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Abstract

Given a positive integer k, a subset S of vertices of a graph G is called a
k-tuple dominating set in G if for every vertex v € V(G), |[N[v]NS| > k.
The minimum cardinality of a k-tuple dominating set in G is the k-tuple
domination number vy (G) of G. A subset S of vertices of a graph G is
called a k-tuple total dominating set in G if for every vertex v € V(G),
|IN(v)NS| > k. The minimum cardinality of a k-tuple total dominating
set in G is the k-tuple total domination number vy (G) of G. We present
probabilistic upper bounds for the k-tuple domination number of a graph
as well as for the k-tuple total domination number of a graph, and im-
prove previous bounds given in [J. Harant and M.A. Henning, Discuss.
Math. Graph Theory 25 (2005), 29-34], [E.J. Cockayne and A.G. Thoma-
son, J. Combin. Math. Combin. Comput. 64 (2008), 251-254], and [M.A.
Henning and A.P. Kazemi, Discrete Appl. Math. 158 (2010), 1006-1011]
for graphs with sufficiently large minimum degree under certain assump-
tions.

1 Introduction

For graph theory notation and terminology not given here we refer to [10], and for the
probabilistic methods notation and terminology we refer to [1]. We consider finite,
undirected and simple graphs G with vertex set V = V(@) and edge set £ = E(G).
The number of vertices of G is called the order of G and is denoted by n = n(G).
The open neighborhood of a vertex v € V' is N(v) = Ng(v) = {u € V | wv € E}
and the closed neighborhood of v is N[v] = Ng[v] = N(v) U {v}. The degree of a
vertex v, denoted by deg(v) (or degg(v) to refer to (), is the cardinality of its open
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neighborhood. We denote by §(G) and A(G), the minimum and maximum degrees
among all vertices of G, respectively. For a subset S of V(G), the subgraph of GG
induced by S is denoted by G[S]. A subset S C V' is a dominating set of G if every
vertex in V' — S has a neighbor in S. The domination number v(G) is the minimum
cardinality of a dominating set of G. A set S C V is a total dominating set if each
vertex in V' is adjacent to at least one vertex of S, while the minimum cardinality of
a total dominating set is the total domination number ~(G) of G.

For a positive integer k, a set S C V(G) is called a k-tuple dominating set in
G if for every vertex v € V(G), |[N[v] N S| > k. The minimum cardinality of a
k-tuple dominating set in G is the k-tuple domination number vyx(G) of G. For the
case k = 2, the k-tuple domination is also called double domination. The concept of
k-tuple domination number was introduced by Harary and Haynes [9], and further
studied for example in [4, 6, 7, 8, 14, 15, 17]. Henning and Kazemi [11] introduced the
concept of k-tuple total domination in graphs. For a positive integer k, a subset S
of V' is a k-tuple total dominating set of G if for every vertex v € V| |[N(v)N S| > k.
The k-tuple total domination number yyp+(G) is the minimum cardinality of a k-
tuple total dominating set of G. The concept of k-tuple total domination number
was further studied for example in [2, 3, 5, 12, 13, 16]. We note that if a graph G
has a k-tuple dominating set, then clearly, 6 > k — 1, and if a graph G has a k-tuple
total dominating set then § > k.

Harant and Henning obtained the following probabilistic upper bound on the
double domination number of a graph.

Theorem 1.1 (Harant and Henning, [8]) If G is a graph of order n with mini-
mum degree 6 > 1 and average degree d, then

oG < (ln(1+d);—1n5+1)n

Cockayne and Thomason [4] improved Theorem 1.1.

Theorem 1.2 (Cockayne and Thomason [4]) If G is a graph of order n with
minimum degree § > 1, then

oG < (ln(l +5);1n5—|— 1)n.

They also presented the following probabilistic upper bound on the k-tuple dom-
ination number of a graph.

Theorem 1.3 (Cockayne and Thomason [4]) Let G be a graph of order n with
minimum degree 6 > 1. If k 1s fized and ¢ is sufficiently large, then

Yuk(G) < n(1n6 + (k— 1; o(1)) 1111115).
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Henning and Kazemi proved the following.

