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Abstract

The signature of a spanning tree T of the n-dimensional cube Qn is the
n-tuple sig(T ) = (a1, a2, . . . , an) such that ai is the number of edges of T
in the ith direction. We characterise the n-tuples that can occur as the
signature of a spanning tree, and classify a signature S as reducible or
irreducible according to whether or not there is a proper nonempty subset
R of [n] such that restricting S to the indices in R gives a signature of
Q|R|. If so, we say moreover that S and T reduce over R.

We show that reducibility places strict structural constraints on T .
In particular, if T reduces over a set of size r then T decomposes as a
sum of 2r spanning trees of Qn−r, together with a spanning tree of a
certain contraction of Qn with underlying simple graph Qr. Moreover,
this decomposition is realised by an isomorphism of edge slide graphs,
where the edge slide graph of Qn is the graph E(Qn) on the spanning
trees of Qn, with an edge between two trees if and only if they are related
by an edge slide. An edge slide is an operation on spanning trees of the n-
cube given by “sliding” an edge of a spanning tree across a 2-dimensional
face of the cube to get a second spanning tree.

The signature of a spanning tree is invariant under edge slides, so the
subgraph E(S) of E(Qn) induced by the trees with signature S is a union
of one or more connected components of E(Qn). Reducible signatures may
be further divided into strictly reducible and quasi-irreducible signatures,
and as an application of our results we show that E(S) is disconnected if
S is strictly reducible. We conjecture that the converse is also true. If
true, this would imply that the connected components of E(Qn) can be
characterised in terms of signatures of spanning trees of subcubes.
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1 Introduction

The n-cube is the graphQn whose vertices are the subsets of the set [n] = {1, 2, . . . , n},
with an edge between X and Y if they differ by the addition or removal of a sin-
gle element. The element added or removed is the direction of the edge. Given a
spanning tree T of Qn, we may then define the signature of T to be the n-tuple

sig(T ) = (a1, a2, . . . , an),

where ai is the number of edges of T in direction i. The signature of T carries
exactly the same information as the direction monomial qdir(T ) appearing in Martin
and Reiner’s weighted count [10] of the spanning trees of Qn. With respect to certain
weights q1, . . . , qn and x1, . . . , xn they show that∑

T∈Tree(Qn)

qdir(T )xdd(T ) = q1 · · · qn
∏
S⊆[n]
|S|≥2

∑
i∈S

qi(x
−1
i + xi),

where
qdir(T ) = qa11 q

a2
2 . . . qann .

Thus, the signature and direction monomial completely determine each other. (The
second factor xdd(T ) appearing here is the decoupled degree monomial of T . It plays
no role in this paper, so we refer the interested reader to Martin and Reiner [10] for
the definition, and Tuffley [12, Sec. 2.2] for an alternate formulation in terms of a
canonical orientation of the edges of T .)

The goal of this paper is to study the signatures of spanning trees of Qn, and to
understand what sig(T ) tells us about the structure of T . We begin by using Hall’s
Theorem to characterise the n-tuples that can occur as the signature of a spanning
tree of Qn. We then classify T and S = sig(T ) as reducible or irreducible according
to whether or not there is a proper nonempty subset R of [n] such that restricting S
to the indices in R gives a signature of Q|R|. We say that such a set R is a reducing
set for S, and that T and S reduce over R. Each signature S has an unsaturated
part unsat(S), and we further classify reducible signatures as strictly reducible or
quasi-irreducible according to whether or not unsat(S) is reducible or irreducible.

We show that reducibility places strict structural constraints on T . In particular,
if T reduces over R then T decomposes as a sum of a spanning tree TX of Q[n]−R for
each X ⊆ R, together with a spanning tree TR of the multigraph Qn/R̄ obtained by
contracting every edge of Qn in directions belonging to R̄ = [n]−R. Moreover, this
decomposition may be realised as an isomorphism of edge slide graphs.

An edge slide is an operation on spanning trees of Qn, in which an edge of a
spanning tree T is “slid” across a 2-dimensional face of Qn to get a second spanning
tree T ′. The edge slide graph of Qn is the graph E(Qn) with vertices the spanning
trees of Qn, and an edge between two trees if they are related by an edge slide.
Edge slides were introduced by the third author [12] as a means to combinatorially
count the spanning trees of Q3, and thereby answer the first nontrivial case of a
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question implicitly raised by Stanley. The number of spanning trees of Qn is known
by Kirchhoff’s Matrix Tree Theorem to be

|Tree(Qn)| = 22
n−n−1

n∏
k=1

k(
n
k)

(see for example Stanley [11]), and Stanley implicitly asked for a combinatorial proof
of this fact. Tuffley’s method to count the spanning trees of Q3 using edge slides does
not readily extend to higher dimensions, but the edge slide graph may nevertheless
carry insight into the structure of the spanning trees of Qn. Stanley’s question has
since been answered in full by Bernardi [2].

In particular, a natural question of interest is to determine the connected compo-
nents of E(Qn). The signature is easily seen to be constant on connected components,
and consequently the subgraph E(S) induced by the spanning trees with signature
S is a union of connected components of E(Qn). We say that a signature S is con-
nected if E(S) is connected, and disconnected otherwise. We conclude the paper by
using our results to show that all strictly reducible signatures are disconnected, and
conjecture that S is connected if and only if S is irreducible or quasi-irreducible. If
true, this would imply that the connected components of E(Qn) can be characterised
in terms of signatures of spanning trees of subcubes. We show that it suffices to
consider the irreducible case only.

1.1 Organisation

The paper is organised as follows. Section 2 sets out the bulk of the definitions and
notation needed for the paper, with the introduction of some further definitions not
needed until Section 6 postponed until then. We characterise signatures of spanning
trees of Qn in Section 3, and classify them in Section 4. In Sections 5 and 6 we
study the structural consequences of reducibility, considering first upright trees in
Section 5 and then arbitrary reducible trees in Section 6. We then use our results from
Section 6 to prove that strictly reducible signatures are disconnected in Section 7,
and conclude with a discussion in Section 8.

2 Definitions and notation

This section sets out some definitions and notation used throughout the paper. Some
additional definitions not needed until Section 6 are set out in a second definitions
section there.

2.1 General notation

Given a graph G we denote the vertex set of G by V (G) and the edge set of G by
E(G). We write Tree(G) for the set of spanning trees of G.

Given a set S, we denote the power set of S by P(S). For 1 ≤ k ≤ |S| we write

P≥k(S) = {X ⊆ S : |X| ≥ k}.
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For n ∈ N we let [n] = {1, 2, . . . , n}, and also write Pn
≥k for P≥k([n]). For example,

P3
≥2 = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

2.2 The n-cube

Definition 2.1. We regard the n-dimensional cube or n-cube as the graph Qn

with vertex set the power set of [n], and an edge between vertices X and Y if and
only if they differ by adding or removing exactly one element. The direction of the
edge e = {X, Y } is the unique element i such that X ⊕ Y = {i}, where ⊕ denotes
symmetric difference.

For any S ⊆ [n], we define QS to be the induced subgraph of Qn with vertices
the subsets of S. Observe that QS is an |S|-cube.

2.3 The signature of a spanning tree of Qn

Definition 2.2. Given a spanning tree T of Qn, the signature of T is the n-tuple

sig(T ) = (a1, a2, . . . , an),

where for each i the entry ai is the number of edges of T in direction i. We will say
that S = (a1, . . . , an) is a signature of Qn if there is a spanning tree T of Qn such
that sig(T ) = S, and we let

Sig(Qn) = {sig(T ) : T ∈ Tree(Qn)}.

Figure 1 shows a pair of spanning trees of Q3 with signature (2, 2, 3). We note that
the signature of T carries exactly the same information as the direction monomial
qdir(T ) of Martin and Reiner [10], because

qdir(T ) = qa11 q
a2
2 . . . qann ⇔ sig(T ) = (a1, a2, . . . , an).

The entries of sig(T ) satisfy 1 ≤ ai ≤ 2n−1, because Qn has 2n−1 edges in direction i
and deleting them disconnects Qn, and

n∑
i=1

ai = |E(T )| = 2n − 1.

These conditions are not sufficient conditions for an n-tuple (a1, a2, . . . an) to be a
signature of Qn. We find necessary and sufficient conditions in Section 3.

If S = (a1, . . . , an) is a signature of Qn then so is any permutation of S, because
any permutation of [n] induces an automorphism of Qn. It follows that S is a
signature if and only if the n-tuple S ′ obtained by permuting S to nondecreasing
order is a signature. Accordingly we make the following definition:

Definition 2.3. A signature (a1, a2, . . . , an) of Qn is ordered if a1 ≤ a2 ≤ · · · ≤ an.

We will characterise signatures by characterising ordered signatures.
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Figure 1: A pair of spanning trees of Q3 with signature (2, 2, 3). The two trees are
related by an edge slide in direction 1 (Section 2.4): the tree on the right is obtained
from the tree on the left by deleting the edge {{1}, {1, 2}}, and replacing it with
the edge {∅, {2}}. The tree on the right is upright (Section 2.5), with associated
section defined by ψT ([3]) = 3, ψT ({1, 2}) = 1, ψT ({1, 3}) = 3, ψT ({2, 3}) = 2, and
ψT ({i}) = i for 1 ≤ i ≤ 3.

Example 2.4 (Signatures in low dimensions). The 1-cube Q1 has a unique spanning
tree, with signature (1). The 2-cube has a total of four spanning trees: two with
each of the signatures (1, 2) and (2, 1). The 3-cube Q3 has three signatures up to
permutation, namely (1, 2, 4), (1, 3, 3) and (2, 2, 3). There are 16 spanning trees with
signature (1, 2, 4); 32 with signature (1, 3, 3); and 64 with signature (2, 2, 3), for a
total of 6 · 16 + 3 · 32 + 3 · 64 = 384 spanning trees of Q3.

2.4 Edge slides and the edge slide graph

For each i ∈ [n] we define σi to be the automorphism of Qn defined for each X ∈
P([n]) by

σi(X) = X ⊕ {i},
where ⊕ denotes symmetric difference.

Definition 2.5 (Tuffley [12]). Let T be a spanning tree of Qn, and let e be an edge
of T in a direction j 
= i such that T does not also contain σi(e). We say that e
is i-slidable or slidable in direction i if deleting e from T and replacing it with
σi(e) yields a second spanning tree T ′; that is, if T ′ = T − e + σi(e) is a spanning
tree.

Example 2.6. Figure 1 illustrates an edge slide. The tree on the right is obtained
from the tree on the left by deleting the edge e = {{1}, {1, 2}}, and replacing it with
the edge σ1(e) = {∅, {2}}. This constitutes an edge slide in direction 1. We visualise
it as “sliding” the edge e in direction 1 across the 2-dimensional face induced by{
∅, {1}, {2}, {1, 2}

}
.
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Edge slides are a specialisation of Goddard and Swart’s edge move [5] to the n-
cube, in which the edges involved in the move are constrained by the structure of the
cube. We visualise them as the operation of “sliding” an edge across a 2-dimensional
face of the cube to get a second spanning tree, as seen in Example 2.6 and Figure 1.

Slidable edges may be characterised as follows:

Lemma 2.7. Let T be a spanning tree of Qn, and let e be an edge of T in direction
j 
= i. Then e is i-slidable if and only if σi(e) does not belong to T , and the cycle C
in T + σi(e) created by adding σi(e) to T contains both e and σi(e), and so is broken
by deleting e.

We define the edge slide graph of Qn in terms of edge slides:

Definition 2.8 (Tuffley [12]). The edge slide graph of Qn is the graph E(Qn) with
vertex set Tree(Qn), and an edge between trees T1 and T2 if and only if T2 may be
obtained from T1 by a single edge slide.

