 be the graph
obtained from H U P; U P,_¢ by gluing a leaf of Ps to u and a leaf of P,_s to v. If
1 §Z<j < %, then MGi < MGj.

In the notation of the Edge Gluing Lemma, G, = G,,_,. Thus, it follows from
the Edge Gluing Lemma that G; = G,,_; has strictly smaller mean CIS order than
G, for all 2 < s < n — 2 (see Figure [L(b)).

We now introduce notation used in the statement of the Stretching Lemma. For

a fixed integer n > 3 and s € {1,2,...,n — 1}, let F;,_ (or Fy for short) denote
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(a) The Vertex Gluing Lemma: The graph G; (right) has smaller mean CIS order than
the graph G (left) for all 2 < s <n — 1.

s vertices n — s vertices n vertices
@ @
(b) The Edge Gluing Lemma: The graph G (right) has smaller mean CIS order than the

graph G, (left) for all 2 < s <n — 2. Note: v and v must be adjacent in H, and must not
be cut vertices of H.

n — s vertices n vertices

s+1 H —o— @

) The Stretching Lemma: The graph G (right) has smaller mean CIS order than the
graph Gs (left) for all 2 < s <n—1.

Figure 1: An illustration of the use of the Vertex Gluing Lemma, the Edge Gluing
Lemma, and the Stretching Lemma, where H is a connected block graph of order at
least 2.

the graph obtained from the disjoint union of K, and P,_, by joining a leaf of P,_
to every vertex of K . Note that if s = 1, then F, = P,, while if s = n — 1, then
F, =2 K,.

The Stretching Lemma (Lemma[5.3)) Let H be a connected block graph of order at
least 2 having vertex w. Fiz a natural number n > 3. Let v be a vertex of Fy = F,_
belonging to the initial Ks. For s € {1,...,n—1}, let G be the block graph obtained
from the disjoint union of H and Fy,,_s by identifying v andv. If1 <i<j<n-—1,
then MGi < MG]-'

In particular, in the notation of the Stretching Lemma, we see that G; has strictly
smaller mean CIS order than G for all 2 < s <n — 1 (see Figure .

We now give some terminology and some basic facts used in the proof of our main
result. Let G be a graph that has at least two blocks. An end-block of G is a block
of G that contains exactly one cut vertex. A cyclic block of G is a block of G that
contains at least 3 vertices. Thus, cyclic blocks in block graphs are complete graphs
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of order at least 3. Let V}, denote the set of blocks of G, and let V. denote the set of
cut vertices of G. The block-cut tree of GG is the bipartite graph with partite sets V},
and V., where v € V, is adjacent to B € V, if and only if v € B. (It is straightforward
to show that this graph is a tree.)

If G is a block graph that is not a path, and if G has a leaf w, then the shortest
path P from w to a vertex v of degree at least 3 is called an antenna of G incident
with v. If B is a block containing v and no other vertex of P, we say that the antenna
P is incident with B. Finally, we use the fact that Mp, = ”T“ (see [3]), and the fact

that Mg, = % (see []). We are now ready to prove our main result.

Theorem 3.1. If G is a connected block graph of order n, then Mg > "T”, with

equality if and only if G = P,. In other words, the path P, is the unique connected

block graph of order n having minimum mean CIS order %

Proof. Let G 2 P, be a connected block graph of order n. We demonstrate that
there is a connected block graph of order n that has smaller mean CIS order than G,
from which the statement follows. Since the only connected block graphs of order 1
and 2 are paths, we may assume that n > 3. If G has only one block, then G = K,,.
Since Mp, = ”;2 < ’;%n:ll = Mg for n > 3, our claim follows. Thus, we may assume
that G has at least two blocks. For the remainder of the proof we consider two cases
that depend on the structure of the block-cut tree T" of G.

If T is a path, then it follows, since G is not a path, that G has a cyclic block.
So either G has a cyclic end-block or G has a cyclic block that is incident with an
antenna and contains exactly two cut-vertices. We can thus apply the Stretching
Lemma to G to obtain a connected block graph that has smaller mean CIS order.

Assume next that T is not a path. Then T contains a vertex of degree at least
3. So T has a vertex u of degree at least 3, such that all but possibly one connected
component of 7" — u is isomorphic to a path. Let C be the family of components of
T — u that induce paths in T"— u. Suppose that at least one of the members of C,
@ say, contains a block that is cyclic in G. In this case we can apply the Stretching
Lemma to obtain a connected block graph with smaller mean CIS order than G.
We may thus assume that all members of C correspond to antennae in GG that are
incident with w.