Theorem 1.4 (Henning and Kazemi [11]) If G is a graph of order n with min-
imum degree § > 2, then

In(2+0)+Ino+1
pad0) < (MEELERIEL),

Theorem 1.5 (Henning and Kazemi [11]) Let G be a graph of order n with
minimum degree d. If k is fized and 0 is sufficiently large, then

(G < n(1n5+ (k — 1;—0(1))1111115)'

In the proof of Theorems 1.2, 1.3, 1.4 and 1.5 it is assumed that ¢ is sufficiently
large and k is fixed. In this paper, we first obtain new probabilistic upper bounds
for the k-tuple domination number of a graph with sufficiently large o, explicitly,
when 0 > 3k — 4, and we improve both Theorems 1.2 and 1.3 under some certain
assumptions. We next obtain new probabilistic upper bounds for the k-tuple total
domination number of a graph with sufficiently large §, explicitly, when 6 > 3k — 2,
and we improve both Theorems 1.4 and 1.5 in such a case and under some certain
assumptions. The main probabilistic methods are similar to those presented in the
proof of Theorems 1.2, 1.3, 1.4 and 1.5.

For two subset A and B of vertices of GG, and an integer k, we say that A k-tuple
dominates B if for any vertex v € B, [N[v]NA| > k. Similarly, we say that A k-tuple
total dominates B if for any vertex v € B, |[N(v)] N A| > k. For a random variable
X, we denote by E(X) the expectation of X.

2 Bounds for the k-tuple domination number
We first prove the following important lemma.

Lemma 2.1 Let k > 1 be a positive integer and G be a graph on n vertices with
minimum degree § > 3k — 4 and mazimum degree A. Let A C V(G) be a set
obtained by choosing each vertex v € V(G) independently with probability p € (0, 1),
A ={veA:|Ngw)— A <k—-2}, and A” ={v e A : |Ng(v) — A| <2k — 3}.
Then there is a subset S C A" such that S k-tuple dominates A" and |S| < t|A'],
where

k-1

t=p+2(l€—i)< 5_;_1 >pz‘(1 —p)6_2k+4_i.

1=0
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Proof. Let 6 = min{deggay(v) : v € A"}, For any vertex v € A” we have
deggpan(v) = degg(v) — [Na(v) — A'| > degg(v) — (2 — 3) > 0 — (2k — 3). Thus
01 > 6 — (2k — 3) > k — 1. For each vertex v € A”, pick a set N, comprising v and
0y of its neighbors in A’, so |N,| = d; + 1.

Create a subset A; C A’ by choosing each vertex v € A’ independently with
probability p. Let V; = {v € A” : [N, N A;| =i}, for 0 < i < k — 1. Form the
set X; by placing within it & — ¢ members of N, — A; for each v € V;. Note that
|X;| < (k—14)|Vi|. Let By = Uk ' X;. Then the set D = A; U By, k-tuple-dominates
any vertex of A”. We now compute the expectation of |D|. Clearly, E(]A;|) = |A'|p,
since |A;| can be denoted as the sum of |A’| random variables. For each vertex

UEA”,PT(UE%):(51+1

; >pi(1 — p)%*1=1 Thus by the linearity property of
the expectation,

E(D]) = E(Ai]) +E(|B])

B4 + B

<
< E(JAi) +Z —J)E(|Vi])
— 5+ 1
< |A’|p+\A'\Z<k—z'>( e

/ 5+1 % — —1 /
< |4 lzwz —Z( . )p(l—p)‘s Ao }Zt\A\-

Hence, by the pigeonhole property of the expectation there is a subset S C A’
such that S k-tuple dominates A” and |S| < t|A'|. n