For a connected graph G the tree graph [5] of G is the graph T (G) on the spanning
trees of G, with an edge between two trees if they’re related by an edge move. The
edge slide graph E(Qn) is therefore a subgraph of the tree graph T (Qn). The tree
graph T (Qn) is connected, because T (G) is easily shown to be connected for any
connected graph G. In contrast, E(Qn) is disconnected for all n ≥ 2: edge slides
do not change the signature, so the signature is constant on connected components.
Accordingly, we make the following definition:

Definition 2.9. Let S be a signature of Qn. The edge slide graph of S is the
subgraph E(S) of E(Qn) induced by the spanning trees with signature S. If X is a
set of signatures, we further define

E(X ) =
⋃
S∈X

E(S).

By our discussion above, for each signature S the edge slide graph E(S) is a union
of one or more connected components of E(Qn). We say that S is connected or
disconnected according to whether E(S) is connected or disconnected. In Section 4
we classify signatures as irreducible, quasi-irreducible or strictly reducible. We prove
in Theorem 7.1 that every strictly reducible signature is disconnected, and conjecture
that S is connected if and only if S is irreducible or quasi-irreducible. If true, this
would imply that the connected components of E(Qn) can be characterised in terms
of signatures of spanning trees of subcubes. By Theorem 8.3 it suffices to show that
every irreducible signature is connected.

2.5 Upright trees and sections

Upright trees are a natural family of spanning trees of Qn that are easily understood.

Definition 2.10 (Tuffley [12]). Root all spanning trees of Qn at ∅. A spanning tree
T of Qn is upright if for each vertex X of Qn the path in T from X to the root has
length |X|.
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Equivalently, T is upright if for every vertex X of T , the first vertex Y on the
path in T from X to the root satisfies Y ⊆ X. Let Y = X−{i}, and set ψT (X) = i.
Then ψT defines a function Pn

≥1 → [n] such that ψT (X) ∈ X for all X ∈ Pn
≥1. We

call such a function a section of Pn
≥1:

Definition 2.11 (Tuffley [12]). A function ψ : Pn
≥1 → [n] such that ψ(X) ∈ X for

all X is a section of Pn
≥1. If ψ is a section then the signature of ψ is the n-tuple

sig(ψ) = (a1, . . . , an)

such that ai = |{X : ψ(X) = i}| for all i.

It is clear that upright trees are equivalent to sections:

Theorem 2.12 (Tuffley [12, Lemma 11] for n = 3, and Al Fran [1, Lemma 2.2.27]
for arbitrary n). The correspondence T ↔ ψT is a bijection between the set of upright
spanning trees of Qn and the set of sections of Pn

≥1. Moreover sig(T ) = sig(ψT ) for
all T .

3 Characterisation of signatures of spanning trees of Qn

In this section we use Hall’s Theorem to prove the following characterisation of the
n-tuples S = (a1, a2, . . . , an) that are the signature of a spanning tree of Qn.

Theorem 3.1. Let S = (a1, a2, . . . , an), where 1 ≤ a1 ≤ a2 ≤ · · · ≤ an ≤ 2n−1 and∑n
i=1 ai = 2n − 1. Then S is the signature of a spanning tree of Qn if and only if∑k
j=1 aj ≥ 2k − 1, for all k ≤ n.

Remark 3.2. Since
∑n

i=1 ai = 2n − 1, the signature condition of Theorem 3.1 is
equivalent to

n∑
j=k+1

aj ≤ 2n − 2k = 2k(2n−k − 1)

for all 1 ≤ k ≤ n.

Example 3.3 (Signatures of Q4). Applying Theorem 3.1 with n = 4 we find that
there are 18 ordered signatures of Q4:

(1, 2, 4, 8) (1, 2, 5, 7) (1, 3, 5, 6) (2, 2, 4, 7) (2, 3, 4, 6) (3, 3, 3, 6)
(1, 3, 3, 8) (1, 2, 6, 6) (1, 4, 4, 6) (2, 2, 5, 6) (2, 3, 5, 5) (3, 3, 4, 5)
(2, 2, 3, 8) (1, 3, 4, 7) (1, 4, 5, 5) (2, 3, 3, 7) (2, 4, 4, 5) (3, 4, 4, 4)

We will discuss the classification of these signatures in Example 4.11, and the reason
for organising them in this way will become apparent then.

The first step in the proof of Theorem 3.1 is to reduce it to the problem of
characterising signatures of sections of Pn

≥1:
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Lemma 3.4. The n-tuple S = (a1, a2, . . . , an) is the signature of a spanning tree of
Qn if and only if it is the signature of a section of Pn

≥1.

We give two independent proofs of this fact: one using Martin and Reiner’s
weighted count [10] of spanning trees of Qn, and the second via edge slides and
upright trees.

Proof 1 of Lemma 3.4, via Martin and Reiner’s weighted count.
By Martin and Reiner [10] we have∑

T∈Tree(Qn)

qdir(T )xdd(T ) = q1 · · · qn
∏

S∈Pn
≥2

∑
i∈S

qi(x
−1
i + xi),

in which

qdir(T ) = qa11 q
a2
2 . . . qann ⇔ sig(T ) = (a1, a2, . . . , an).

Set xi = 1 for all i to get∑
T∈Tree(Qn)

qdir(T ) = q1 · · · qn
∏

S∈Pn
≥2

∑
i∈S

2qi

= 22
n−n−1

∏
S∈Pn

≥1

∑
i∈S

qi.

Each term in the expansion corresponds to a choice of i ∈ S for each nonempty
subset S of [n], and hence to a section of Pn

≥1.

Proof 2 of Lemma 3.4, via edge slides and upright trees. By Tuffley [12, Cor. 15],
each spanning tree of Qn is connected to an upright spanning tree by a sequence
of edge slides. The signature is invariant under edge slides, so we conclude that S is
the signature of a spanning tree if and only if it is the signature of an upright tree.
But upright spanning trees are equivalent to sections of Pn

≥1, and the equivalence is
signature-preserving.

Recall that Hall’s Theorem may be stated as follows (e.g. see [3, Thm 11.13]):

Theorem 3.5 (Hall [7]). Let G = (A,B) be a bipartite graph with |A| = |B|. Then G
has a perfect matching if and only if for all nonempty Y ⊆ A we have |Y | ≤ |N(Y )|,
where N(Y ) ⊆ B is the neighbourhood of Y in G.

If the stronger condition |Y | < |N(Y )| holds for all proper nonempty Y , then for
any a ∈ A and b ∈ N(A) one may show there exists a perfect matching such that a
is matched with b. We use this idea to prove our results of Section 5.2.

We now prove Theorem 3.1. The proof is illustrated in Figure 2.
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{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

1 1 2 2 3 3 3

A:

B:

{1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}

1 1 2 2 3 3 3

A:

B:

Figure 2: Illustrating the proof of Theorem 3.1, in the case S = (2, 2, 3). Upper figure:
The matching graph GS . Lower figure: Checking the Hall condition |N(Y )| ≥ |Y |
for Y =

{
{2}, {2, 3}

}
⊆ A (filled vertices in A). We have supp(Y ) = {2} ∪ {2, 3} =

{2, 3}, so the neighbourhood of Y consists of all vertices in B labelled 2 or 3 (filled
vertices in B). Consequently |N(Y )| =

∑
i∈supp(Y ) ai = a2 + a3. Since S is ordered

|N(Y )| = a2 + a3 ≥ a1 + a2 = 4. On the other hand, Y is a nonempty subset
of P≥1(supp(Y )), so |Y | ≤ |P≥1(supp(Y ))| = 22 − 1 = 3. The Hall condition

for Y =
{
{2}, {2, 3}

}
therefore follows from the condition

∑k
i=1 ai ≥ 2k − 1 of

Theorem 3.1, with k = | supp(Y )| = 2.

Proof of Theorem 3.1. Let A be Pn
≥1, the set of 2

n− 1 nonempty vertices of Qn, and
let B be a set of 2n − 1 vertices of which ai are labelled i, for each i ∈ [n]. For
each vertex V in A and i ∈ V we draw an edge to every vertex in B labelled i, as
shown in Figure 2 for the case S = (2, 2, 3). Let GS be the resulting bipartite graph
with bipartition (A,B). A section of Pn

≥1 with signature S corresponds to a perfect
matching in GS , so we show there is a perfect matching in GS if and only if the
signature condition

∑k
j=1 aj ≥ 2k − 1 is satisfied for all k ≤ n.

Given a nonempty subset Y of A, define the support of Y to be the set

supp(Y ) =
⋃
V ∈Y

V.

Suppose that supp(Y ) = {i1, i2 . . . , ik}, where 1 ≤ i1 < · · · < ik ≤ n. Then ij ≥ j
for 1 ≤ j ≤ k, which implies aij ≥ aj because S is ordered. It follows that the
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neighbourhood N(Y ) of Y in GS satisfies

|N(Y )| =
∑

i∈supp(Y )

ai =

k∑
j=1

aij

≥
k∑

j=1

aj

with equality if supp(Y ) = {1, . . . , k}. Also

|Y | ≤ |P≥1(supp(Y ))| = 2k − 1,

with equality if and only if Y = P≥1(supp(Y )). Then we conclude that |N(Y )| ≥ |Y |
for all Y ⊆ A if and only if

∑k
j=1 aj ≥ 2k − 1 for all k ≤ n. Thus by Hall’s Theorem

there exists a perfect matching in GS if and only if
∑k

j=1 aj ≥ 2k − 1 for all k.

We conclude this section by proving a lower bound on the growth of an ordered
signature.

Lemma 3.6. Let S = (a1, . . . , an) be an ordered signature of Qn. Then i ≤ ai for
all i ∈ [n].

Proof. We use the fact easily proved by induction that m(m− 1) < 2m− 1 for all m.
Let j < i. Since S is ordered we have aj ≤ ai, and therefore 2i − 1 ≤

∑i
j=1 aj ≤ iai.

Suppose that i > ai. Then ai ≤ i− 1 and so 2i − 1 ≤ i(i− 1), contradicting the
fact that i(i− 1) < 2i − 1. Therefore i > ai is impossible, so i ≤ ai.

4 Classification of signatures of spanning trees of Qn

We classify signatures of Qn as reducible or irreducible as follows.

Definition 4.1. Let S = (a1, . . . , an) be a signature of a spanning tree of Qn.
Then S is reducible if there exists a proper nonempty subset R of [n] such that∑

i∈R ai = 2|R| − 1. We say that R is a reducing set for S, and that S reduces
over R. If no such set exists then S is irreducible.

By extension, we will say that a spanning tree T is reducible or irreducible accord-
ing to whether sig(T ) is reducible or irreducible. If sig(T ) is reducible with reducing
set R, we will say that T reduces over R.

Note that if S is irreducible then ai ≥ 2 for all i, because if ai = 1 then S reduces
over {i}.

Remark 4.2. If S is ordered and R ⊆ [n] satisfies |R| = r then

∑
i∈R

ai ≥
r∑

i=1

ai.
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It follows that an ordered signature has a reducing set of size r if and only if [r]
itself is a reducing set. If this holds then we have

∑r
i=1 ai = 2r − 1, and moreover∑k

i=1 ai ≥ 2k − 1 for 1 ≤ k ≤ r, by the signature condition for S. It follows that
S ′ = (a1, . . . , ar) is a signature of Qr. Thus, an ordered signature is reducible if and
only if it has a initial segment that is a signature of a lower dimensional cube. More
generally, a not-necessarily ordered signature S is reducible if and only if there is a
proper nonempty subset R of [n] such that the restriction of S to the indices in R
gives a signature of QR.