Now wu is either a cut vertex of GG, or a block of G. If u is a cut vertex of GG, then
we can apply the Vertex Gluing Lemma to obtain a connected block graph whose
mean CIS order is less than that of G. So we may assume that u is a block of G.
Let vy, v, ..., v be the cut vertices of G that belong to the block u. By assumption,
k > 3. Moreover, we may assume that, for 1 <7 < k — 1, the component of T'— u
containing v; is a path, i.e., belongs to C. By the argument of the previous paragraph,
the members of C contain no cyclic blocks, and hence they correspond to antenna in
G. Let P and P, be the antenna of G incident with v; and vy, respectively. If we
delete the vertices of V(P;) — {v1} and V(P,) — {ve} from G, neither v; nor v, is a
cut vertex of the resulting graph. By applying the Edge Gluing Lemma, we obtain
a connected block graph with smaller mean CIS order than G. O

We close this section by describing a relationship between the mean sub-k-tree
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order of k-trees (see [0]) and the mean CIS order of connected block graphs, and
the implications of our main result in this setting. The dual T" of a k-tree T of
order n is defined to be the graph of order n — k whose vertex set consists of the
(k + 1)-cliques in 7', such that two vertices of 7" are adjacent if and only if the
corresponding (k + 1)-cliques in 7" share a k-clique. It is not difficult to see that
this dual of a nontrivial k-tree is a connected block graph. It was demonstrated in
[6] that there is a correspondence between the number of nontrivial sub-k-trees of a
k-tree, and the number of connected induced subgraphs of its dual. Let p(7") denote
the mean order of the sub-k-trees of the k-tree 7. Then the argument used in [6],
for a certain type of k-tree, called a simple clique k-tree, can be used to show that
for any k-tree T,

— WT/

 Np+(n—k)k+1

Since T" has order n — k, it follows from our main result that My > Mp , = "’T’“”

Moreover, Nov > Np , = (”_SH). So, for fixed k, lim,, oo ’jw(—:) = 1. In other words,
w(T) = My +o(n). We conclude that understanding the behaviour of the mean CIS
order of block graphs offers insight into the mean order of sub-k-trees of k-trees for

large orders.

w(T) + k.

4 The Local-Global Mean Inequality

In this section, we prove the local-global mean inequality for connected block graphs.
That is, we show that the local mean CIS order of a connected block graph G at
any vertex v is greater than the (global) mean CIS order of GG, extending the result
of Jamison for trees [3, Theorem 3.9]. We actually prove the stronger result that
M¢ ;=2 Mg, where U is either a single vertex, or the vertex set of a block of G. In
the process, we achieve several intermediate results which are used again later.

We begin by presenting a series of short lemmas that give inequalities between
the number and/or total order of connected induced subgraphs of certain types in a
given graph. Some of these results hold for connected graphs in general. First we
note that [9 Lemma 2.1] extends to the mean CIS order of connected graphs. The
proof is analogous to the proof of [9] Lemma 2.1], and is omitted.

Lemma 4.1. Let G be a connected graph and let v be any vertex of G. Then

Néﬂ) _'_ NG,U
2 Y
with equality iof and only of G = P, and v is a leaf of G. ]

WG,U S

We continue with three short lemmas whose proofs all use a similar technique.
Recall that Cg; denotes the collection of connected induced subgraphs of G, and
Ca,» denotes the collection of connected induced subgraphs of G containing v. So
|C(;| = NG and |CG,v| = NG,U'
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Lemma 4.2. Let G be a connected graph with adjacent vertices u and v. Then
NG—v,u S NG,U - ]-7
with equality iof and only if v is a leaf of G.

Proof. Define f: Cg_pu — Cao by f(H) = G[V(H) U {v}]. One easily verifies that
f is well-defined and injective. Further, the trivial graph on singleton vertex set {v}
is not in the image of f, hence

NG—v,u - |CG—U,u| S |CG,v| —-1= NG,U - 1.

If v is a leaf of G then every nontrivial connected induced subgraph of G containing
v also contains u, and thus is in the image of f. This gives equality. Otherwise, v has
a neighbour w # w, and the nontrivial connected subgraph of G induced by {v,w}
is not in the image of f, giving strict inequality. O

Lemma 4.3. Let G be a connected block graph with non-cut vertex v. Then
NG,U S NG—U + 1a
with equality iof and only if G = K,.

