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Abstract

We determine the maximum number of maximal independent sets of an
arbitrary graph in terms of its covering number, and we completely char-
acterize the extremal graphs. As an application, we give a similar result
for König–Egerváry graphs in terms of their matching numbers.

1 Introduction

Throughout this paper let G be a simple (i.e. finite, undirected, loopless and
without multiple edges) graph. An independent set in G is a set of vertices no two
of which are adjacent to each other. An independent set in G is maximal (with
respect to set inclusion) if the set cannot be extended to a larger independent set.
Let m(G) be the number of maximal independent sets of a simple graph G. Around
1960, Erdős and Moser raised the problem of determining the largest value of m(G)
in terms of the order of G, which we shall denote by n in this paper, and determining
the extremal graphs. In 1965, Moon and Moser [14] solved this problem.

Since then, research has been focused on investigating m(G) for various classes
of graphs such as: connected graphs by Füredi [5] and independently Griggs et al.
[8]; triangle-free graphs by Hujter and Tuza [10] and connected triangle-free graphs
by Chang and Jou [3]; graphs with at most r cycles by Sagan and Vatter [16] and
Goh et al. [6]; connected unicyclic graphs by Koh et al. [11]; trees independently by
Cohen [4], Griggs and Grinstead [7], Sagan [15], Wilf [17]; bipartite graphs by Liu
[13] and bipartite graphs with at least one cycle by Li et al. [12].

A subset of the vertices of a graph G is called a vertex cover if every edge in
G is incident to at least one vertex of the set. The covering number of G, denoted
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by τ(G), is the minimum size of a vertex cover of G. The goal of this paper is to
determine the maximum value of m(G) for an arbitrary simple graph G in terms of
its covering number, and to characterize the extremal graphs. Our results improve
certain results among those mentioned above. Before stating our results, recall that
a matching in G is a set of edges, no two of which meet a common vertex. The
matching number ν(G) of G is the maximum size of a matching of G. An induced
matching M in a graph G is a matching where no two edges of M are joined by
an edge of G. The induced matching number ν0(G) of G is the maximum size of an
induced matching of G. We always have ν0(G) ≤ ν(G); and if ν0(G) = ν(G) then
we call G a Cameron–Walker graph. This definition is similar to the one in Hibi et
al. [9] including both disconnected graphs and star graphs and star triangle graphs.
The main result of the paper is as follows:

Theorem (Theorem 2.7 and Theorem 3.3) Let G be a graph. Then m(G) ≤ 2τ(G),
and the equality holds if and only if G is a Cameron–Walker bipartite graph.

A graph G is called a König–Egerváry graph if the matching number is equal
to the covering number, that is, τ(G) = ν(G). As an application, we determine
the maximum value of m(G) for König–Egerváry graphs G, and characterize the
extremal graphs, in the following corollary.

Corollary (Corollary 3.4) Let G be a König–Egerváry graph. Then

m(G) ≤ 2ν(G),

and the equality holds if and only if G is a Cameron–Walker bipartite graph.

It is well-known that all bipartite graphs are König–Egerváry (see [1, Theorem
8.32]). In general, ν(G) � �n

2
�, where n is the order of G. Thus Corollary 3.4

improves the main result of Liu (see [13, Theorem 2.1]) for bipartite graphs.

2 Bounds for m(G)

We now recall some basic concepts and terminology from graph theory (see [1]).
Let G be a simple graph with vertex set V (G) and edge set E(G). An edge e ∈ E(G)
connecting two vertices x and y will be also written as xy (or yx). For a subset S
of V (G), we denote by G[S] the induced subgraph of G on the vertex set S, and use
G \ S to denote G[V (G) \ S]. The neighborhood of S in G is the set

NG(S) := {y ∈ V (G) \ S | xy ∈ E(G) for some x ∈ S},

and the closed neighborhood of S is NG[S] := S ∪ NG(S). Let GS := G \ NG[S].
If S = {x}, we write NG(x) (respectively, NG[x], Gx, G \ x) instead of NG({x})
(respectively, NG[{x}], G{x}, G \ {x}). The number degG(x) := |NG(x)| is called
the degree of x in G. A vertex in G of degree zero is called an isolated vertex of
G. A vertex x of G is called a leaf adjacent to y if degG(x) = 1 and xy is an edge
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of G. A complete graph with n vertices is denoted by Kn. A graph K3 is called a
triangle. The union of two disjoint graphs G and H is the graph G ∪H with vertex
set V (G ∪H) = V (G) ∪ V (H) and edge set E(G ∪H) = E(G) ∪ E(H). The union
of t copies of disjoint graphs isomorphic to G is denoted by tG, where t is a positive
integer.