Example 4.3. Consider the following ordered signatures of Q7:

S1 = (2, 2, 4, 8, 16, 32, 63), S3 = (2, 2, 4, 8, 15, 32, 64),

S2 = (2, 2, 3, 9, 15, 33, 63), S4 = (2, 2, 3, 9, 15, 32, 64).

The signature S1 is irreducible, and the rest are reducible. Signature S2 reduces over
[3] and [5]; signature S3 reduces over [5] and [6]; and signature S4 reduces over [3],
[5] and [6].

Definition 4.4. Let S = (a1, . . . , an) be a signature of Qn and let 1 ≤ k ≤ n. We
define the excess of S at k, εSk , to be

εSk = min
K⊆[n]
|K|=k

(∑
i∈K

ai

)
− (2k − 1).

Thus, the excess at k is the minimum quantity by which a set of k directions exceeds
the matching condition of Hall’s Theorem. Consequently, S is irreducible if and only
if εSk ≥ 1 for all k ≤ n− 1, and is reducible if and only if εSk = 0 for some k ≤ n− 1.
Note that by definition εSn = 0, and if S is ordered then the excess at k is simply
given by

εSk =

(
k∑

i=1

ai

)
− (2k − 1).

Remark 4.5. Observe that for an ordered signature S = (a1, . . . , an) of Qn and
r < n, the following statements are equivalent:

1. (a1, . . . , ar) is a signature of Qr.

2. S reduces over [r].

3. εSr = 0.

4.
∑r

i=1 ai = 2r − 1.

Note further that if εSk−1 = εSk = 0, then ak = 2k−1.

Reducible signatures of Qn can be divided into two types: strictly reducible and
quasi-irreducible signatures. In order to define these we first introduce the notion of
saturated and unsaturated signatures as follows.
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Definition 4.6. Let S = (a1, . . . , an) be a signature of Qn. If there exists r < n
such that εSk = 0 for all r ≤ k ≤ n, then S is a saturated signature. If no such
index exists than S is unsaturated. Equivalently, S is saturated if and only if it
reduces over a set of size n− 1.

If S is ordered and εSk = 0 for all r ≤ k ≤ n, then we further say that S is
saturated above direction r.

Note that a saturated signature is necessarily reducible. If the ordered signature S
is saturated above direction r then by Remark 4.5 we have ak = 2k−1 for r+1 ≤ k ≤ n,
and moreover the k-tuple (a1, . . . , ak) is a signature of Qk for r ≤ k ≤ n. We may
therefore make the following definition:

Definition 4.7. Let S = (a1, . . . , an) be an ordered signature of Qn, and let 1 ≤
s ≤ n be the least index such that εSk = 0 for all s ≤ k ≤ n (such an s exists because
εSn = 0). Then the s-tuple unsat(S) defined by

unsat(S) = (a1, . . . , as)

is necessarily an unsaturated signature of Qs, and is the unsaturated part of S.
If S is not ordered we define unsat(S) to be the restriction of S to the entries

appearing in the unsaturated part of an ordered permutation S ′ of S. Write S ′ =
(a′1, . . . , a

′
n), and suppose that unsat(S ′) = (a′1, . . . , a

′
s). Then

S ′ = (a′1, . . . , a
′
s, 2

s, 2s+1, . . . , 2n−1),

and a′i < 2s−1 for 1 ≤ i ≤ s. Thus, unsat(S) is the restriction of S to the entries
satisfying ai < 2s−1. Moreover, while there may be more than one permutation of [n]
that puts S in nondecreasing order (where there are indices i 
= j such that ai = aj),
there is no ambiguity in which indices occur in the unsaturated part.

We use the unsaturated part to divide reducible signatures into quasi-irreducible
and strictly reducible signatures:

Definition 4.8. Let S be a reducible signature of Qn. Then S is quasi-irreducible
if the unsaturated part unsat(S) is irreducible. Otherwise, S is strictly reducible.

By extension, we will say that a reducible spanning tree T of Qn is quasi-
irreducible or strictly reducible according to whether sig(T ) is quasi-irreducible or
strictly reducible.

Example 4.9. For the signatures appearing in Example 4.3 we have

unsat(S1) = S1, unsat(S3) = (2, 2, 4, 8, 15),

unsat(S2) = S2, unsat(S4) = (2, 2, 3, 9, 15).

Signatures S1 and S2 are unsaturated, while S3 and S4 are both saturated above
direction 5. Signatures S2 and S4 are strictly reducible (their unsaturated parts
both have [3] as a reducing set), and signature S3 is quasi-irreducible.
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Example 4.10 (Classification of signatures in low dimensions). The unique signa-
ture (1) of Q1 is irreducible. Up to permutation Q2 has the unique signature (1, 2),
which is reducible and saturated, with unsaturated part (1). It is therefore quasi-
irreducible. The signatures of Q3 up to permutation are (1, 2, 4), (1, 3, 3) and (2, 2, 3),
which are respectively quasi-irreducible, strictly reducible and irreducible. Of these
only (1, 2, 4) is saturated.

Example 4.11 (Classification of signatures of Q4). Consider again the signatures
of Q4 from Example 3.3:

(1, 2, 4, 8) (1, 2, 5, 7) (1, 3, 5, 6) (2, 2, 4, 7) (2, 3, 4, 6) (3, 3, 3, 6)
(1, 3, 3, 8) (1, 2, 6, 6) (1, 4, 4, 6) (2, 2, 5, 6) (2, 3, 5, 5) (3, 3, 4, 5)
(2, 2, 3, 8) (1, 3, 4, 7) (1, 4, 5, 5) (2, 3, 3, 7) (2, 4, 4, 5) (3, 4, 4, 4)

The signatures in the first column all have [3] as a reducing set, while those in the
second and third columns all have [1] as a reducing set. Thus these nine signatures are
reducible. The nine signatures appearing in the last three columns are all irreducible.

The signatures in the first column are obtained by appending 23 = 8 to a signature
of Q3 (equivalently, have [3] as a reducing set), so are saturated. The remaining
signatures are unsaturated. The reducible signatures in the second and third columns
are therefore strictly reducible. For the saturated signatures, we have

unsat(1, 2, 4, 8) = (1),

unsat(1, 3, 3, 8) = (1, 3, 3),

unsat(2, 2, 3, 8) = (2, 2, 3),

so just (1, 3, 3, 8) is strictly reducible, and the other two are quasi-irreducible.

The signatures (1), (1, 2), (1, 2, 4) and (1, 2, 4, 8) seen above are the first four
members of an infinite family of signatures:

Definition 4.12. For n ≥ 1 let SSn be the n-tuple (a1, . . . , an) defined by ai = 2i−1

for 1 ≤ i ≤ n:
SSn = (1, 2, 4, 8, . . . , 2n−1).

Then
∑k

i=1 ai = 2k − 1 for all 1 ≤ k ≤ n, so SSn is a signature of Qn.

Observe that SSn satisfies εSSn
k = 0 for 1 ≤ k ≤ n. It follows that SSn is

saturated above direction 1 for all n ≥ 2, and unsat(SSn) = (1) for all n. For n ≥ 2
we will say that SSn is supersaturated :

Definition 4.13. Let n ≥ 2. A signature S = (a1, . . . , an) is supersaturated if
εSk = 0 for all 1 ≤ k ≤ n. Equivalently, S is supersaturated if and only if it is a
permutation of SSn.



H.A. AL FRAN ET AL. /AUSTRALAS. J. COMBIN. 75 (3) (2019), 259–295 272

5 Consequences of the classification for upright trees

In this section and the next we show that reducibility places strict structural con-
straints on a spanning tree of Qn. We begin by restricting our attention to upright
spanning trees, which are easily understood through their equivalence with sections
of Pn

≥1.
By identifying each upright tree T with its associated section ψT , we may regard

an upright tree as a choice of x ∈ X at each nonempty subset X of [n]. We may ask
the following question:

Question 5.1. Given a signature S of Qn, a nonempty subset X of [n], and an
element x of X, does there exist an upright spanning tree T with signature S such
that ψT (X) = x?

Lemma 5.2 shows that, if S is reducible, then it is always possible to choose a
nonempty subset X of [n] and an element x ofX such that the answer to this question
is “no”. In contrast, Corollary 5.7 shows that for irreducible S, the answer to this
question is always “yes”, regardless of the choice of nonempty X ⊆ [n] and x ∈ X.
This means that we may arbitrarily specify the value of a section with irreducible
signature S at any single vertex of our choice. We further show that under certain
conditions (typically expressed in terms of the excess) we can specify the value of a
section with signature S at one or more additional vertices.

5.1 Reducible upright trees

We show that reducibility constrains the edges of an upright spanning tree:

Lemma 5.2. Let S = (a1, . . . , an) be a reducible signature of Qn, and let R be a
reducing set for S. Let T be an upright spanning tree of Qn with signature S and let
X be a nonempty vertex of Qn. Then ψT (X) ∈ R if and only if X ⊆ R.

This answers Question 5.1 for reducible signatures, by showing that if x ∈ [n] is
chosen such that x ∈ R, then the answer is “yes” only if X ⊆ R.

Proof. The fact that ψT (X) ∈ R for X ⊆ R is immediate from the fact that ψT is
a section. For the converse, observe that in total T has

∑
i∈R ai = 2|R| − 1 edges in

directions belonging to R, and R has 2|R|− 1 nonempty subsets. Thus all edges of T
in directions belonging to R are accounted for at the subsets of R, so we must have
ψT (X) /∈ R for X � R.

Applying Lemma 5.2 to an ordered saturated signature we get:

Corollary 5.3. Let S = (a1, . . . , an) be an ordered signature. If S is saturated above
direction r and X � [r], then ψT (X) = maxX.

Proof. Since S is saturated above direction r, it reduces over [s− 1] for each s > r.
If maxX = s, then X ⊆ [s] but X � [s− 1]. Therefore ψT (X) belongs to [s] but not
[s− 1], and hence ψT (X) = s = maxX.
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Corollary 5.4. Let the ordered signature S = (a1, . . . , an) of Qn be saturated above
direction r. Then the number of upright spanning trees of Qn with signature S is
equal to the number of upright spanning trees of Qr with signature S ′ = (a1, . . . , ar).

In particular, if the unsaturated part of S consists of the first s entries of S, then
the number of upright spanning trees of Qn with signature S is equal to the number
of upright spanning trees of Qs with signature unsat(S).

Proof. Given an upright spanning tree T of Qn with signature S let T ′ = T ∩ Qr.
Then T ′ is an upright spanning tree of Qr with associated section ψT ′ = ψT

∣∣
Pr
≥1

, the

restriction of ψT to Pr
≥1. Since S reduces over [r] Lemma 5.2 implies ψT (X) ∈ [r] if

and only if X ⊆ [r], and it follows that sig(T ′) = S ′.
Conversely, given an upright spanning tree T ′ of Qr with signature S ′, we can

extend T ′ to an upright spanning tree T of Qn such that T ′ = T ∩Qr by defining

ψT (X) =

{
ψT ′(X), if X ⊆ R,

maxX, otherwise.

For each 1 ≤ k ≤ n there are 2k−1 subsets X of [n] such that maxX = k, so
sig(T ) = (a1, . . . , ar, 2

r, 2r+1, . . . , 2n−1) = S. Moreover, Corollary 5.3 shows that any
upright spanning tree of Qn with signature S that extends T ′ must co-incide with T .
It follows that the map T �→ T ∩ Qr is a bijection from the set of upright spanning
trees of Qn with signature S to the set of upright spanning trees of Qr with signature
S ′, proving the result.

Corollary 5.5. There is only one upright spanning tree of Qn with the supersaturated
signature SSn = (1, 2, 4, 8, . . . , 2n−1).

Proof. The signature SSn satisfies unsat(SSn) = (1). The signature (1) has a unique
upright tree, so the result follows immediately from Corollary 5.4.