Theorem 2.2 Let k > 1 be a positive integer and p € (0,1) be a real number. For
any graph G on n vertices with minimum degree 0 > 3k —4 and mazimum degree A,

i n[l_p_’fnk_n(@;l o] (5 o

Proof. Let £ > 1 be a positive integer, and let G be a graph on n vertices with
minimum degree § > 3k — 4 and maximum degree A. Create a subset A C V(G) by
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choosing each vertex v € V(@) independently with probability p. Let A’ ={v € A :
IN(v) — Al < k—2},and A” = {v € A" : |[N(v) — A'| < 2k — 3}. For any vertex
ve A —-A" INv)N(A—A)| =|N@w)—A|—|Nw)—A| >2k—2—(k—2) =k.
Thus any vertex of A" — A” is k-tuple-dominated by some vertex of A — A’. Let
Vi={v eV :|NpnA =i} for 0 <i < k—1. Clearly V; N A" = (), since
IN(v)NA| > deg(v) — |[N(v) —A| >0 —(k—2)>3k—4—(k—2)=2(k—1) >k
for any vertex v € A’. Thus, V; C V(G) — A’. For each vertex v € V;, pick a set N,
comprising v and 0 of its neighbors in V(G) — A’, so | N,| = d+ 1. Form the set X; by
placing within it k£ —¢ members of N, — A for each v € V;. Note that | X;| < (k—1)|V}|.

Let B = J¥) Xi. For each vertex v € V(G), Pr(v € V;) = ( 0 —ZF L pi(1—p)oti-i

By Lemma 2.1, there is a set S C A’ such that S k-tuple-dominates any vertex
of A7, and |S| < t|A’|, where

k-1

1=0

Evidently, D = (A — A’) U BU S is a k-tuple dominating set in G. We compute
the expectation of |D| as follows. Note that

ID| = [(A-—A)UBUS|
= [A=A|+[B]+]S]
= Al = A+ |B| + |9
< [A[+|B| - A +t|A]
Al +[B] — (1 = 1)[A"].

By the linearity property of the expectation, v4x(G) < E(|D|) < E(|A|) + E(|B]) —
(1 = t)E(|A]). It is routine to see that E(]A|) = np and E(|B|) < an;Ol(k -

i) (HT p'(1 — p)?*t=i For a vertex v, if v € A’ then v € A and at least
i

deg(v) — (k — 2) of its neighbors belong to A. Thus,

Prive A') = ( deg@d)e%(’g]z _9) )pl-‘rdeg(v)—(k—Q)

_ deg(v) \ 1tdeg(v)-(k—2) o 3 A—k
N (k—2>p “\ k2 )V

2 ) p>*27% Now a simple calculation yields the result. m

Using the fact that 1 —x < e, for 0 < x < 1 from Theorem 2.2, we obtain the
following.

Thus E(|A'|) > n(

Corollary 2.3 Let k > 1 be a positive integer and p € (0,1) be a real number. For
any graph G on n vertices with minimum degree § > 3k —4 and mazimum degree A,
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Txk(G) <
n(ln5+ (k— 1;0(1))lnln5) _n{ (k i 2) (5— Ing — (k—; +0(1>>1n1n5)
(1n5 + (k — 15+ o(1)) lnln5)3+Ak}.

Proof. Let e >0and p= (Ind + (k—1+¢)Inlnd)/(0 — k +2). By Theorem 2.2,

Txr(G) < n(p+§(k —i)( 5251 )pi(l _p)6+1z'>

i=0
k-1
T YA = S YR PR A 0 3 A_k
n{l P Zo(k‘ Z)( ; )p(l P) o )P
k-1
< n(p £ k(S + 1)1 — p)éﬂz')
i=0
k-1 5
) 6—2k+4—i 3+A—Fk
—n@—p—ggm&+npu—p> [(2205 )
< n(p + k(6 + 1)p)klep(5k+2)) (1—x<e™)

)
_ oy L2 k—1_—p(6—3k+5) 3LA—k
n(l p—k((6+1)p)" e )(k—Q)p :
But if 4 is large, then

(6 + 1)p)kleP@=F2 — (1 4 0(1))(Ind)*(In §)~k-1+e)(5) 71

and also

(5 -+ 1)~ P03 = (14 o(1))(Ind)H(Ind)~ ¢+ (5) " <

Shl ™

Thus p+ k2((0 + 1)p)*~Le 70542 < p4 £= and

k2
p+E((6+ 1)p)tte P07 < p g Tg.
Since € > 0 is arbitrary, we find that p + k?((§ + 1)p)k—1e—p(6—k+2) < p, and
p+ k(6 + 1)p)k~te P0=3k+5) < p Now the result follows. -

In(1+6)+1nd
)

, we obtain the following.