Proof. Let Cav denote the collection of nontrivial connected induced subgraphs of
G containing v. Define a map f: Cf, — Cq_o by f(H) = H—v. First we show that
f is well-defined. Let H € Cg,v. Since Cg,v contains only nontrivial graphs, we note
that H —v has at least one vertex. It remains to show that H —wv is connected. Since
v is a non-cut vertex of G, and G is a block graph, the open neighbourhood Ny (v)
induces a complete subgraph of H. So the deletion of v from H does not separate
any two neighbours of v. Therefore, H — v is connected and thus f is well-defined.
Further, note that f is injective, since if f(H;) = f(Hz), then H; and Hy have the
same vertex set. Therefore,

Neo=|CE | +1 < |Comu| +1=Ng_y + 1.

Equality is easily verified if G = K,,. On the other hand, if G 2 K,,, then G has at
least two blocks. Since v is not a cut vertex of G, it is contained in exactly one block
of GG, and it is not adjacent to any vertices outside of this block. So there is some
vertex u € V(@) that is not adjacent to v. Now G[{u}] € Co—,, but G[{u,v}] € C¢ ,,
so we conclude that f is not onto. This gives strict inequality. O

Lemma 4.4. Let G be a connected graph of order n > 2 and let u be any vertex of
G. Then
NG < WG,u-

Proof. Let
Douw={(X,2): X €Cqu,zeV(X)}
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Observe that |Dg | = We . Therefore, it suffices to show that there is an injective
function f: Cqo — Dg .

Assign a fixed ordering to the vertices of G. For each vertex v € V(G), assign
a fixed ordering to the shortest u—v paths in G. Among all vertices of H closest to
u, let xy be the vertex that appears first in the given ordering. Let Py be the first
path in the fixed ordering of shortest u—xy paths (if H contains u then Py consists
of the single vertex u). Let Xy be the subgraph of G induced by V(H) U V(Ppg).
Clearly Xy € Cqu. Define f(H) = (Xg,xg). Suppose f(Hy) = f(H2) = (X, z).
Let P be the first shortest u—x path in the fixed ordering of u—x paths. So X =
G[V(H,)UV(P)] = G[V(H2) UV (P)]. Note that no vertex of P other than x can lie
in Hy or Hy, since P is a shortest path from u to Hy, and from u to Hy. Therefore,

Thus, we have shown that f is injective, and the desired conclusion follows. O

To prove the next lemma, we use an inductive argument and several lemmas
already proven in this section.

Lemma 4.5. Let G be a connected block graph of order n > 1, and let v be a vertex
of G. Then

NG oNa_o
Wy < &’
2
which is equivalent to
Ne v
MG—U S <

when n > 2.

Proof. We proceed by induction on n. If n = 1, then the statement holds trivially
since Wg_, = 0. Now let n > 2 and suppose that the statement holds for all graphs
of order less than n. First of all, if v is a cut vertex of GG, then Mq_, < My, where
H is a component of G — v of largest mean CIS order. Let H' = G[V(H)U{v}]. By
the induction hypothesis applied to H' at v, we have
Ny Ngo
Mgy < My = Mgr_, < 2252 < G
2 2
So we may assume that v is not a cut vertex of G. Let u be a neighbour of v in
G, and write

Wva = Wva,u + WG—{u,v}- (2>
By Lemma [4.1], we have

Ngr'fv,u _'_ NG*U,U
2 7
and by the induction hypothesis applied to G — v at u, we have

WG—U,U S

NG—v,uNGf{u,v}

WG—{u,U} < 9
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Substituting these inequalities into (2]), we obtain

Néfv,u + NG*U,U + Nva,uNGf{u,v}

Wva < 9 9
. NG—U,u [NG—v,u +1+ NG—{u,v}}
B 2
o NG—U,u [NG—v + ]-]
2

Since u and v are adjacent in G, we may apply Lemma [£2] which gives

Ngo, — 1| |Ng_p +1
IS [ RES)

o NG,vNG—v + NG,v - NG—U —1
B 2

< NG,UNva’

- 2
as Ng» — Ng—p — 1 < 0 by Lemma 3] (which applies since v is not a cut vertex of
G). O

For the next lemma, we introduce some new notation. For a connected block
graph G of order at least 2 with vertex v, define

o WG,U - NG,v
HGov = NGﬂ; ] .