5.2 Irreducible upright trees

We now consider irreducible upright spanning trees, and show that in contrast to
Lemma 5.2, for S irreducible the answer to Question 5.1 is always “yes”: given
nonempty X ⊆ [n] and x ∈ X, there always exists an upright spanning tree T with
signature S such that ψT (X) = x. Since irreducible signatures satisfy εSk ≥ 1 for all
k < n, we deduce this as a corollary to Theorem 5.6, which loosely speaking says
that if εSk ≥ � for all k < n, then we may arbitrarily specify the value of a section
with signature S at any � vertices of our choice. In fact, the condition εSk ≥ � for
all k < n appears to be a little stronger than necessary. For � = 2 we show in
Theorem 5.9 that, under certain conditions, we can specify the value of a section at
two vertices even when we do not have εSk ≥ 2 for all k. To prove this result we
require Lemma 5.8, which shows that when ak and ak+1 are close enough, the excess
at k must be at least 2.

Theorem 5.6. Let � be a positive integer, and let S be a signature of Qn such that
εSk ≥ � for 1 ≤ k < n. Let X1, . . . , X� be distinct nonempty vertices of Qn, and let



H.A. AL FRAN ET AL. /AUSTRALAS. J. COMBIN. 75 (3) (2019), 259–295 274

xt ∈ Xt for each t. Then there is an upright spanning tree T of Qn with signature S
such ψT (Xt) = xt for 1 ≤ t ≤ �.

Proof. Let GS be the matching graph with bipartition (A,B) constructed in the
proof of Theorem 3.1. By hypothesis we have

εS1 = min
i∈[n]

ai − 1 ≥ �,

so ai ≥ � + 1 for all i. It follows that there exists a partial matching M in GS such
that Xt is matched with a vertex vt ∈ B labelled xt for 1 ≤ t ≤ �. Let G′

S be
the matching graph with the vertices X1, . . . , X�, v1, . . . , v� and all incident edges
deleted. We show that M can be extended to a perfect matching in GS by showing
that there exists a perfect matching in G′

S .
Let A′ = A−{X1, . . . , X�}, B′ = B−{v1, . . . , v�}, and for 1 ≤ i ≤ n let a′i be the

number of vertices labelled i in B′. Given ∅ 
= Y ⊆ A′ let Z = supp(Y ), the union
of the sets in Y . If Z = [n] then N(Y ) = B′, and since |Y | ≤ |A′| = |B′| the Hall
condition holds for Y . Otherwise we have |Y | ≤ 2|Z| − 1 and εS|Z| ≥ �, so

|N(Y )| =
∑
i∈Z

a′i ≥
(∑

i∈Z
ai

)
− � ≥ (2|Z| + εS|Z| − 1)− � ≥ 2|Z| − 1 ≥ |Y |.

Therefore the Hall condition holds for all nonempty Y ⊆ A′, so G′
S has a perfect

matching, as required. The resulting perfect matching in GS extending M corre-
sponds to a section ψ of Pn

≥1 such that ψ(Xt) = xt for 1 ≤ t ≤ �, proving the
existence of the required upright spanning tree.

Specialising to the case � = 1 we answer Question 5.1 in the affirmative for
irreducible signatures:

Corollary 5.7. Let I be an irreducible signature of Qn. Let X be a nonempty
vertex of Qn and let x ∈ X. Then there exists an upright spanning tree T of Qn with
signature I such that ψT (X) = x.

Proof. Since I is irreducible it satisfies εIk ≥ 1 for 1 ≤ k < n. The result therefore
follows immediately from Theorem 5.6.

We use the following lemma to show for � = 2 that the excess condition of
Theorem 5.6 can be weakened slightly under certain conditions.

Lemma 5.8. Let n ≥ 4 and let I = (a1, . . . , an) be an ordered irreducible signature
of Qn. Suppose that, for some i ∈ {2, . . . , n − 1}, we have ai+1 − ai ≤ 1. Then
εIi ≥ 2.

We note that the condition n ≥ 4 is necessary in Lemma 5.8. The irreducible
signature (2, 2, 3) with i = 2 is a counterexample for n = 3.
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Proof. Since I is irreducible we necessarily have εIi ≥ 1. Suppose that εIi = 1. Then
since I is irreducible we have

2i =
i∑

j=1

aj =
i−1∑
j=1

aj + ai ≥ 2i−1 + ai,

and therefore ai ≤ 2i−1. If i < n− 1 then

2i+1 ≤
i+1∑
j=1

aj =
i∑

j=1

aj + ai+1 = 2i + ai+1,

which implies ai+1 ≥ 2i. But then ai+1 − ai ≥ 2i−1 ≥ 2, a contradiction. Similarly, if
i = n− 1 then

2i+1 − 1 ≤
i+1∑
j=1

aj =
i∑

j=1

aj + ai+1 = 2i + ai+1,

which implies ai+1 ≥ 2i − 1. Then ai+1 − ai ≥ 2i−1 − 1 = 2n−2 − 1 ≥ 3, and we again
reach a contradiction. Therefore it must in fact be the case that εIi ≥ 2.

For � = 2 we may weaken the excess condition of Theorem 5.6 as follows:

Theorem 5.9. Let n ≥ 4, and let I = (a1, . . . , an) be an ordered irreducible signature
of Qn. Let X1, X2 be distinct nonempty vertices of Qn, and let xt ∈ Xt for t = 1, 2.
Suppose that one of the following two conditions holds:

1. εIk ≥ 2 for all k ≥ max{x1, x2}.

2. x1 
= x2, and either x1 = maxX1 or x2 = maxX2.

Then there exists an upright spanning tree T of Qn with signature I such ψT (Xt) = xt
for t = 1, 2.

Proof. Let GI be the matching graph with bipartition (A,B) constructed in the
proof of Theorem 3.1. Since I is irreducible we have ai ≥ 2 for all i, so there exists
a partial matching M of A into B such that Xt is matched with a vertex vt labelled
xt for t = 1, 2. Let G′

I be the matching graph with the vertices X1, X2, v1, v2 and all
incident edges deleted. We show that M can be extended to a perfect matching in
GI by showing that there exists a perfect matching in G′

I .
Let A′ = A−{X1, X2}, B′ = B−{v1, v2}, and for 1 ≤ i ≤ n let a′i be the number

of vertices labelled i in B′. Given ∅ 
= Y ⊆ A′ let Z = supp(Y ), the union of the
sets in Y , and set z = |Z|. If z = n then N(Y ) = B′, and since |Y | ≤ |A′| = |B′| the
Hall condition holds for Y . Otherwise we have

|N(Y )| =
∑
i∈Z

a′i =

(∑
i∈Z

ai

)
− χZ(x1)− χZ(x2), (1)

where χZ : [n] → {0, 1} is the characteristic function of Z; and

|Y | ≤ 2z − 1− χP(Z)(X1)− χP(Z)(X2) ≤ 2z − 1,
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where χP(Z) : P([n]) → {0, 1} is the characteristic function of P(Z). Since I is
irreducible we have

∑
i∈Z ai ≥ 2z, so

|N(Y )| ≥ 2z − 2,

with equality possible only if
∑

i∈Z ai = 2z and x1, x2 ∈ Z. On the other hand we
have |Y | ≤ 2z − 1, with equality possible only if X1, X2 � Z and Y = P≥1(Z). It
follows that |N(Y )| ≥ |Y | except possibly when x1, x2 ∈ Z and X1, X2 � Z.

Suppose then that x1, x2 ∈ Z but X1, X2 � Z. We show under each of the
conditions given in the theorem that we have

∑
i∈Z ai ≥ 2z + 1, so that |N(Y )| ≥

2z − 1 ≥ |Y | as needed.

1. Suppose that εIk ≥ 2 for all k ≥ m = max{x1, x2}. As in the proof of The-
orem 3.1 let Z = {i1, i2, . . . , iz}, where i1 < i2 < · · · < iz. If z ≥ m then
εIz ≥ 2, so

∑
i∈Z ai ≥ 2z + 1 and we are done. Otherwise we have z < m, and

then iz > z, because m ∈ Z but |Z| < m. Therefore aiz ≥ az+1, because I is
ordered. If

∑
i∈Z ai ≥ 2z + 1 does not hold then

2z ≥
∑
i∈Z

ai =
z∑

s=1

ais ≥
z−1∑
s=1

as + aiz ≥
z−1∑
s=1

as + az+1 ≥
z∑

s=1

as ≥ 2z, (2)

and so aiz = az+1 = az.

If z ≥ 2 then by Lemma 5.8 we have εIz ≥ 2, and so in fact

∑
i∈Z

ai ≥
z∑

s=1

as ≥ 2z + 1

after all. Otherwise, if z = 1 then ai = a1 for 1 ≤ i ≤ iz, and so in particular for
1 ≤ i ≤ m. But then if a1 = 2 we have

∑m
i=1 ai = 2m < 2m + 1, contradicting

our hypothesis that εIm ≥ 2. Therefore
∑

i∈Z ai = am ≥ 3 = 2z + 1 in this case
also.

2. Under the hypothesis that x1 = maxX1 or x2 = maxX2 we may assume with-
out loss of generality that x1 = maxX1. As above we let Z = {i1, i2, . . . , iz},
where i1 < i2 < · · · < iz, and we note that z ≥ 2 because x1 
= x2 and
{x1, x2} ⊆ Z. Then since x1 = maxX1 ∈ Z and X1 � Z it cannot be the case
that Z = [z], so as in Case 1 we have iz > z and hence aiz ≥ az+1. Arguing
as in Equation (2) we therefore get az+1 = az, and then since z ≥ 2 we again
have

∑
i∈Z ai ≥ 2z + 1, by Lemma 5.8.

Therefore the Hall condition holds for all nonempty Y ⊆ A′, so G′
I has a perfect

matching, as required. The resulting perfect matching in GI extending M corre-
sponds to a section ψ of Pn

≥1 such that ψ(Xt) = xt for t = 1, 2, proving the existence
of the required upright spanning tree.
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For completeness we consider the extent to which the hypothesis x1 
= x2 is
necessary in Case 2 of Theorem 5.9. We show that this hypothesis can in fact be
eliminated except in very limited circumstances:

Proposition 5.10. Under the hypotheses of Theorem 5.9, suppose that x1 = x2 = x,
and either maxX1 or maxX2 is equal to x. Then the conclusion of Theorem 5.9 still
holds unless x = 2, a1 = a2 = 2, and (perhaps after permuting them) we have
X1 = {1, 2} and X2 � {1, 2}.

Proof. In the proof of Case 2 of Theorem 5.9, the hypothesis x1 
= x2 is used only to
rule out the possibility z = 1 when x1, x2 ∈ Z but X1, X2 � Z. We therefore check
when |Y | > |N(Y )| can hold under these conditions.

Since z = |Z| = 1 and x ∈ Z we must have Z = {x}, which in turn implies
Y = {{x}}. From equation (1) we have |N(Y )| = ax − 2, so if |Y | > |N(Y )| we
must have ax ≤ 2. Irreducibility of I rules out the possibility ax = 1, so we must
have ax = 2, and then x ≤ 2 by Lemma 3.6. We need not consider the case x = 1: if
x = 1 then the hypothesis x = maxXt for some t implies either X1 or X2 is equal to
{1}, which means that the vertex {1} is already matched by M and does not belong
to G′

I . So suppose that x = 2. Then a1 = a2 = 2 by irreducibility, and the condition
xt = maxXt for t = 1 or 2 together with X1, X2 � Z implies that (perhaps after
relabelling) we have X1 = {1, 2} and X2 � {1, 2}, as claimed. We see moreover that
in this case the required matching in GI does not in fact exist, because the three
distinct vertices {2}, X1 = {1, 2} and X2 must all be matched with vertices in B
labelled 2, and there are only two such vertices.