Similarly, letting p =
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Corollary 2.4 For any graph G on n vertices with minimum degree 6 > 2 and
mazimum degree A, vxo(G) <

(1n(1+5) +1nd+ 1)n_n<5— In(1 4 ) —Ind — 1) (ln(0+5) +1n<5)1+A
5 5 5 ‘

We note that Corollary 2.3 improves Theorem 1.3 if ¢ is sufficiently large and
d—Ind—(k—1+o0(1))Inlné > 0 (for example if k is fixed or k = 0(9)), and Corollary
2.4 improves Theorem 1.2 if § is sufficiently large and 6 —In(1+6) —Ind —1 > 0 (for
example if k is fixed or k = 0(9)).

3 Bounds for the k-tuple total domination number
We begin with the following important lemma.

Lemma 3.1 Let k > 1 be a positive integer and G be a graph on n vertices with
minimum degree § > 3k — 2 and mazimum degree A. Let A C V(G) be a set
obtained by choosing each vertex v € V(G) independently with probability p € (0, 1),
A={veV(G) :|Nwv)— Al <k—1}, and A” ={v e A : |[Ng(v) — A'| <2k — 2}.
Then there is a subset S C A" such that S k-tuple total dominates A” and |S| < t|A'],
where

Proof. Let 6 = min{deggay(v) : v € A"}, For any vertex v € A” we have
deggpan(v) = degg(v) — [Na(v) — A'| > degg(v) — (26 — 3) > 0 — (2k — 2). Thus
01 > § — (2k — 2) > k. For each vertex v € A”| pick a set N, consisting of d; of its
neighbors in A’, so |N,| = d;.

Create a subset A; C A’ by choosing each vertex v € A’ independently with
probability p. Let V; = {v € A” : [N, N Ay| =i}, for 0 < i < k — 1. Form the
set X; by placing within it & — ¢ members of N, — A; for each v € V;. Note that
| X;| < (k—1)|Vi|. Let By = U~} X;. Then the set D = A, U By, k-tuple-dominates
any vertex of A”. We now compute the expectation of |D|. Clearly, E(|A,]) = |A'|p.

For each vertex v € A”, Pr(v € V;) = ( il >pi(1 — p)® =% Thus by the linearity
property of the expectation,
E(D) = E(A]) +E(|B])

k—1

< E(lA) + ) E(Xi)

=0
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k—1
< E(|A4]) +Z E(|Vil)
1=0
Pl s\ 4
< A+ 14 <k—z>( ! -
=0
k-1 5 ‘ ‘
= M - a0 - pn
=0
k-1 5
/ o i1 _ \0—(2k—2)— /
< |A|[p+§;<ks a7 )pa-pre] —ga

Hence, there is a subset S C A’ such that S k-tuple dominates A” and |S| < t|A'].
|

Theorem 3.2 Let k > 1 be a positive integer and p € (0,1) be a real number. For
any graph G on n vertices with minimum degree 0 > 3k — 2 and mazimum degree A,