A graph is called totally disconnected if it is either a null graph or contains no
edge. Thus, m(G) = 1 whenever G is totally disconnected. The following basic
lemmas on determining m(G) for an arbitrary graph G will be used frequently later.

Lemma 2.1. [10, Lemma 1] Let G be a graph. Then

1. m(G) ≤ m(Gx) + m(G \ x), for any vertex x of G.

2. If x is a leaf adjacent to y of G, then m(G) = m(Gx) + m(Gy).

3. If G1, . . . , Gs are connected components of G, then

m(G) =

s∏

i=1

m(Gi).

Lemma 2.2. If H is an induced subgraph of G, then m(H) ≤ m(G).

We first give an upper bound for m(G) in terms of ν(G), and the extremal graphs.

Proposition 2.3. Let G be a graph. Then, m(G) ≤ 3ν(G) and the equality holds if
and only if G ∼= sK3 ∪ tK1, where s = ν(G) and t = |V (G)| − 3s.

Proof. We prove the proposition by induction on ν(G). If ν(G) = 0, then G is totally
disconnected, and then the assertion is trivial.

If ν(G) = 1, let xy be an edge of G and let S := V (G) \ {x, y}. Then G[S] is
totally disconnected and if we have two vertices in S, say u and v, such that xu and
yv are edges of G, then {xu, yv} is a matching in G, a contradiction. Thus, there
is at most one vertex in S that is adjacent to both x and y. We now consider two
cases:

Case 1: There is no vertex in S which is adjacent to both x and y. In this case,
G is a star union of some number of isolated vertices. Thus we have m(G) = 2, and
the proposition holds.

Case 2: There is a vertex in S, say z, that is adjacent to both x and y. In this
case, no other vertex of S is adjacent to either x or y. Thus G = K3 ∪ tK1, where
t = |V (G)| − 3 and m(G) = 3 = 3ν(G). Therefore the proposition is proved in this
case.

Assume that ν(G) � 2. Let xy be an edge of G. Since neither x nor y are vertices
of the following graphs: Gx, Gy and G \ {x, y}, we deduce that

ν(Gx) � ν(G)− 1, ν(Gy) � ν(G)− 1 and ν(G \ {x, y}) ≤ ν(G)− 1.
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Thus, by the induction hypothesis, we obtain

m(Gx) � 3ν(G)−1, m(Gy) � 3ν(G)−1 and m(G \ {x, y}) � 3ν(G)−1.

Note that (G \ x)y = Gy. Combining with Lemma 2.1, we obtain

m(G) ≤ m(Gx) + m(G \ x)
≤ m(Gx) + m(Gy) + m(G \ {x, y})
≤ 3ν(G)−1 + 3ν(G)−1 + 3ν(G)−1 = 3ν(G).

This proves the first conclusion of the proposition. The equality m(G) = 3ν(G) occurs
if and only if

m(G) = m(Gx) + m(G \ x), m(G \ x) = m(Gy) + m(G \ {x, y}),
m(Gx) = m(Gy) = m(G \ {x, y}) = 3ν(G)−1,

and
ν(Gx) = ν(Gy) = ν(G \ {x, y}) = ν(G)− 1.

If G = sK3 ∪ tK1, then s = ν(G) and m(G) = 3ν(G). This establishes the
necessary condition of the second conclusion of the proposition. Now, it remains to
prove that if m(G) = 3ν(G) then G ∼= sK3 ∪ tK1.

Indeed, by the induction hypothesis, it follows that when the isolated vertices
of Gx, Gy and G \ {x, y} are removed, the remaining graphs are isomorphic, namely
(s− 1)K3, where s = ν(G). In particular, x and y are not adjacent to any vertex of
(s−1)K3. Let H be an induced subgraph of G on the vertex set V (G)\V ((s−1)K3).
Then, H and (s−1)K3 are disjoint subgraphs of G. By Lemma 2.1, we infer m(G) =
m(H)m((s− 1)K3) = m(H)3s−1. Since m(G) = 3s, m(H) = 3. Note that ν(H) = 1,
so the induction hypothesis again yields H = K3 ∪ tK1. Thus, G = sK3 ∪ tK1. The
proof is complete.