6 Structural consequences of reducibility

We now turn our attention to the consequences of reducibility for arbitrary spanning
trees. We give a structural characterisation of reducible trees in Section 6.2, then use
this to show in Section 6.3 that a tree that reduces over a set of size r decomposes
as a sum of 2r spanning trees of Qn−r, together with a spanning tree of a certain
contraction of Qn with underlying simple graph Qr. The constructions required to
state this result are defined in Section 6.1. We then show in Section 6.4 that this
decomposition is realised by a graph isomorphism between edge slide graphs. We
conclude the section by applying the results to several special cases in Section 6.5.

6.1 Further definitions and notation

We present some further definitions needed for our results in this section.

6.1.1 Notation

We will be working with the sets of all spanning trees and all signatures that reduce
over a given proper non-empty subset R of [n]. We therefore introduce the following
notation:
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Definition 6.1. Given a proper non-empty subset R of [n], we define

RTreeR(Qn) = {T ∈ Tree(Qn) : T reduces over R},
RSigR(Qn) = {S ∈ Sig(Qn) : S reduces over R}.

6.1.2 Partitioning the n-cube

Given a subset R ⊆ [n], we partition Qn into 2|R| copies of Qn−|R| as follows:

Definition 6.2. For any X ⊆ R (including the empty set), let Qn(R,X) be the
induced subgraph of Qn with vertices

V (Qn(R,X)) = {W ⊆ [n] : W ∩R = X} = {X ∪ Y : Y ⊆ [n]− R}.

The cases R = {1, 3} and R = {1} with n = 3 are illustrated in Figure 3. For any
subgraph H of Qn we further define H(R,X) = H ∩Qn(R,X). Thus H(R,X) is the
subgraph of H induced by the vertices W ∈ V (H) satisfying W ∩R = X.

Observe that Qn(R,X) = (Q[n]−R)⊕X, and so is an (n−|R|)-cube; and if T is a
spanning tree of Qn, then T (R,X) is a spanning forest1 of Qn(R,X). Note further
that

• every edge of Qn in a direction i /∈ R belongs to Qn(R,X) for some X; and

• every edge of Qn in a direction j ∈ R joins a vertex of Qn(R,X) to the corre-
sponding vertex of Qn(R,X ⊕ {j}) for some X.

For any X1, X2 ⊆ R such that X1 
= X2 we have

Qn(R,X1) ∩Qn(R,X2) = ∅.

6.1.3 Quotienting the n-cube

Definition 6.3. Let S ⊆ [n]. We define Qn/S to be the graph obtained from Qn by
contracting every edge in direction j, for all j ∈ S.

In practice we will be most interested in the case where S = R̄ := [n] − R, for
some R ⊆ [n]. The contractions Q3/R̄ for R = {1, 3} and R = {1} are illustrated
in Figure 4. For R ⊆ [n] the contraction Qn/R̄ is the graph obtained from Qn by
contracting every edge in direction j, for all j /∈ R. The construction has the effect
of contracting each subcube Qn(R,X) to a single vertex, which we may label X, for
eachX ⊆ R. The resulting graphQn/R̄ is a multigraph with underlying simple graph
QR, and 2n−|R| parallel edges for each edge of QR: one for each element of P(R̄).

1We use spanning forest in the sense of a spanning subgraph that is a forest, and not in the
sense of a maximal spanning forest. That is, we do not require each component of a spanning forest
of G to be a spanning tree of the component of G it belongs to.
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Figure 3: The subcubes Q3(R,X) for X ⊆ R for R = {1, 3} (left) and R = {1}
(right). In each case we get 2|R| subcubes of dimension 3− |R|, together containing
all edges of Qn in directions not belonging to R.

We regard Qn/R̄ as having vertex set V (QR) = P(R) and edge set E(QR)× P(R̄),
where the edge (e, Y ) ∈ E(QR)× P(R̄) joins the endpoints of e. We define

πR : Qn/R̄ → QR

to be the projection from Qn/R̄ to the underlying simple graph. This map fixes all
the vertices and sends (e, Y ) ∈ E(QR)× P(R̄) to e ∈ E(QR).

A spanning tree T of Qn/R̄ corresponds to a choice of spanning tree TR = πR(T )
of the underlying simple graph QR, together with a choice of label Ye ∈ P(R̄) for each
edge e of TR. We may define edge slides for spanning trees of Qn/R̄ in an identical
manner to edge slides for spanning trees of Qn. For each i ∈ [n] the automorphism
σi : Qn → Qn descends to a well defined map σi : Qn/R̄ → Qn/R̄, and as before we
may define the edge (e, Y ) of T to be i-slidable if T − (e, Y ) + σi(e, Y ) is again a
spanning tree of T . For i ∈ R̄ this simply corresponds to a change in label from Y to
Y ⊕ {i}, so every edge of T is i-slidable; while for i ∈ R this corresponds to a label
preserving edge slide in TR, and (e, Y ) is i-slidable if and only if e is i-slidable as an
edge of TR. We write E(Qn/R̄) for the edge slide graph of Qn/R̄, and for a signature
S of QR we write EQn/R̄(S) for the edge slide graph of spanning trees of Qn/R̄ with
signature S. Our discussion above has the following consequence:

Observation 6.4. Let R be a proper nonempty subset of [n]. For any signature S
of QR, the edge slide graph EQn/R̄(S) is connected if and only if E(S) is connected.

By a mild abuse of notation we may also regard πR as a map from Qn to QR.
For each vertex U of Qn we have

πR(U) = U ∩R,
and for each edge {U, V } of Qn we have

πR({U, V }) =
{
{πR(U), πR(V )} = {U ∩R, V ∩R} if πR(U) 
= πR(V ),

πR(U) = U ∩ R if πR(U) = πR(V ).



H.A. AL FRAN ET AL. /AUSTRALAS. J. COMBIN. 75 (3) (2019), 259–295 280

∅

{1} {3}

{1, 3}

∅
{2}

∅
{2}

∅
{2}

∅
{2}

∅

{1}

∅ {2, 3}{2} {3}

Figure 4: The graphs Q3/R̄ in the cases R = {1, 3} (left) and R = {1} (right).
The graphs are formed by contracting the bold edges in the corresponding graph of
Figure 3. In each case we get a multigraph with underlying simple graph QR, and
23−|R| parallel edges for each edge of QR. The parallel edges may be labelled with
the elements of P([3]− R).

If V = U ⊕ {j} then πR({U, V }) is the edge {U ∩R, (U ∩R)⊕ {j}} of QR if j ∈ R,
and is the vertex U ∩ R of QR if j /∈ R. Thus πR : Qn → QR is not a graph
homomorphism in the usual sense, but it is a cellular map if we regard Qn and QR as
1-dimensional cell-complexes. Note that Qn(R,X) is the preimage in Qn of X ⊆ R
under πR.

6.1.4 The Cartesian product of graphs

Our edge slide graph decompositions will be expressed in terms of the Cartesian
product of graphs; see for example [4, p. 30] or [6, D71 (p. 16)]. The Cartesian
product may be defined as follows:

Definition 6.5. Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, where Vi is the
vertex set of Gi and Ei is its edge set. The Cartesian product of G1 and G2,
denoted G1�G2, is a graph with vertex set V1×V2 and edge set (E1×V2)∪(V1×E2).
The incidence relation is as follows:

• If e1 ∈ E1 is incident with u1, v1, then for all w2 ∈ V2, the edge (e1, w2) is
incident with the vertices (u1, w2) and (v1, w2) of G1 �G2.

• Similarly, if e2 ∈ E2 is incident with u2, v2 ∈ V2, then for all w1 ∈ V1, the edge
(w1, e2) is incident with the vertices (w1, u2) and (w1, v2) of G1 �G2.

Consequently, for simple graphsG1 andG2, the vertices (u1, u2) and (v1, v2) ofG1�G2

are adjacent if and only if

• u2 = v2, and u1, v1 are adjacent in G1; or
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H

G

G�H

Figure 5: The Cartesian product of the graphs G = Q1 �Q2 and H = P2, a path of
length two. Notice that G�H = (Q1 �Q2) � P2 = (Q1 � P2)� (Q2 � P2).

• u1 = v1, and u2, v2 are adjacent in G2.

We write

n�
i=1

Gi = G1 �G2 � · · · �Gn,

G�n =

n�
i=1

G = G� · · ·�G︸ ︷︷ ︸
n

.

Figure 5 illustrates the Cartesian product of G = Q1 � Q2 and H = P2, a path
of length two.

Some sources write G×H for the Cartesian product of G and H , but others use
this notation for a different graph product. The notation G�H used here and in [4]
avoids this ambiguity and reflects the fact that the product of a pair of edges is a
square, as can be seen in Figure 5. We note that

1. Qn
∼= (K2)

�n = (Q1)
�n, and so also Qn �Qm

∼= Qn+m.

2. If G = G1 �G2 is a disjoint union of subgraphs G1 and G2, then

G�H = (G1 �G2) �H = (G1 �H)� (G2 �H),

as can be seen in Figure 5.

Remark 6.6. If G1 and G2 are regarded as 1-dimensional cell complexes, then
G1 �G2 is the 1-skeleton of the 2-dimensional cell complex G1 ×G2:

G1 �G2 = (G1 ×G2)
(1).

Here G1×G2 is the Cartesian product of G1 and G2 as cell complexes; see for example
Hatcher [8, p. 8] .
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6.2 Structural characterisation of reducible trees

Reducible trees may be characterised as follows:

Theorem 6.7. Let T be a spanning tree of Qn, and let R be a proper nonempty
subset of [n]. The following statements are equivalent:

1. T reduces over R.

2. T (R,X) is a spanning tree of Qn(R,X) for every X ⊆ R.

3. T/R̄ is a spanning tree of Qn/R̄.

Figure 6 illustrates Theorem 6.7 for a tree with signature (1, 3, 3), which reduces
over R = {1}.

Proof. Let sig(T ) = S = (a1, . . . , an), and let E be the set of edges of T in directions
belonging to R. Then |E| =

∑
i∈R ai. Delete all edges of T belonging to E. The

resulting graph T − E =
⋃

X⊆R T (R,X) has |E| + 1 components and is a spanning
forest2 of G =

⋃
X⊆RQn(R,X), which is the result of deleting all edges of Qn in

directions belonging to R. As such, T (R,X) is a spanning tree of Qn(R,X) for all
X ⊆ R if and only if T − E has the same number of components as G. But G has
2|R| components, so condition 2 holds if and only if

|E| =
∑
i∈R

ai = 2|R| − 1;

that is, if and only if S reduces over R. This proves that condition 1 of the theorem
holds if and only if condition 2 does.

We now consider T/R̄. This graph is the subgraph of Qn/R̄ that results from
T under the edge contractions transforming Qn into Qn/R̄. Since T is a connected
spanning subgraph of Qn, the resultant T/R̄ is a connected spanning subgraph of
Qn/R̄ also. It is therefore a spanning tree if and only if it has 2|R|−1 edges. But the
edges of Qn/R̄ are exactly the edges of Qn in directions belonging to R, and so the
edges of T/R̄ are exactly the edges of T in directions belonging to R also. Thus T/R̄
has |E| =

∑
i∈R ai edges, and so is a spanning tree if and only if

∑
i∈R ai = 2|R| − 1.

This shows that condition 1 holds if and only if condition 3 does, completing the
proof.

Corollary 6.8. Let T be a spanning tree of Qn, and let R be a proper nonempty
subset of [n]. If T reduces over R then πR(T ) is a spanning tree of QR.