Note that i, is the average order of the connected induced subgraphs of G —v con-
taining at least one vertex in the neighbourhood Ng(v). That is, pig.e = Mg, n,(w)-
In the next lemma, we show that if v is not a cut vertex, then g, is at least as
large as Mg_,. We obtain our extension of the local-global mean inequality as a
straightforward consequence of this result.

Lemma 4.6. Let G be a connected block graph of order n > 2 with non-cut vertex
v. Then

HGw Z MG—va
with equality if and only if G = K,.

Proof. We proceed by induction on the number of blocks k of G. If £k = 1, then
G =2 K,,, and we verify that

HGw = Mva-

Now let £ > 1, and suppose that the statement holds for all connected block graphs
of order at least 2, with less than k blocks. Since v is not a cut vertex, it is contained
in only one block B of G, and the neighbourhood Ng(v) is equal to V(B) —v. Since
we can partition the connected induced subgraphs of G —v into all those that contain
at least one neighbour of v and all those that do not, we can write Mq_, as a convex
combination of pq, and Mg_p. So it suffices to show that g, > Mq_p.
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Let U = V(B)—v = {vy,vs,...,v:}. Note that U is either a singleton, or induces

a block in G — v. For each i € {1,...,t}, let G; be the connected component of

(G —v) — E(B) containing v;. By Lemma [2.2]
NE*U,U + ]' i WGZ',’UZ' Z WGi,Ui

Né—v,U NGia'Ui +1 .

*
HGw = Mva,U =

i=1 i=1

Now G — B may be a disconnected graph, so Mq_p is at most My, where H is
a connected component of G — B of largest mean CIS order. In particular, H is a
subgraph of G; — v; for some i € {1,...,t}. Without loss of generality, suppose H is
a subgraph of G; — vy. Let Hy = G[V(H) U {v;}]. By Lemma 1] we have

MG17U1 > MHLUl?

and together with We, ,, > Wy, ., , which clearly holds since every connected induced
subgraph of H; containing v; is a connected induced subgraph of G; containing vy,
this implies

WGlﬂ)l > WHl,’U1
1+ Ngiw = 14+ Ny,
Altogether, we have

WGl,Ul > WHl,vl _ HH: v (NH1,U1 - 1) + NHl,vl

. > >
He = Ny = 1+ Nigyon 1+ N, o,

Note that H; has order at least 2, and fewer than k blocks, and that v, is a non-cut
vertex of Hy. Hence, by the induction hypothesis, applied to H; at vy,

MHI*UI (NHLUI - 1) + NHLUI
1+ Ny, o, '

| X)) >

Finally,
MH1*U1 (NH17U1 - 1) + NH17

v1
> My,
1+NH17U1 N o

is equivalent to
NHl:UINHl_'Ul

2 Y
which holds, by Lemma .5l So we have shown that

WHl—Ul S

HG v > MHl—vl - MH Z MG—B>

and it follows, from our earlier observation, that pg, > Mg_,. O

Theorem 4.7 (The Local-Global Mean Inequality). Let G be a connected block
graph.

(a) Ifv is a vertex of G, then Mg < Mg,.
(b) If B is a block of G, then Mg < M¢, p.
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Proof. For[(a)] let G’ be the graph obtained from G by adding a new leaf vertex u
to v. Note that per, = Mg,. Thus, by Lemma [4.0]

MG,v = HG'u > MG’fu = MG~

For @ let G’ be the graph obtained from G by adding a new vertex u and
joining it to all vertices of B. Note that pugr, = Mg g. Thus by Lemma [E.0]

M¢ g = peru = Mar—w = Mg. O

5 The Vertex Gluing Lemma, the Edge Gluing Lemma, and
the Stretching Lemma

In this section, we prove the Vertex Gluing Lemma, the Edge Gluing Lemma, and
the Stretching Lemma. The Vertex Gluing Lemma extends the Gluing Lemma of [5]
from trees to connected block graphs. We present a proof here for completeness, but
note that it is very similar to the proof of the Gluing Lemma presented in [5].

Lemma 5.1 (The Vertex Gluing Lemma). Let H be a connected block graph of order
at least 2 having vertex v. Fixz a natural number n > 3. Let P : uy...u, be a path
of order n. For s € {1,...,n}, let G4 be the block graph obtained from the disjoint
union of P, and H by gluing v to us. If 1 <1< j < "TH, then Mg, < Mg;.