The following lemma gives a lower bound for m(G) in terms of the induced
matching number ν0(G).

Lemma 2.4. Let G be a graph. Then, m(G) ≥ 2ν0(G).

Proof. Let {x1y1, . . . , xryr} be an induced matching of G, where r = ν0(G). Set
H := G[{x1, . . . , xr, y1, . . . , yr}]. By Lemma 2.2, m(G) ≥ m(H) = 2ν0(G).

Recall that a vertex cover ofG is a subset S of V (G) such that for each xy ∈ E(G),
either x ∈ S or y ∈ S. The following two lemmas are obvious.

Lemma 2.5. Let H be an induced subgraph of G. Then,

1. If S is a vertex cover of G, then S ∩ V (H) is a vertex cover of H; and

2. τ(H) ≤ τ(G).
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Lemma 2.6. Assume S is a vertex cover of G. If U ⊆ S, then

1. S \ U is a vertex cover of G \ U ; and

2. τ(G \ U) ≤ τ(G)− |U |.

We conclude this section by giving an upper bound for m(G) in terms of τ(G).

Theorem 2.7. Let G be a graph. Then, m(G) ≤ 2τ(G).

Proof. We prove the theorem by induction on τ(G). If τ(G) = 0, then G is totally
disconnected, and so the assertion is trivial.

Assume that τ(G) � 1. Let S be a vertex cover of G such that |S| = τ(G). Let
x ∈ S. By Lemma 2.6, we have τ(G \ x) ≤ τ(G)− 1. Hence, m(G \ x) ≤ 2τ(G\x) by
the induction hypothesis.

Since Gx is an induced subgraph of G \ x, m(Gx) ≤ m(G \ x) by Lemma 2.2.
Together with Lemma 2.1, we obtain

m(G) ≤ m(G \ x) + m(Gx)

≤ 2m(G \ x) ≤ 2τ(G\x)+1 ≤ 2τ(G),

as required.

3 Extremal graphs

A graph G is called bipartite if its vertex set can be partitioned into two subsets
A and B so that every edge has one end in A and one end in B; such a partition
is called a bipartition of the graph, and denoted by (A,B). If every vertex in A is
joined to every vertex in B then G is called a complete bipartite graph, which is
denoted by K|A|,|B|. A star is the complete bipartite graph K1,m (m ≥ 0) consisting
of m + 1 vertices. A star triangle is a graph consisting of some triangles joined at
one common vertex.

Cameron and Walker [2] gave firstly a classification of the connected graphs G
with ν(G) = ν0(G). Hibi et al. [9] modified their result slightly and gave a full
generalization with some corrections.

Lemma 3.1. ([2, Theorem 1] or [9, p.258]) A connected graph G is Cameron–Walker
if and only if it is one of the following graphs:

1. a star;

2. a star triangle;

3. a finite graph consisting of a connected bipartite graph with bipartition (A,B)
such that there is at least one leaf edge attached to each vertex i ∈ A and that
there may be possibly some pendant triangles attached to each vertex j ∈ B.
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Example 3.2. Let G be a Cameron–Walker graph with 8 vertices, as x in i Figure 1.
Then ν(G) = 2 and the maximal independent sets of G are

{1, 2, 5, 6, 7, 8}; {3, 4}; {3, 5, 6}; {4, 7, 8}.

Hence m(G) = 4.

1 2

4 3

5 6 7 8

Figure 1.

Theorem 3.3. Let G be a graph. Then m(G) = 2τ(G) if and only if G is a Cameron–
Walker bipartite graph.

Proof. If G is a Cameron–Walker bipartite graph, then ν0(G) = ν(G) = τ(G).
Together with Lemma 2.4 and Theorem 2.7, this fact yields m(G) = 2τ(G).

Conversely, assume that m(G) = 2τ(G). We will prove that G is Cameron–Walker
bipartite by induction on τ(G).

If τ(G) = 0, then G is totally disconnected and so the assertion is trivial. If
τ(G) = 1, then G is a union of a star and isolated vertices. In this case, G is a
Cameron–Walker bipartite graph by Lemma 3.1.

Assume that τ(G) ≥ 2. Let S be a minimal vertex cover of G such that |S| =
τ(G). We first prove two following claims.

Claim 1: S is an independent set of G.