Proof. Recall that πR : Qn → QR is the map given by the contraction Qn → Qn/R̄,
followed by the projection Qn/R̄ → QR to the underlying simple graph. Thus,
the graph πR(T ) is the subgraph of QR obtained from T/R̄ under the projection
Qn/R̄ → QR. By Theorem 6.7 T/R̄ is a spanning tree of Qn/R̄, so πR(T ) is a
connected spanning subgraph of QR. Moreover, since it is acyclic, T/R̄ contains at
most one edge from each family of parallel edges of Qn/R̄. Therefore the number of
edges of πR(T ) is equal to the number of edges T/R̄, namely 2|R| − 1. The result
follows.

2Recall that we do not require a spanning forest to be a maximal spanning forest.
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Figure 6: Left: A spanning tree T of Q3 with signature (1, 3, 3), which reduces over
R = {1}. The solid bold edges show the spanning trees T (R,X) of Q3(R,X) for
X ⊆ R, and the bold dashed edge is the (here, unique) edge of T in a direction
belonging to R. Right: The result of contracting the subcubes Q3(R,X) for X ⊆ R.
The bold dashed edge

{
{2}, {1, 2}

}
of T becomes the bold dashed spanning tree

T/R̄ of Q3/R̄. The tree T can be completely reconstructed from the spanning trees
T (R,X), together with the spanning tree T/R̄.

6.3 Decomposing reducible trees

In view of Theorem 6.7, we may canonically define a map

ΨR : RTreeR(Qn) → Tree(Qn/R̄)×
∏
X⊆R

Tree(Qn(R,X))

by setting
ΨR(T ) =

(
T/R̄,

(
T (R,X)

)
X⊆R

)
.

We show below in Theorem 6.9 that this map is a bijection, and then in Theorem 6.12
that it in fact defines an isomorphism of edge slide graphs.

Theorem 6.9. Let R be a proper non-empty subset of [n]. The map

ΨR : RTreeR(Qn) → Tree(Qn/R̄)×
∏
X⊆R

Tree(Qn(R,X))

defined by
ΨR(T ) =

(
T/R̄,

(
T (R,X)

)
X⊆R

)
is a bijection.

Proof. The edges of Qn may be naturally identified with the edges of (Qn/R̄) ∪⋃
X⊆RQn(R,X). Using this identification we see that if ΨR(T1) = ΨR(T2) then the

edge set of T1 is equal to the edge set of T2, so T1 = T2. Therefore ΨR is one-to-one.
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It remains to show that ΨR is onto. Let

T =
(
TR,

(
TX
)
X⊆R

)
∈ Tree(Qn/R̄)×

∏
X⊆R

Tree(Qn(R,X)).

The edges of Qn/R̄ may be canonically identified with the edges of Qn in directions
belonging to R, and using this identification we define T be the subgraph of Qn with
edge set

E(T ) = E(TR) ∪
⋃
X⊆R

E(TX).

We claim that T is a spanning tree of Qn that reduces over R, and that ΨR(T ) = T .
To see this, first note that the subcubes Qn(R,X) partition the edges of Qn in

directions belonging to R̄. Thus

|E(T )| = |E(TR)|+
∑
X⊆R

|E(TX)|

= (2|R| − 1) + 2|R|(2n−|R| − 1)

= 2n − 1.

Next, recall that Qn/R̄ is obtained from Qn by contracting each subcube Qn(R,X)
to a single vertex. Since TX is a spanning tree of Qn(R,X) for each X , and TR is a
spanning tree of Qn/R̄, it follows that T is a spanning subgraph of Qn. Since it has
2n− 1 edges it is therefore a spanning tree. Moreover T has |E(TR)| = 2|R|− 1 edges
in directions belonging to R, so T reduces over R. Thus T ∈ RTreeR(Qn), and it’s
clear by construction that we have ΨR(T ) = T .

Observation 6.10. Let S be a signature belonging to RSigR(Qn), and let T ∈
RTreeR(Qn) be such that ΨR(T ) = T = (TR, (T

X)X⊆R). Then

sig(T ) = S ⇔ sig(TR) = S|R and
∑
X⊆R

sig(TX) = S|[n]−R.

Example 6.11. For the tree T of Figure 6, with S = sig(T ) = (1, 3, 3) we have
sig(T{1}) = (1) = S|{1}, and

sig(T ({1}, ∅)) + sig(T ({1}, {1})) = (2, 1) + (1, 2) = (3, 3) = S|{2,3}.

6.4 The edge slide graph isomorphism theorem for reducible trees

The bijection ΨR of Theorem 6.9 has domain RTreeR(Qn), which is the vertex set of
the edge slide graph E(RSigR(Qn)). In this section we show that ΨR in fact defines
a graph isomorphism between E(RSigR(Qn)) and a suitable Cartesian product of
smaller edge slide graphs:

Theorem 6.12. Let R be a proper nonempty subset of [n], and let r = |R|. Then

E(RSigR(Qn)) =
⋃

S∈RSigR(Qn)

E(S) ∼= E(Qn/R̄) � �
X⊆R

E(Qn(R,X))

∼= E(Qn/R̄) � (E(Qn−r))
�2r .
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Theorem 6.12 follows from Theorem 6.9 and the following characterisation of edge
slides in a reducible tree:

Theorem 6.13. Let R be a proper nonempty subset of [n], and let T be a spanning
tree of Qn that reduces over R. Let e = {Y, Y ⊕ {j}} be an edge of T in direction j,
and set X = Y ∩ R.

1. If j /∈ R, then e ∈ Qn(R,X) and

(a) e is not slidable in any direction i ∈ R;

(b) e is slidable in direction i /∈ R if and only if it is i-slidable as an edge of
T (R,X).

2. If j ∈ R, then e is i-slidable if and only if it is i-slidable as an edge of T/R̄.
Consequently

(a) e is slidable in any direction i /∈ R;

(b) e is slidable in direction i ∈ R if and only if πR(e) is i-slidable as an edge
of the tree πR(T ).

Proof. Let i ∈ [n] be such that i 
= j. By Lemma 2.7, for e to be i-slidable we require
that σi(e) does not belong to T , and that the resulting cycle C in T + σi(e) created
by adding σi(e) to T also contains e. We consider four possibilities, according to
whether i and j belong to R.

1. Suppose first that j /∈ R. Then σi(e) lies in Qn(R,X
′), where X ′ = (X⊕{i})∩

R. Since T (R,X ′) is a spanning tree of Qn(R,X
′), if σi(e) does not belong to

T then the cycle C lies entirely in Qn(R,X
′).

(a) If i ∈ R then X ′ = X ⊕ {i} 
= X, so e does not belong to C. It follows
that e is not i-slidable.

(b) If i /∈ R then X ′ = X, and σi(e) does not belong to T if and only if it
does not belong to T (R,X). If that is the case then C is the cycle in
T (R,X) + σi(e) created by adding σi(e) to T (R,X), and it follows that
e is i-slidable as an edge of T if and only if it is i-slidable as an edge of
T (R,X).

2. Suppose now that j ∈ R. The edges of Qn/R̄ in direction j may be naturally
identified with the edges of Qn in direction j, and with respect to this iden-
tification, for any i 
= j the edge σi(e) belongs to T if and only if it belongs
to T/R̄. It follows that if σi(e) belongs to T then e is i-slidable in neither T
nor T/R̄. So suppose that σi(e) does not belong to T , and let P be the path
in T from one endpoint of σi(e) to the other. Write P = v0v1 . . . v�, and for
0 ≤ a ≤ � let Xa ⊆ R be such that va ∈ Qn(R,Xa); that is, Xa = va ∩R. Note
that C = P + σi(e).

For any 0 ≤ a ≤ b ≤ �, the subpath vava+1 · · · vb is the unique path in T from
va to vb. If Xa = Xb then va and vb both belong to Qn(R,Xa), so this path
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must be the unique path from va to vb inside the spanning tree T (R,Xa) of
Qn(R,Xa). Therefore Xc = Xa for a ≤ c ≤ b. It follows that for all X ′ ⊆ R, if
P (R,X ′) = P ∩Q(R,X ′) is nonempty then it consists of a single path.

Consequently, when the subcubes Qn(R,X
′) are contracted to form Qn/R̄, the

resulting subgraph C/R̄ is still a cycle, because it is a contraction of C in its
own right. This cycle is the cycle in T/R̄ + σi(e) that is created when σi(e) is
added to T/R̄, and so it contains both e and σi(e) if and only if both edges
belong to C. It follows that e is i-slidable in T if and only if it is i-slidable in
T/R̄.

As an edge of T/R̄ the endpoints of e are X and X ⊕ {j}, and the endpoints
of σi(e) are X ′ = (X ⊕ {i}) ∩ R and X ′ ⊕ {j}. We now consider two cases
according to whether or not i ∈ R.

(a) If i /∈ R then X = X ′ and the end points of e and σi(e) in T/R̄ co-incide.
Therefore C/R̄ must consist of e and σi(e) only, and so contains both
edges. Therefore e is i-slidable.

(b) If i ∈ R then the endpoints of e and σi(e) in T/R̄ differ. If an edge f
parallel to σi(e) belongs to T/R̄ then C/R̄ consists of f and σi(e) only,
and e is not i-slidable in T/R̄. In this case πR(f) = σi(πR(e)) belongs to
πR(T ), so πR(e) is not i-slidable in πR(T ) either.

Otherwise, πR(σi(e)) = σi(πR(e)) does not belong to πR(T ), and the cycle
C ′ created by adding σi(πR(e)) to πR(T ) is πR(C/R̄) = πR(C). Since
T/R̄+ σi(e) contains at most one edge from each parallel family of edges
in Qn/R̄, the cycle C/R̄ contains both e and σi(e) if and only if C ′ contains
both πR(e) and σi(πR(e)). It follows that e is i-slidable in T/R̄ if and only
if πR(e) is i-slidable in πR(T ), as claimed.

Proof of Theorem 6.12. The vertex set of E(RSigR(Qn)) is RTreeR(Qn), and the ver-
tex set of the product E(Qn/R̄) � �

X⊆R E(Qn(R,X)) is Tree(Qn/R̄) ×∏
X⊆R Tree(Qn(R,X)). By Theorem 6.9 the function ΨR is a bijection between

the vertex sets of E(RSigR(Qn)) and E(Qn/R̄) � �
X⊆R E(Qn(R,X)).

Let T ∈ RTreeR(Qn), and let e be an edge of T . Then Theorem 6.13 shows that e
is slidable as an edge of T if and only if it is slidable as an edge of whichever tree T/R̄
or T (R,X) it belongs to with respect to the decomposition ΨR(T ) of Theorem 6.9.
Moreover, the proofs of these theorems show that when e is slidable, the edge slide
and the decomposition commute: if T ′ is the result of sliding e in T , then T ′/R̄ or
T ′(R,X) (as applicable) is the result of sliding e in the decomposition. It follows
that ΨR is a graph homomorphism, completing the proof.

As a corollary to part 1a of Theorem 6.13 we obtain the following:

Corollary 6.14. Let R be a proper nonempty subset of [n], and let T be a spanning
tree of Qn that reduces over R. For all X ⊆ R, the signature of T (R,X) is an
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invariant of the connected component of E(Qn) containing T . More precisely, suppose
that T ′ can be obtained from T by edge slides. Then sig(T ′(R,X)) = sig(T (R,X))
for all X ⊆ R.

Example 6.15. Refer again to the tree T in Figure 6, which reduces over {1}. No
edge of T ({1}, ∅) or T ({1}, {1}) may be slid in direction 1. The only slidable edge of
T ({1}, ∅) is {∅, {3}}, which may be slid in direction 2 only; and the only slidable edge
of T ({1}, {1}) is {{1, 3}, {1, 2, 3}}, which may be slid in direction 3 only. The edge
{{2}, {1, 2}} in direction 1 ∈ R may be freely slid in either direction 2 or 3. These
edge slides all leave sig(T ({1}, ∅)) = (2, 1) and sig(T ({1}, {1})) = (1, 2) unchanged.

