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Abstract

A dominator coloring of a graph G is a proper vertex coloring of G such
that each vertex of G is adjacent to all the vertices of at least one color
class or else lies alone in its color class. In this paper we have character-
ized the results on dominator coloring of Mycielskian graphs and iterated
Mycielskian graphs.

1 Introduction

Let G be a simple graph, where V is the vertex set, E is the edge set, n is the order
of G and m is the size of G. For graph theoretic terminology we refer to [4] and for
colorings and domination in graphs we refer to [5, 14, 15].

In order to build a graph having small clique number and high chromatic num-
ber, Mycielski [20] introduced a Mycielskian graph μ(G) defined as follows: Let
V (μ(G)) = V ∪ V

′ ∪ {u} with vivj ∈ E(μ(G)) if and only if vivj ∈ E(G), with
viv

′
j ∈ E(μ(G)) if and only if vivj ∈ E(G), with v

′
iu ∈ E(μ(G)), 1 ≤ i ≤ n, and

with no other edges in μ(G), where vi ∈ V (G) and v
′
i ∈ V

′
. For recent results on

Mycielskian graph we refer to [2, 3, 7–9, 13, 16–18, 20].

A dominator coloring (DC) of a graph G is a proper vertex coloring of G such
that each vertex dominates some color class or else lies alone in its color class. A
dominator chromatic number χd(G) is the minimum cardinality among all DC of G.
The idea of DC was presented by Gera et al. [10] and further studied by [1,6,11,12,19].
It has been shown in [1] that for every graph G, χd(G) + 1 ≤ χd(μ(G)) ≤ χd(G) + 2.
In this context we have characterized the results attaining the bounds. Also we have
proved that χd(G) + 2k− 1 ≤ χd(μ

k(G)) ≤ χd(G) + 2k and characterized the results
attaining the bounds, where μk(G) is the iterated Mycielskian of G.

The open neighborhood and closed neighborhood of v ∈ V are the sets N(v) =
{u ∈ V : uv ∈ E} and N [v] = N(v)∪ {v} respectively. Let C = {V1, V2, . . . , Vk} be a
DC of a graph G, where each Vi is a color class. A DC using χd(G) colors is called
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as χd-coloring of G. A color class Vi, 1 ≤ i ≤ k, is called a spare color class with
respect to C if each vertex v ∈ V (G) dominates some color class Vj, j �= i, of C in G.
A vertex v is a solitary vertex if {v} ∈ C of G and N(v) do not contain any color
class.

2 Mycielskian graph

In [1], Arumugam et al. proved that dominator chromatic number of Mycielskian
graph μ(G) is either χd(G) + 1 or χd(G) + 2. We now characterize the results
attaining the bounds.

Theorem 2.1. Given a graph G, χd(μ(G)) = χd(G) + 1 if and only if for some
χd-coloring C of G:

(i) each vertex v dominates some color class Vi with v /∈ Vi;

(ii) a vertex v is a solitary vertex and C contains a spare color class Vi which does
not contain any vertex of N(v).

Proof. Suppose condition (i) holds. Let us consider a coloring of μ(G) such that
each twin vertex v

′
i is assigned the color of vi and the root vertex u is assigned a

new color. Clearly each vertex v ∈ V (G) dominates some color class as in C of G.
The twin vertices v

′
i and the root vertex u dominate the color class {u} ∈ C1. Thus

χd(μ(G)) ≤ χd(G) + 1 and hence equality holds.

Suppose condition (ii) holds and let v1 be a solitary vertex. Let us consider a
coloring C1 = (C−Vi)∪{{Vi∪{v′

1}}, {u}} of μ(G) such that each twin vertex v
′
i, i �= 1,

is assigned the color of vi and the twin vertex v
′
1 is assigned the color i. Further the

root vertex u is assigned a new color. Clearly each vertex v ∈ V (G) dominates some
color class as in C of G. The twin vertices v

′
i and the root vertex u dominate the

color class {u} ∈ C1. Thus χd(μ(G)) ≤ χd(G) + 1 and hence equality holds.