Proof. We may assume s < ”TH The connected induced subgraphs of G can be

partitioned into three types:

e Those that lie in P, but do not contain us. These are counted by the polynomial
®Pn (:C) - (I)Pnyus (:C)
e Those that lie in H but do not contain v. These are counted by the polynomial

(I)H(l') — (I)H,v(l')~

e Those that contain the glued vertex. These are counted by the polynomial

L py . (2) Pro ()
x
Thus,
D, (1) = p, (1) — Bp, (1) + Py (2) — Dy () + DLl g
Evaluating the derivative gives
O, (1) = Pp, () = P, (2) + Py (x) — Py, (2)
p Prn @) @) @] ()

x 22
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Evaluating ([B) and () at x = 1 yields

g, (1) = @p, (1) + Py(l) = Pup(l) + Pp, . (1) [Prw(1) — 1], (5)
and
O, (1) = @y, (1) + P (1) — Py, (1) (©)
+ @, (1) [@r1,0(1) = 1 + @, (1) [0 (1) = Prro(1)]
respectively.

Note that ®p,(1) = ("), @ (1) = ("F?), ®p,u.(1) = s(n — s+ 1), and
Pp (1) = s(n—s+1)2H Usmg (@) and (@) and substituting the values given
in this paragraph, we obtain
M, — Py (1) _ (n;ﬂ) + Wy — Wy +s(n—s+1)[(Ng, — 1) + Wy, — NH,v].

* g, (1) ("s") + Nu— N+ s(n — s + 1) [Ny, — 1]

We show that if we view M, as a real valued function of s € [1 "H] then Mg,
is increasing on [1 ”H}. Since the denominator of Mg, is strictly positive on the
entire interval [ ”+1] the derivative of Mg, exists and, by the quotient rule, it has
the same sign as the function f defined by

f(s) = 106, (1]@6. (1) — £ [P, (1)]Pg, (1)

Since &L (s(n —s+1)) =n —2s+ 1 is a factor of f(s), we see that f(s) = 0 when

s = . Moreover, for s € [1,%), we have (n — 2s 4 1) > 0 so that f(s) has the
same sign as

L = [(Npgo—1) 22+ Wio— Nigo ] [("5) + N — Nago+s(n—s+1)(Npgo—1)]
—(Npp— )[("*2)+WH Wi +s(n—s+1)[(Npy—1) 22+ W, — Niro] ]
[(NHv — 1) 4+ Wy, — NHU] [(nﬂ) + Ny — NH,v}
1)
D[

2
— (N — [(n+2) +WH_WH1;}
= (N =D [ ("3)=("32)]+ Wao = Nizo) ("3 1) + (Nor = 1) 2 (N — Niwy)

(WH,U - N ,’U)(NH - NH,’U) - (NH,’U - 1)(WH - WH,U)

= (N = D[22 ("3 ) =("5)]+ Wao = Nio) ("5 ) + (Niro— 1) %52 (N — Nir)
+(NHyv_]‘)(NH_NH,U)+(WHU_NH'U)(NH_NH7U)_(Nqu)_l)(WH_WH’,U)

= (Nggp — 1)2002D 4 (W, — Nig) ("5 + (N — 1) %52 (N — Nz
+[(WH — Ny) — Wy — Ny y)] + (NugWho — WuNpy ).

Note that — 2 +1 does not depend on s. Thus, it suffices to show that each of
f(s)

the terms in the final expression for -~ shown above is nonnegative (and at least
one is strictly positive). Indeed, usmg the straightforward inequalities N, > 1,
Who > Nuy, Ng > Np,, and n > 3, it follows that

(NH,U . 1)n(n+11)2(n—1) > 0

(Wao — Nup)("H1) >0, and

(NH,v — 1)”7_1(]\][_[ — NH,v) > 0.
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Let k denote the order of H and assume, for 1 < ¢ < k, that H has a; connected
induced subgraphs of order ¢ and b; connected induced subgraphs of order i that

k k k
contain v. Then a; > b; for 1 <7 < kand Wy = Ziai, Ny = Zai, Wy = Zibi
i i=1 =1 =1
and Ny, = Z b;. Thus
k
(Wi = Nug) = (Wi — Nuw) = Y (i — 1)(a; — b)) > 0.
i=1
Finally, by Theorem E7(a)]
W, W
NuWgo —WuNuy = NugNp, (—H - —H> >0
NH,'U NH

We conclude that f(s) is positive on [1, ”TH) , so that Mg, is indeed increasing on

[1, ”+1] and this completes the proof. O

The proof of the Edge Gluing Lemma uses a similar technique. We use the fact
that if P, is a path of order n, then Np, = ("}') and Wp, = ("+?) (see [3]).