6.5 Special cases

We now apply Theorem 6.12 in several special cases. We first consider the case
R = {1}, and then use this to show that the edge slide graph of a supersaturated
signature has the isomorphism type of a cube. We then apply this in turn to express
the edge slide graph of a saturated signature in terms of an edge slide graph associated
with its unsaturated part.

Theorem 6.16. Let n ≥ 2. Then

E(RSig{1}(Qn)) ∼= Qn−1 � (E(Qn−1))
�2 ∼=

∐
S1,S2∈Sig(Qn−1)

Qn−1 � E(S1) � E(S2).

For S = (1,S ′) ∈ RSig{1}(Qn) we have

E(S) ∼=
∐

S1+S2=S′
Qn−1 � E(S1) � E(S2).

Proof. For compactness of notation let R = {1}. By Theorem 6.12 we have

E(RSigR(Qn)) ∼= E(Qn/R̄) � (E(Qn−1))
�2.

The graph Qn/R̄ is a multigraph with underlying simple graph Q1, and 2n−1 parallel
edges labelled with the subsets of R̄ = {2, . . . , n}. A spanning tree of Qn/R̄ consists
of a single edge, which may be canonically identified with its label in P(R̄). Two
such trees are related by an edge slide in direction j precisely when their labels differ
by adding or deleting j, so

E(Qn/R̄) ∼= Q[n]−R
∼= Qn−1.

This gives the first isomorphism. The second then follows from the fact that

E(Qn−1) =
∐

S∈Sig(Qn−1)

E(S).

For the final assertion, under the isomorphisms a vertex (Y, T1, T2) of Qn−1 �
E(S1) � E(S2) corresponds to a tree T ∈ E(RSigR(Qn)) such that

T (R, ∅) = T1, T (R,R) = T2.
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The signature of T is given by

sig(T ) = (1, sig(T1) + sig(T2)) = (1,S1 + S2),

from which the claim follows.

Example 6.17. We apply Theorem 6.16 to determine the components of
RSig{1}(Q3). We have

E(Q2) = E(1, 2)� E(2, 1) ∼= Q1 �Q1,

so
RSig{1}(Q3) ∼= Q2 � [E(1, 2)� E(2, 1)]�2 ∼= Q2 � [Q1 �Q1]

�2.

Therefore RSig{1}(Q3) has four components, each isomorphic to Q2 �Q1 �Q1
∼= Q4.

Trees belonging to the component Q2�E(a, b)�E(c, d) have signature (1, a+c, b+d),
so

E(1, 2, 4) ∼= Q2 � (E(1, 2))�2 ∼= Q4,

E(1, 3, 3) ∼=
(
Q2 � E(1, 2) � E(2, 1)

)
�
(
Q2 � E(2, 1) � E(1, 2)

) ∼= Q4 �Q4,

E(1, 4, 2) ∼= Q2 � (E(2, 1))�2 ∼= Q4.

Up to permutation there is just one remaining signature of Q3, namely the irreducible
signature (2, 2, 3). This signature is connected, and the structure of E(2, 2, 3) has been
determined by Henden [9].

As a corollary to Theorem 6.16 we show that the edge slide graph of a supersat-
urated signature has the isomorphism type of a cube:

Corollary 6.18. For the supersaturated signature SSn = (1, 2, 4, . . . , 2n−1) we have

E(SSn) ∼= Q2n−n−1.

Proof. The proof is by induction on n, with the technique used to find E(1, 2, 4) in
Example 6.17 providing the inductive step. We have previously found

E(1) ∼= Q0, E(1, 2) ∼= Q1, E(1, 2, 4) ∼= Q4

so the result is already established for n ≤ 3. We may therefore use any one of these
cases as the base for the induction.

For the inductive step, suppose that the result holds for SSn−1. The signature
SSn belongs to RSig{1}(Qn), so by Theorem 6.16 it is a disjoint union of subgraphs
of E(Qn) of the form Qn−1 �E(S1)�E(S2). Such a subgraph lies in E(SSn) precisely
when

S1 + S2 = (2, 4, . . . , 2n−2),

and it follows easily from the characterisation of signatures Theorem 3.1 that the
only possibility is S1 = S2 = SSn−1. We therefore have

E(SSn) ∼= Qn−1 � E(SSn−1) � E(SSn−1)
∼= Qn−1 � (Q2n−1−n)

�2

∼= Q2n−n−1.

This establishes the inductive step.
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As our final special case, we use Corollary 6.18 to show that the edge slide graph
of a saturated signature may be expressed in terms of an edge slide graph associated
with its unsaturated part:

Corollary 6.19. Suppose that the ordered signature S = (a1, . . . , an) is saturated
above direction r. Let R = [r] and let S ′ = (a1, . . . , ar). Then

E(S) ∼= EQn/R̄(S ′) � (Q2n−r−(n−r)−1)
�2r

∼= EQn/R̄(S ′) �QN ,

where N = 2r(2n−r − (n− r)− 1).

Proof. The signature S reduces over R, so E(S) consists of one or more connected
components of E(RSigR(Qn)). By Theorem 6.12 we have

E(RSigR(Qn)) ∼= E(Qn/R̄) � �
X⊆R

E(Qn(R,X)),

and by Observation 6.10 a vertex (TR, (T
X)X⊆R) of this product corresponds to a

tree with signature S if and only if

sig(TR) = S|R = S ′ and
∑
X⊆R

sig(TX) = S|R̄ = (2r, 2r+1, . . . , 2n−1).

Let sig(TX) = (eXr+1, . . . , e
X
n ) for each X ⊆ R. Then an easy induction on j using the

signature condition shows that eXr+j = 2j−1 for all X ⊆ R, so that sig(TX) = SSn−r

for all X. Then
E(S) ∼= EQn/R̄(S ′) � �

X⊆R

E(SSn−r),

and the result now follows by Corollary 6.18.

7 Strictly reducible signatures are disconnected

Our last major result is that the edge slide graph of a strictly reducible signature is
disconnected:

Theorem 7.1. Let S = (a1, . . . , an) be a strictly reducible signature of Qn. Then
the edge slide graph E(S) is disconnected.

The reason underlying Theorem 7.1 is illustrated by the edge slide graph of the
strictly reducible signature (1, 3, 3), which we saw in Example 6.17 breaks into two
components: one consisting of the trees T such that sig(T ({1}, ∅)) = (1, 2), and a
second consisting of the trees T such that sig(T ({1}, ∅)) = (2, 1). Recall that by
Corollary 6.14, if T reduces over R, then for all X ⊆ R the signature sig(T (R,X)) is
an invariant of the connected component of E(Qn) containing T . Thus, we can show
that E(S) is disconnected by showing there exist X ⊆ R and trees T and T ′ with
signature S such that sig(T (R,X)) 
= sig(T ′(R,X)).
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To find the required trees T , T ′ it suffices to prove the existence of single tree
T for which there are subsets X, Y ⊆ R such that sig(T (R,X)) 
= sig(T (R, Y )):
given such a tree, we may obtain T ′ by simply exchanging T (R,X) and T (R, Y ). In
Lemma 7.2 we prove the existence of such a tree, for a suitable choice of reducing
set R.

Lemma 7.2. Let S = (a1, . . . , an) be an ordered strictly reducible signature with
unsaturated part S ′ = (a1, . . . , as), and let r < s − 1 be such that S ′ reduces over
[r] but not [r + 1]. Let R = [r]. Then for any distinct X, Y ⊆ R, there exists a
spanning tree T of Qn with signature S such that T (R,X) and T (R, Y ) have different
signatures.

Remark 7.3. Note that r as required above necessarily exists. Since S ′ is reducible
it reduces over [t] for some t < s, and since it is unsaturated it does not reduce over
[s− 1]. Thus we may for instance take r to be the largest integer t < s such that S ′

reduces over [t].

Proof of Lemma 7.2. Let T be a spanning tree of Qn with signature S. If there
exists Z ⊆ R such that T (R,X) and T (R,Z) have different signatures then we
can construct the required tree by (if necessary) swapping T (R, Y ) and T (R,Z). So
suppose that this is not the case. Then the subtrees T (R,Z) have the same signature
for all Z ⊆ R. Let U = (er+1, . . . , en) be this common signature.

For any i ∈ {r + 1, . . . , n} each edge of T in direction i lies in T (R,Z) for some
Z ⊆ R, and since each such tree contains ei edges in direction i we have ai = 2rei. It
follows that U is ordered. We begin by showing under our choice of r that er+1 ≥ 2.
Suppose to the contrary that er+1 = 1. Then ar+1 = 2r, and consequently

r+1∑
i=1

ai =
r∑

i=1

ai + ar+1 = 2r − 1 + 2r = 2r+1 − 1,

so S ′ reduces over [r+1]. This contradicts the choice of r, so we must have er+1 ≥ 2
as claimed, which then forces er+2 ≥ 2 also because U is ordered.

Consider

U1 = (er+1 − 1, er+2 + 1, er+3, . . . , en),

U2 = (er+1 + 1, er+2 − 1, er+3, . . . , en),

and note that U1+U2 = 2U . We show that U1 and U2 are signatures of Qn−r, so there
exist spanning trees T1 and T2 of Qn−r with signatures U1 and U2 respectively. For
simplicity, we let fi = er+i for i = 1, 2, . . . , n− r. We consider U1 and U2 separately.

For U1, we distinguish the following cases according to whether or not f2 < f3.

1. Suppose f1 ≤ f2 < f3 ≤ · · · ≤ fn−r. Then we have f1 − 1 < f2 + 1 ≤ f3. Write

U1 = (f1 − 1, f2 + 1, f3, . . . , fn−r) = (f ′
1, f

′
2, f

′
3, . . . , f

′
n−r).

Then
f ′
1 < f ′

2 ≤ f ′
3 ≤ · · · ≤ f ′

n−r
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is in nondecreasing order; and

k∑
i=1

f ′
i =

{
f1 − 1 ≥ 1, for k = 1,∑k

i=1 fi ≥ 2k − 1, for 2 ≤ k ≤ n− r,

with equality in the second case when k = n − r. We conclude that U1 is a
signature of Qn−r, by Theorem 3.1.

2. Suppose f1 ≤ f2 = f3 = · · · = fp < fp+1 ≤ · · · ≤ fn−r for some p, with
3 ≤ p ≤ n− r. Then we have

f1 − 1 < f3 = · · · = fp < f2 + 1 ≤ fp+1 ≤ · · · ≤ fn−r.

Let

U ′
1 = (f ′

1, f
′
2, . . . , f

′
p, f

′
p+1, . . . , f

′
n−r) = (f1 − 1, f3, . . . , fp, f2 + 1, fp+1, . . . , fn−r).

Then U ′
1 is an ordered permutation of U1, so it suffices to show that U ′

1 is a
signature. The only sums

∑k
i=1 f

′
i that are not equal to the corresponding sum∑k

i=1 fi are the sums

j∑
i=1

f ′
i = f1 − 1 + (j − 1)f2,

for 1 ≤ j < p. We therefore consider the value of f1−1+(j−1)f2 for 1 ≤ j < p.
For all 1 ≤ y ≤ p let

f(y) =

y∑
i=1

fi = f1 + (y − 1)f2,

and let
g(y) = 2y − 1.

Then
f(1) = f1 ≥ 2 > 1 = g(1),

and

f(p) =

p∑
i=1

fi ≥ 2p − 1 = g(p).