afip Y-8 pren] (7 Jpaen

Proof. Let k£ > 1 be a positive integer and let G be a graph on n vertices with
minimum degree 0 > 3k — 2 and maximum degree A. Create a subset A C V(G) by
choosing each vertex v € V(@) independently with probability p. Let A" = {v € A :
IN(v) — Al < k—1},and A” = {v € A" : |[N(v) — A’| < 2k — 2}. For any vertex
veA—-A" INv)N(A-A)| =|N@w)—A|—-|Nw)—A|>2k—1—(k—1) =k.
Thus any vertex of A” — A” is k-tuple total-dominated by some vertex of A — A’
Let V; ={v eV :|INpNAl =i} for 0 <i < k—1. Clearly V; N A" = (), since
IN(v) N Al > deg(v) — |[N(v) — A > 6 — (kK — 1) > k for any vertex v € A’. Thus,
V; CV(G)— A’ For each vertex v € V;, pick a set N, consisting of § of its neighbors
in V(G) — A, so [N,| = 6. Form the set X; by placing within it £ — ¢ members of
N, — A for each v € V;. Note that |X;| < (k —4)|V;|. Let B = ) X;. For each

vertex v € V(G), Pr(v € V;) = ( f )pi(l —p)°”

By Lemma 3.1, there is a set S C A’ such that S k-tuple-dominates any vertex
of A7, and |S| < t|A’|, where
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Evidently, D = (A — A’) U BU S is a k-tuple total dominating set in G. We
compute the expectation of |D| as follows. Note that

ID| = |(A—A)UBUS|
= |A= A+ |B|+]S]
= |Al = [A'|+]B|+ 9]
< |Al+[B| = |A] +t{A]
= |Al+|B] - (1 -4

By the linearity property of the expectation, v4x(G) < E(|D|) < E(|A|) + E(|B]) —
(1 —t)E(|A’]). Tt is routine to see that E(|A|) = np and

B8 <n s § -

=)

~.

For a vertex v,

Prive A) = ( deg(@(;eé(’zflz 1 )pl—i—deg(v)—(k—l)

_ o deg(v) \ 1tdego)—(k-1) 0 14+A—(k—1)
- (k—l )p “\ k-1 )P |

Thus E(|A"]) > n( I i 1 )p1+A_(k_1). Now a simple calculation yields the result.

Using the fact that 1 —x < e, for 0 < x < 1 from Theorem 3.2, we obtain the
following by letting p = (Ind + (K — 1 +¢)Inlnd) /(6 — k + 2) for € > 0.

Corollary 3.3 Let k > 1 be a positive integer. For any graph G on n vertices with
minimum degree 6 > 3k — 2 and mazimum degree A,

el G) < n(1n6+ (k — 1;—0(1))1n1n5) _n( kil )
((5 —Ind — (k—51+o(1)) Inln 5)i(ln5 + (k-1 ; o(1)) Inln (5) 1+A*(k*1).

Proof. Let ¢ > 0and p = (Ind+ (k—14¢)Inlnd)/(0 — k+2). By Theorem 3.2,

i <o (o)

IN

n<p+ k2(5p)k;—1e—p(6—k+1)) (1 —z < e—a:) ( 5 ) < 52)
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—n(l —p— k2(5p)klep(53k+5)) ( A i ' )lerA(kl).

But if § is large, then (6p)F~te PO+ = (1 + 0(1))(Ind)*~L(In§)~*-1+)(5) L <
£, and also (dp)F~te P36 = (1 4 o(1))(In6)*'(Ing)~*-19)(5)~1 < £. Thus
p+k2(6p)Fle PO-k+l) < p %, and p+ k?((0p)F—te PO=3k+5) < p—l—l‘%a. Since € > 0
is arbitrary, we have p + k?(0p)*~'e PO+ < p and p + k2((5p)F e PO=3k+5) < p,
Now the result follows. [
In(2+9)+1nd

J

Similarly, letting p = , we obtain the following.

Corollary 3.4 For any graph G on n wvertices with minimum degree 6 > 4 and
maximum degree A,

A
Tx24(G) < <1n(2+5)5+1n5+ 1)n—n((5—ln(2+5) —Ind + 1)(“1(1 +<;) +ln5) .

We note that Corollary 3.3 improves Theorem 1.5 if ¢ is sufficiently large and
0 —Ino—(k—1+o0(l))Inlné > 0 (for example, if k is fixed or k = 0(J)), and
Corollary 3.4 improves Theorem 1.4.
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