Lemma 5.2 (The Edge Gluing Lemma). Let H be a connected block graph of order
at least 3 with adjacent non-cut vertices u and v. Fix a natural number n > 4. For
s € {1,2,...,n— 1}, let G4 be the graph obtained from H U Py U P, 4 by gluing a
leaf of Ps to w and a leaf of P,—s tov. If 1 <1< j <%, then Mg, < Mg;.

Proof. For ease of notation, let v and v also denote the glued vertices in P, and P,_,
respectively. Let w be the vertex adjacent to u in P, and let z be the vertex adjacent
tovin P,_,. We have

Pg,(z) = D6, {uu} () + q)Grv,u( ) + 6, —up(®) + Pa—fu0} (2)
= g fun} () (1+Pp_, (@) (14 Pp,_, 2 (2) +Pr—vu(2) (14+Pp,_, w(2))
+ (I)Hfu,v( ) (1 +®p, ., Z(x)) + (I)Hf{u,v}(x) + ®p,_,(z)
=Py )(1+<I)p5 _ )(1—|—(I)Pn_s_l7z(l'))+®H7v7u($)(1+®p‘g_hw(l’ )
+ () (1+ Pp, . 12(2)) + Proquny (2) + P, (2) + Pp, (2

= Cprvu(@) |2 (1+ Pp (@) (14 P, o(2)

+ 1+ @p_w(@) + (1+ p, ., 2(2)

+ (I)H_{uﬂ)}(l') —+ (I)Ps_l(l') + (I)Pn_s_l(l').
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Differentiating with respect to x, we obtain
O () = W) ouli) [ (140 (o) (101, 1-(0)
+ (1+Pp,_, (@) + (1+Pp,_, ,-(2))
i) (L5 0) (101, o(0) 4080 (148, o5)

+o(1+Pp,_,w(2) Pp (1) +Pp () +Pp | (z)
+ Oy (@) + B (1) + P (@)

n

Evaluating at x = 1 and letting F' = H — v,
Cg, (1) = Nra (s(n = s) +n) + Ne—u + (5) + ("),
and
<I>'Gs(1) =Wpu(s(n —s)+n)+ Npy (s(n —5)+ (;)(n —s+1)+(s+ 1)(";3))
e+ () + (037,

By a straightforward computation,

L Ng, = L@g, (1) = Npu(n —2s) — (n — 2s) = (n — 25)(Npy — 1), (7)
and

IWe, = L84 (1) = Wru(n — 2s) + Np, %52 (n — 2s) — 2(n — 2s)

= (n —2s) [Wru + “52Npy — 2]
= (n—25) [Wry+ 2(Npuw — 1) — Npu] - (8)

Wa,
Na,

rule, £ M, will have the same sign as <4 [Wg,| N, — We, - [Ng,] on [1,%), since
the denominator of %MGS is strictly positive on [1, %) Since both d%NGs and %WGS
have a factor of n — 2s, the expression

Now we consider the mean Mg, = as a continuous function of s. By the quotient

4 We,] Na, — Wea, 2 [Ng,]
n — 2s

: (9)

will have the same sign as %MGS for s € [1,n/2). We show that ([)) is strictly positive
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for s € [1,n/2). Substituting () and (&) into (@), and then simplifying, we obtain
(Wea + 5(New = 1) = Niw] [New (s(n = ) + 1) + Ne—u + () + (7))

— (Npy — 1) |[Wry (s(n—s) +n) + Npy, (s(n—s) + (;) (n—s—|—1)+(s+1)(”;5))

W () + (00

= Wpa (n;rl) — ]\fp,u%2 — 5 Np_y + nT_QNF,uNF—u _ N%u%
+ WeuNp—y — Wp_uNpy + Wp_y + (Npy — 1)%

= 2 (Wry — Npw) + 2(Wey — New — Np—y) 4+ 2Npy(Np_y + 1 — Niy,)

+ (WF,uNFfu - WFfuNF,u - NF,uNFfu + WFsz) + (NF,u - 1)%)2(71_2)

(10)

We now explain why each term of (I0)) is nonnegative (and in fact two terms are
positive). The strict inequality Wg, — Np, > 0 is obvious. The inequality Wg,, —
Npy — Np_y = Wgy — Np > 0 follows by Lemma 4.4 and the inequality Np_,, +
1 — Npg, > 0 follows by Lemma B3l The inequality (Ng, — 1)% > 0 is
immediate since Ng, > 2 and n > 4. Finally,