To verify that U1 is a signature of Qn−r, it remains to show that g(j) < f(j),
for all 1 < j < p. Since g is convex, for any 0 ≤ t ≤ 1, we have

g((1− t) + tp) ≤ (1− t)g(1) + tg(p).



H.A. AL FRAN ET AL. /AUSTRALAS. J. COMBIN. 75 (3) (2019), 259–295 292

Let t = j−1
p−1

. Then for 1 ≤ j ≤ p we have 0 ≤ t ≤ 1 and 1− t+ tp = j. So

g(j) ≤
(
1− j − 1

p− 1

)
g(1) +

j − 1

p− 1
g(p)

<

(
1− j − 1

p− 1

)
f(1) +

j − 1

p− 1
f(p)

=

(
1− j − 1

p− 1

)
f1 +

j − 1

p− 1
(f1 + (p− 1)f2)

= f1 + (j − 1)f2 = f(j).

Therefore
j∑

i=1

f ′
i =

j∑
i=1

fi − 1 = f(j)− 1 ≥ 2j − 1,

showing that U1 satisfies the signature condition.

For U2, we consider the following cases according to whether f2 = f1, f2 = f1 +1
or f2 > f1 + 1.

1. If f2 = f1, then U2 is the permutation of U1 obtained by swapping the first two
entries. Therefore U2 is a signature of Qn−r.

2. If f2 = f1 + 1, then U2 is the permutation of U obtained by swapping the first
two entries. Therefore U2 is a signature of Qn−r.

3. If f2 > f1 + 1, then f1 + 1 ≤ f2 − 1. Let

U2 = (f1 + 1, f2 − 1, f3, . . . , fn−r) = (f ′′
1 , f

′′
2 , f

′′
3 , . . . , f

′′
n−r).

Then
f ′′
1 ≤ f ′′

2 < f ′′
3 ≤ · · · ≤ f ′′

n

is in nondecreasing order; and

k∑
i=1

f ′′
i =

{
f1 + 1 ≥ 3 for k = 1;∑k

i=1 fi ≥ 2k − 1, for 2 ≤ k ≤ n− r,

with equality in the second case when k = n − r. Therefore the signature
condition is satisfied and we conclude that U2 is a signature of Qn−r.

Since U1 and U2 are signatures of Qn−r, there are spanning trees T1 and T2 of
Qn−r with signatures U1 and U2 respectively. Let T ′ be the tree obtained from T by
replacing T (R,X) with T1, and T (R, Y ) with T2. Then T

′ has signature S, and the
subtrees T ′(R,X) and T ′(R, Y ) have different signatures, as required.

We now have everything we require to prove Theorem 7.1.
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Proof of Theorem 7.1. Without loss of generality, we may assume S is ordered with
unsaturated part S ′ = (a1, . . . , as). Let 1 ≤ r < s be the largest integer such that S ′

reduces over R = [r], and choose distinct X, Y ⊆ R. By Remark 7.3 and Lemma 7.2,
there exists a spanning tree T of Qn with signature S such that the subtrees T (R,X)
and T (R, Y ) have different signatures. Let T ′ be the spanning tree obtained from
T by swapping T (R,X) and T (R, Y ). Since the signatures of T (R,X) and T (R, Y )
are invariant under edge slides by Corollary 6.14, the trees T and T ′ lie in different
components of E(S). It follows that E(S) is disconnected, as claimed.

8 Discussion

Theorem 7.1 shows that strict reducibility is an obstruction to being connected. We
conjecture that this is the only obstruction to connectivity:

Conjecture 8.1. Let S = (a1, . . . , an) be a signature of Qn. Then the edge slide
graph E(S) is connected if and only if S is irreducible or quasi-irreducible.

The “only if” direction of Conjecture 8.1 is Theorem 7.1. As discussed below
the “if” direction is known to be true for n ≤ 4, for a certain class of irreducible
signatures of Q5, and for two infinite families of irreducible signatures. If true,
the conjecture together with Observation 6.4 and Theorem 6.12 would show that
connected components of the edge slide graph of Qn are characterised in terms of
signatures of spanning trees of subcubes of Qn. We show below in Theorem 8.3 that
it suffices to consider the case where S is irreducible only.

The cases n = 1 and n = 2 are trivial. For n ≥ 3 a useful approach is to
reduce the problem to studying upright trees. By Tuffley [12, Cor. 15] every tree is
connected to an upright tree by a sequence of edge slides, so it suffices to show that
every upright tree with signature S lies in a single component. Up to permutation
there is a unique irreducible signature (2, 2, 3) of Q3, and using this approach it is
straightforward to show that E(2, 2, 3) is connected. This is done by Henden [9], who
also determines the complete structure of E(2, 2, 3).

For n ≥ 4 the first author’s doctoral thesis [1], completed under the supervision of
the second and third authors, makes substantial partial progress towards an inductive
proof of the conjecture. Al Fran [1, Defn 5.3.1] introduces the notion of a splitting
signature of S with respect to n. This is a signature D of Qn−1 such that there exists
an upright spanning tree T of Qn such that sig(T ) = S and sig(T ∩Qn−1) = D. As
the culmination of a series of results Al Fran proves the following:

Theorem 8.2 (Al Fran [1, Thm 11.1]). Let n ≥ 4 and let I be an ordered irreducible
signature of Qn. Suppose that every irreducible signature of Qk is connected for all
k < n. Suppose that I has an ordered irreducible splitting signature D with respect
to n such that every upright spanning tree with signature I and splitting signature D
lies in a single component of E(Qn). Then the edge slide graph E(I) is connected.

This reduces the inductive step of a proof of Conjecture 8.1 to the problem of
showing that every irreducible signature has a suitable splitting signature as given. Al
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Fran proves the existence of such a splitting signature for every irreducible signature
of Q4, and (under the inductive hypothesis that every irreducible signature of Qn−1 is
connected) for every irreducible signature I = (a1, . . . , an) admitting a unidirectional
splitting signature: a splitting signature D = (d1, . . . , dn−1) such that di = ai for all
but one index i ≤ n− 1. This proves the “if” direction of Conjecture 8.1 for n = 4,
and for irreducible signatures of Q5 admitting a unidirectional splitting signature. Al
Fran shows that when I does not admit a unidirectional splitting signature it admits
a super rich splitting signature (defined in terms of the excess), and conjectures such
splitting signatures satisfy the requirements of Theorem 8.2.

Independently, Al Fran also proves the connectivity of two infinite families of
irreducible signatures. For each n ≥ 3 there is a unique ordered irreducible signature

I(−1)
n of Qn such that εI

(−1)
n

k = 1 for all k < n; and for each n ≥ 4 there is a unique

ordered irreducible signature I(+1,−1)
(3,n) with excess 2 for k = 2, and excess 1 for k < n,

k 
= 2. The first three members of these families are (2, 2, 3), (2, 2, 4, 7), (2, 2, 4, 8, 15);
and (2, 3, 3, 7), (2, 3, 3, 8, 15) and (2, 3, 3, 8, 16, 31), respectively. By [1, Thms 10.1.1
and 10.2.1] every signature in these families has a connected edge slide graph.

We conclude the paper with Theorem 8.3, which reduces the quasi-irreducible
case of Conjecture 8.1 to the irreducible case.

Theorem 8.3. Let the ordered signature S = (a1, . . . , an) be saturated above direction
r. Then E(S) is connected if and only if E(a1, . . . , ar) is connected.

In particular, E(S) is connected if and only if E(unsat(S)) is connected.

Proof. We may write S = (S ′, 2n−1), where S ′ = (a1, . . . , an−1). Inductively, it
suffices to show that E(S) is connected if and only if E(S ′) is connected.

A spanning tree T of Qn with signature S contains every edge of Qn in direction
n, and under the isomorphism

Ψ[n−1] : E(RSig[n−1](Qn)) → E(Qn/{n}) � (E(Q1))
�2n−1 ∼= E(Qn/{n})

it corresponds to the spanning tree T/{n} of Qn/{n} with signature S ′ obtained by
contracting these edges. The graph Qn/{n} has underlying simple graph Qn−1, with
two parallel edges labelled ∅ and {n} for each edge of Qn−1. Thus, T/{n} in turn
corresponds to the spanning tree T ′ = π[n−1](T ) of Qn−1 with signature S ′, together
with a choice of label ∅ or {n} on every edge. Moreover, by Theorem 6.13 an edge
e of T or T/{n} can be slid in direction i ∈ [n − 1] if and only if the corresponding
edge π[n−1](e) of T

′ can be, and the label ∅ or {n} can be freely changed at any time.
Suppose that E(S ′) is connected, and let T1, T2 ∈ E(S). Since E(S ′) is connected

there is a sequence of edge slides transforming π[n−1](T1) into π[n−1](T2). These edge
slides may all be carried out in Qn, to give a sequence of edge slides from T1 to a
tree T ′

2 such that π[n−1](T
′
2) = π[n−1](T2). The trees T2, T

′
2 may differ only in the edge

labels ∅ or {n}, and after a further series of edge slides in direction n only these can
be brought into agreement. Therefore E(S) is connected.

Conversely, suppose E(S) is connected, and let T1, T2 ∈ E(S ′). Choose spanning
trees T ′

1, T
′
2 of Qn such that π[n−1](T

′
i ) = Ti for each i (for example, by regarding

Qn−1 as a subgraph of Qn, and adding all edges of Qn in direction n to Ti for each
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i). There is a sequence of edge slides in Qn transforming T ′
1 into T ′

2, and applying
π[n−1], these may all be carried out in Qn−1 to transform T1 into T2. Therefore E(S ′)
is connected also.
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[3] M. Bóna, A walk through combinatorics: An introduction to enumeration and
graph theory, 4th edition, World Scientific, 2017.

[4] J.A. Bondy and U. S.R. Murty, Graph theory, vol. 244 of Graduate Texts in
Mathematics, Springer, N.Y., 2008.

[5] W. Goddard and H.C. Swart, Distances between graphs under edge operations,
Discrete Math. 161(1-3) (1996), 121–132.

[6] J. L. Gross, J. Yellen, and P. Zhang, editors, Handbook of graph theory, 2nd
edition, Discrete Mathematics and its Applications (Boca Raton), CRC Press,
Boca Raton, FL, 2014.

[7] P. Hall, On representatives of subsets, J. London Math. 10(2) (1935), 26–30.

[8] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.

[9] L. Henden, The edge slide graph of the 3-cube, Rose-Hulman Undergrad. Math
J. 12(2) (2011), 67–90.

[10] J. L. Martin and V. Reiner, Factorization of some weighted spanning tree enu-
merators, J. Combin. Theory Ser. A 104(2) (2003), 287–300.

[11] R.P. Stanley, Enumerative combinatorics, Vol. 2, volume 62 of Cambridge
Studies in Advanced Mathematics, Cambridge University Press, Cambridge,
1999.

[12] C. Tuffley, Counting the spanning trees of the 3-cube using edge slides, Aus-
tralas. J. Combin. 54 (2012), 189–206.

(Received 30 July 2018; revised 4 Oct 2019)


	Introduction
	Organisation

	Definitions and notation
	General notation
	The n-cube
	The signature of a spanning tree of Qn
	Edge slides and the edge slide graph
	Upright trees and sections

	Characterisation of signatures of spanning trees of Qn
	Classification of signatures of spanning trees of Qn
	Consequences of the classification for upright trees
	Reducible upright trees
	Irreducible upright trees

	Structural consequences of reducibility
	Further definitions and notation
	Notation
	Partitioning the n-cube
	Quotienting the n-cube
	The Cartesian product of graphs

	Structural characterisation of reducible trees
	Decomposing reducible trees
	The edge slide graph isomorphism theorem for reducible trees
	Special cases

	Strictly reducible signatures are disconnected
	Discussion