Conversely, suppose χd(μ(G)) = χd(G) + 1. Let C = {V1, V2, . . . , Vk} be a χd-
coloring of μ(G), where k = χd(G) + 1 and let u ∈ V1, then

Case 1. V1 = {u}.
Assuming that each vertex v ∈ Vi such that |Vi| ≥ 2, i �= 1, we consider a

restricted coloring C1 to G in such a way that, for each color class Vi ⊂ V
′
, we select

an arbitrary vertex v
′ ∈ Vi and recolor its twin v ∈ V with color i, i �= 1, remaining

vertices are colored as in C of μ(G). The restricted coloring C1 to G is a DC with
χd(μ(G))− 1 colors. Thus condition (i) holds.

Suppose {vi} ∈ C and {v′
i} ∈ C of μ(G). Then consider a restricted coloring C1

to G in such a way that, for each color class Vi ⊂ V
′
, we randomly choose a vertex

v
′ ∈ Vi and recolor its twin v ∈ V with color i, i �= 1, remaining vertices are colored

as in C of μ(G). The restricted coloring C1 to G is a DC with χd(μ(G))− 2 colors,
which is a contradiction. Thus either {vi} /∈ C or {v′

i} /∈ C of μ(G). Let {v′
i} /∈ C
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of μ(G). Then the vertex v
′
i ∈ Vi such that |Vi| ≥ 2. Suppose the vertex v

′
i ∈ V

′

dominate the color classes V1 ∈ C and Vj ∈ C, j �= {1, i}. Then consider a restricted
coloring C1 to G in such a way that, for each color class Vk ⊂ V

′
, we randomly choose

a vertex v
′ ∈ Vk and recolor its twin v with color k, k �= 1, remaining vertices are

colored as in C of μ(G). Thus C1 is a DC of G with χd(μ(G)) − 1 colors. Now we
prove that Vi ∈ C1 is a spare color class. If any vertex x ∈ V (G) dominate the color
class Vi ∈ C of μ(G), then in the restricted coloring C1 to G the vertex x continues
to dominate the color class Vi and the color class {vi} ∈ C1. Hence Vi is a spare
color class and Vi does not contain any vertex of N(vi), since vi and v

′
i are twin

vertices. Hence condition (i) holds. Suppose v
′
i ∈ V

′
does not dominate any color

class Vj , j �= 1. Then condition (ii) holds.

Case 2. V1 �= {u}.
Clearly no vertex v ∈ V (G) dominates the color class V1 ∈ C of μ(G). In this

case the root vertex u dominates some color class, say Vk ⊆ V
′
. Suppose any vertex

v ∈ V (G) dominate the color class Vk or v is a solitary vertex. Then its twin vertex
v

′
cannot dominate the color class Vk or {v}. In this case v

′
dominate the color

class V1. Now we consider a restricted coloring C1 to G such that for each color class
Vi ⊂ V

′
, i �= k, we randomly choose a vertex v

′ ∈ Vi and recolor its twin v with color
i, i �= k, remaining vertices are colored as in C of μ(G). The restricted coloring C1 to
G is a DC with χd(μ(G))− 1 colors. Thus condition (i) holds.

3 Iterated Mycielskian graphs

In this section, we give bounds on dominator coloring of iterated Mycielskian of
graphs and characterize the results attaining the bounds.

Definition 3.1. Iteratively applying the Mycielskian operator k-times for a graph
G, we get iterated Mycielskian μk(G) of G. That is, μk(G) = μ(μ(μ(. . .μ

︸ ︷︷ ︸

k-times

(G)))).

Lemma 3.2. Suppose some χd-coloring of G has no spare color class and v is a
solitary vertex. Then we have a χd-coloring Ci of μi(G) such that Ci has a solitary
vertex.