Wruw—Npow - Wre_y
WruNp—w — NeuNp—w — NeJWpow + Wroy 20 <— F, il > Ll
’ 7 7 NF,u -1 NFfu
<~ /'LF,u Z MF—u, (1].)

and (II)) holds by Lemma Therefore, the function 4 Mg, is strictly positive on
the interval [1, %), and we conclude that Mg, < Mg, < ... < MGWQJ. O

Finally, we prove the Stretching Lemma. We recall some notation used in the
statement. Fix an integer n > 3. For s € {1,2,...,n—1}, let F,,_, (or F} for short)
denote the graph obtained from the disjoint union of K, and P,_ by joining a leaf
of P,_4 to every vertex of K,. Note that if s = 1, then F, = P,, while if s =n — 1,
then F, = K,,.

Let v be a vertex of F§ belonging to the initial K. By straightforward counting
arguments,

Bp @) = a(l+2) 'Y o
7=0

and

Pp,_o(z) = (1 +2)5! <Z x’) +®p . (z)—1.

Lemma 5.3 (The Stretching Lemma). Let H be a connected block graph of order at
least 2 having a vertex u. Fiz a natural numbern > 3. Let v be a vertex of Fy = F,,_
belonging to the initial Ks. For s € {1,...,n—1}, let G be the block graph obtained
from the disjoint union of H and Fy by identifying u and v. If1 <i<j<n-—1,
then MGi < MG]-'
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Proof. The general technique is to write Mg, as a function of s, treat s as a real
variable, and show that Mg, is increasing for s € [1,n — 1]. In other words, we show
that £ [Mg,] = 4 [We,/Ng,] > 0 for all s € [1,n—1]. By the quotient rule, & [M,]
has the same sign as

% [WGs] NGs - WGS% [NGs] ) (12)

so it suffices to show that this expression is positive for all s € [1 n—1].
Let s € [1,n—1]. We first derive expressions for Ng,, Wg,, %[Ng,], and £[Wg,].
We have

Cpy () Pt u ()

bg,(2) = + Op,0(7) + Ppu(2)

(1+ ) <Z x ) + Opyu(2)] 4+ Pyy(z) + @p, . (z) — 1.

Substituting x = 1 yields
Ng, =2 n—s+1)(Nyu+1)+ Ny_, + ("}°) — L. (13)

We also find

6, () = (14 P u(z)]

(s = 1)(1 +2)* (i a:) + (1 +2)! (im_1>

Substituting « = 1 and simplifying yields
We, = [(s—1)2°(n— s+ 1) +2°7 (" 5] [Ny + 1]
+ 27— s+ D)Wy + Wy + ("5
=2 (n—s+1)[(n—1) (Ngu+1) +2Wiu] + Wi + ("5, (14)

Differentiating (I3]) and (I4) with respect to s, and letting L = In(2) for ease of
reading, we find

LINg]=2""L(n—s+1—2) (N +1) — 222271 and (15)
L We]=2L(n—s+1—L)[(n—1) (Nyu+1) +2Wg,] — 2=0=1 (16)

For convenience, we let t = n — s and rewrite (I3)), (I4)), (I5), and (1) below.
Since s € [1,n — 1], we have t € [1,n — 1] as well.
Neg, =2 (t+1) (Ngu+ 1) + Nu—u + (5) — 1,
We, =22t +1)[(n— 1) (Ngu + 1) + 2Wao] + War—o + (751,
4INg,|=2""L(t+1— 1) (Ngu+1) — 21, and

1
L
AW =220 (t+1— 2) [(n— 1) (N + 1) + 20| — 351
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By substituting these expressions into (I2), expanding, and regrouping (and con-
firming with a computer algebra system), we find

5
% [WGS] NGS - WGSC% [NGs] = ZEZ’

i=1
where

By =22(Lt+ L —1)[(Ngw+ 1Ny — 2Wg_],
Ey =2 (Lt + L—1)WyuNy o — NuuWr_u],

Ey =27+ 1)*|(Ngu + 1) (n = 1)(Lt —2L 4 1) — 2(Lt* + (2 — L)t — 1))

+ 2Who(Lt — 20+ 1),

Ey=—5(t+1)°(t* — 4t +2), and
EBs=2"2(Lt+ L —1)(n—2) (N + DNgy + Wy, — 252N,

We now show that Z?Zl E; > 0. We first demonstrate that £y > 0 and E5 > 0.
Note that since ¢ > 1, the factor Lt + L — 1 > 2L — 1 > 0. By Lemma [£5]
Ny owNyg—y > 2Wg_y,. Therefore,

By > 2Lt +L—1)Nyg_, > 0.