Assume to the contrary that there is an edge, say xy, with x, y ∈ S. By Lemma
2.5, S ∩V (Gx) is a vertex cover of Gx. Since S ∩V (Gx) ⊆ S \ {x, y}, we deduce that

τ(Gx) � |S| − 2 = τ(G)− 2.

Similarly, S \ {x} is a vertex cover of G \ x. Thus τ(G \ x) � τ(G)− 1.

Together those inequalities with Lemma 2.1 and Theorem 2.7, we have

m(G) � m(Gx) + m(G \ x) � 2τ(G)−2 + 2τ(G)−1 < 2τ(G).

This inequality contradicts our assumption. Therefore, S is an independent set of G.

Claim 2: m(GU) = 2τ(GU ) and τ(GU) = τ(G)− |U | for any U ⊆ S.

We prove the claim by induction on |U |. If |U | = 0, i.e. U is empty, then there is
nothing to prove.

If |U | = 1, then U = {x} for some vertex x. Since x ∈ S, by Lemmas 2.5 and
2.6, we have τ(Gx) ≤ τ(G \ x) ≤ τ(G)− 1. By Theorem 2.7, m(G \ x) ≤ 2τ(G\x) and
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m(Gx) ≤ 2τ(Gx). Together these inequalities with equality m(G) = 2τ(G), Lemma 2.1
gives

2τ(G) = m(G) ≤ m(G \ x) + m(Gx) ≤ 2τ(G\x) + 2τ(Gx)

≤ 2τ(G)−1 + 2τ(G)−1 = 2τ(G).

Hence, m(Gx) = 2τ(Gx) and τ(Gx) = τ(G)− 1, and the claim holds in this case.

We now assume |U | ≥ 2. Let x ∈ U and let T := U \ {x}. Note that T is a
nonempty independent set of S and |T | = |U | − 1. By the induction hypothesis of
our claim, m(GT ) = 2τ(GT ) and τ(GT ) = τ(G)− |T |.

Note that, by Claim 1, S is an independent set of G. Thus S \T = S \NG[T ]. By
Lemma 2.5, S \ T is a vertex cover of GT . Since x ∈ S \ T , by the same argument in
the inductive step of our claim with GT replacing by G, we have m((GT )x) = 2τ((GT )x)

and τ((GT )x) = τ(GT )− 1.

Since GU = (GT )x, we obtain m(GU) = 2τ(GU ) and

τ(GU) = τ(GT )− 1 = τ(G)− (|T |+ 1) = τ(G)− |U |,

as claimed.

We turn back to the proof of the theorem. By Claim 1, S is both a vertex cover
and an independent set of G. Therefore G is a bipartite graph with bipartition
(S, V (G) \ S). It remains to prove that G is a Cameron–Walker graph.

For each x ∈ S, let U := S \ {x}. By Claim 2, τ(GU ) = τ(G) − |U | = 1.
Hence, GU is a union of a star with bipartition ({x}, Y ), where ∅ 
= Y ⊆ V (G) \ S
and isolated vertices. Thus, there is a vertex y ∈ Y such that degGU

(y) = 1 and
xy ∈ E(G). Since V (G) \ S is an independent set, the equality degGU

(y) = 1 forces
degG(y) = 1. By using Lemma 3.1, we conclude that G is a Cameron–Walker graph,
and the proof is complete.

If G is a König–Egerváry graph, then τ(G) = ν(G). Together with Theorems 2.7
and 3.3, this fact yields:

Corollary 3.4. Let G be a König–Egerváry graph. Then

m(G) ≤ 2ν(G),

and the equality holds if and only if G is a Cameron–Walker bipartite graph.

Acknowledgments

Part of this work was done while the authors were at the Vietnam Institute of
Advanced Studies in Mathematics (VIASM). We would like to thank VIASM for its
hospitality.



D.T. HOANG AND T.N. TRUNG/AUSTRALAS. J. COMBIN. 73 (3) (2019), 424–431 431

References

[1] J.A. Bondy and U. S.R. Murty, Graph Theory, no. 244 in Graduate Texts in Mathe-
matics, Springer, 2008.

[2] K. Cameron and T. Walker, The graphs with maximum induced matching and maxi-
mum matching the same size, Discrete Math. 299 (2005), 49–55.

[3] G. J. Chang and M. J. Jou, The number of maximal independent sets in connected
triangle-free graphs, Discrete Math. 197-198 (1999), 169–178.

[4] D. Cohen, Counting stable sets in trees, in Seminaire Lotharingien de combinatoire, R.
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