Proof. Suppose condition holds. Then by Theorem 2.1, we have a χd-coloring C1 of
μ(G) such that χd(μ(G)) = χd(G)+2 in which the vertex v continues to be a solitary
vertex. Again based on Theorem 2.1, we have χd(μ

2(G)) = χd(μ(G)) + 2 in which
the vertex v continues to be a solitary vertex. Applying Theorem 2.1 iteratively, we
have a χd-coloring Ci of μi(G) such that Ci has a solitary vertex.

Lemma 3.3. Let C and C1 be a χd-coloring of G and μ(G) respectively. Then either
C or C1 has a solitary vertex.
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Proof. Suppose a χd-coloring C of G has no solitary vertex. Then by Theorem 2.1,
we have a χd-coloring C1 of μ(G) in which the root vertex u is a solitary vertex. This
completes the proof.

Theorem 3.4. For a graph G, χd(G) + 2k − 1 ≤ χd(μ
k(G)) ≤ χd(G) + 2k. Further

χd(μ
k(G)) = χd(G) + 2k if and only if some χd-coloring C of G contains no spare

color class and {v} ∈ C is a solitary vertex.

Proof. We know that
χd(μ(G)) ≥ χd(G) + 1.

Then by Lemma 3.3 and Theorem 2.1, we have χd(μ
2(G)) ≥ χd(G) + 3. Again by

Lemma 3.3 and Theorem 2.1, we have χd(μ
3(G)) ≥ χd(G) + 5. Continuing this

process, we obtain χd(μ
k(G)) ≥ χd(G) + 2k − 1.

Next we claim that χd(μ
k(G)) ≤ χd(G) + 2k. Consider the following two cases, 3

and 4.

Case 3. Let C be a χd-coloring of G having no spare color class and {v} ∈ C be a
solitary vertex.

By Lemma 3.2, we have a χd-coloring Ci of the iterated Mycielskian graph μi(G),
1 ≤ i ≤ k, such that Ci contains a vertex v which is a solitary vertex. Then by
Theorem 2.1, we have χd(μ

i(G)) = χd(μ
i−1(G)) + 2, where μ0(G) = G. This implies

that

χd(μ
k(G)) = χd(μ

k−1(G)) + 2

= χd(μ
k−2(G)) + 4

...

= χd(μ
k−k(G)) + 2k

= χd(μ
0(G)) + 2k

= χd(G) + 2k.

Case 4. Every χd-coloring C of G satisfies one of the two conditions of Theorem 2.1.

Then by Lemma 3.3, we have a χd-coloring C1 of μ(G) containing a solitary vertex
v. Let μ(G) = G1. Then by Lemma 3.2, we have a χd-coloring Ci of μi(G), 1 ≤ i ≤
k−1, containing a solitary vertex v. From Theorem 2.1 we have χd(μ(G)) = χd(G)+1
and χd(μ

i(G)) = χd(μ
i−1(G)) + 2, 2 ≤ i ≤ k, which implies that

χd(μ
k(G)) = χd(μ

k−1(G)) + 2

= χd(μ
k−2(G)) + 4

...

= χd(μ
k−(k−1)(G)) + 2(k − 1)

= χd(μ(G)) + 2k − 2

= χd(G) + 2k − 1 (since χd(μ(G)) = χd(G) + 1).
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Now we prove the “if and only if” case of the theorem. Let χd(μ
k(G)) =

χd(G) + 2k. Suppose some χd-coloring C of G satisfies one of the two conditions
of Theorem 2.1. Then it follows from Case 4 that χd(μ

k(G)) < χd(G) + 2k, which is
a contradiction.

Conversely, let C be a χd-coloring of G having no spare color class and {v} is
a solitary vertex. Then by Case 3, we have χd(μ

k(G)) = χd(G) + 2k. Thus it is
proved.
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