By Theorem , My, > Mp_,, or equivalently Wy  Ng_, > Wy_yNp,. It
follows immediately that Es > 0.

Next we show that F5 + F; > 0. We begin by bounding E3. Since H has order
at least 2, we have Wy, > Np, + 1. This gives

Ey > 27t +1)*(Ngu+1) [(n+ 1) (Lt — 2L+ 1) — 2(Lt* 4+ (2 — L)t — 1)]
Now we use the fact that ¢t < n — 1, or equivalently n + 1 > ¢ + 2. This gives

Ey > 27t +1)*(Ngu+ 1) [(t+2)(Lt — 2L+ 1) — 2(Lt* 4+ (2 — L)t — 1)]
=2t + 1)*(Np + 1)5 [Lt? + (2L — 1)t + 8 — 121

Finally, since H has order at least 2, we have Ny, > 2. Applying this inequality
along with s > 1 gives

Ey > (t+1)* [Lt* 4+ (2L — 1)t + 8 — 12L] .
Therefore,

Bs+ By > H(t+1)? [Lt? + (2L — 1)t + 8 — 12| — CHAE_ 442

= L(t+1)*[BL—1)t* + (6L + 1)t + 22 — 36L] .

il
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Recalling that L = In(2), one can verify that the quadratic in the square brackets of
this last expression is positive for all £ > 1. Thus, we conclude that F3 + E4 > 0.

Finally, we show that E5 > 0. We use the inequalities Wy_, > Ng_,, Ng,, > 2,
s>1l,andn—22>1t—1.

Es >

(Lt + L —1) (t — )Ny, + Ny, — 2Ny,

; G
¢ [(OL = 3)t* =3t +7—9L] Ny_,
Recalling that L = In(2), it is straightforward to verify that this last expression is
strictly positive for all ¢, and hence E5 > 0.

We have shown that £y > 0, E; > 0, E3+FE4 > 0,and E5 > 0 forall s € [1,n—1].
It follows that <4 [Wg,| No, — We, 4 [Ng,] = Z?:1 E; > 0 for all s € [1,n — 1], as
desired. O

6 Concluding Remarks

In this article, we demonstrated that among all connected block graphs of order n,
the path has smallest mean CIS order. This extends Jamison’s result: Among all
trees of order n, the path has smallest mean subtree order. Moreover, our main result
lends support to the conjecture made in [4]: Among all connected graphs of order n,
the path has minimum mean CIS order. It would be nice to extend this result to a
larger family of graphs, such as the family of chordal graphs, which contains all block
graphs. However, the proofs given here of the local-global mean inequality and the
three key lemmas rely heavily on the simple structure of block graphs.

The problem of determining the structure of those block graphs, of a given order,
with maximum mean CIS order remains open. It was conjectured by Jamison [3] that
a tree with maximum mean subtree order among all trees of order n, called an optimal
tree of order n, is a caterpillar. This is known as Jamison’s Caterpillar Conjecture.
This conjecture has been verified for all n < 24 (see [3, [5]). Mol and Oellermann [5]
made some progress on describing the structure of optimal trees. They proved that
in any optimal tree of order n, every leaf is adjacent with a vertex of degree at
least 3, and that the number of leaves in an optimal tree of order n is O(log,n)
(moreover, the number of leaves is ©(log, n) if Jamison’s Caterpillar Conjecture is
true). We note that the Caterpillar Conjecture is the last remaining open problem
from Jamison’s original work on the mean subtree order of trees [3]. The other five
open problems from [3] have all been solved in the last decade [5, [7, 8, 9].

Turning to block graphs, for n € {3,4}, the complete graph has maximum mean
CIS order among all block graphs of order n. We have verified that for 5 < n <
11, the block graph of order n with maximum mean CIS order is a tree (more
specifically, a caterpillar). We make the following conjecture, which strengthens
Jamison’s Caterpillar Conjecture.

Conjecture 6.1. Forn > 5, if G has maximum mean CIS order among all block
graphs of order n, then G is a caterpillar.
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