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Abstract

For prime p we define magic squares of order kp3, called type-p Franklin
squares, whose properties specialize to those of classical Franklin squares
in the case p = 2. We construct type-p Franklin squares in prime-power
orders.

1 Introduction

1.1 Purpose, Briefly Stated

For prime p we define magic squares of order kp3, called type-p Franklin squares,
whose properties specialize to those of classical Franklin squares in the case p = 2.
We construct such squares in prime power orders. Our construction is motivated
by a relationship, first noted in [11] and further explored in [6], between classical
most-perfect magic squares of triply even order and pandiagonal classical Franklin
squares.

1.2 Franklin Squares

Classical Franklin squares are natural semi-magic squares of doubly even order
first constructed by Benjamin Franklin in the mid 1730’s (two in order 8, one in
order 16) to fend off boredom while clerking in the Pennsylvania Assembly. They
have the following additional magic properties:

(i) Half-rows and half-columns add to half of the magic sum.

(ii) The symbols in any 2 x 2 subsquare formed from consecutive rows and columns
(allowing toric wraparound) sum to 2(n? — 1).
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(iii) Entries in each set of bent diagonals add to the magic sum. Bent diagonals
come in four varieties: up, right, down, and left. An up-diagonal is formed by
half of a broken main diagonal (allowing vertical wraparound) beginning at the
left edge of the square, together with its reflection across the vertical midline.
The right, down, and left varieties are obtained from the up-diagonal locations
by 90°, 180°, and 270° clockwise rotations of the ambient square, respectively.

Item (ii) above assumes, as we do throughout, that the symbol set for an order-n

natural magic square is {0, 1,...,n* — 1}. Franklin’s famous order-8 square is shown
in Figure 1.

51 60 3 12 19 28 35 44 12 19

13 2 61 50 45 34 29 18 13 50 45 18

52 59 4 11 20 27 36 43 59 36

10 5 58 53 42 37 26 21 58 37

54 57 6 9 22 25 38 41 9 22 38

8 7 56 55 40 39 24 23 24

49 62 1 14 17 30 33 46 49 62 1 14 33

15 0 63 | 48 | 47 | 32 | 31 16 31

Figure 1: Left: Franklin’s famous order-8 square with symbols 0 through 63. Right:
An indication of its properties. Numbers 13,59, ...,36, 18 form an up-diagonal.

Investigation of classical Franklin squares largely fits into three categories. The
first is historical: Franklin’s method of constructing his squares remains unknown.
His correspondence makes only brief mention of them, including a lament concerning
the time he wasted in such activities. Pasles’ article [8] and book [9] contain a
thorough historical account of Franklin’s squares and a survey of methods he may
have used to construct them. The most plausible of these methods appears to be
the one conjectured in [3]. Another category is existential: The definition of classical
Franklin squares allows for doubly even orders, but the only Franklin squares that
have been discovered thus far are of triply even order. Franklin squares exist in
orders 8k for each k € Z* (e.g., [3] and [6]). Meanwhile, there are no Franklin
squares of order 4 or 12 (see [2]), and the existential question is unresolved for other
orders of the form 8k+4. The third category concerns construction and enumeration:
One example is [1], in which Hilbert bases for polyhedral cones are used to place an
upper bound on the number of Franklin squares. Another example is [11], in which
an involution on arrays is used to define an injection from the set of most-perfect
squares of order 8 to the set of pandiagonal Franklin squares of order 8, thus giving
a reasonable lower bound on the number of order-8 Franklin squares. Importantly,
this latter work was generalized in [6] to squares of order 8k for any k € ZT.

1.3 Most-perfect Squares

This article makes vital use of most-perfect squares. Let n be a natural number
divisible by p. A natural pandiagonal magic square R of order n is said to be a
most-perfect square of type-p if the following two properties hold:
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(i) (Complementary property) Starting from any location in R, consider the
symbol in that location together with the p — 1 other symbols lying in the
same broken main-diagonal n/p units apart from one another. The sum of

2
—1
these symbols is p(nT)
(ii) (p x p property) The symbols in any p X p subsquare formed from consecutive
20,2 1
rows and columns (allowing toric wraparound) sum to %

Examples of type-2 and type-3 most-perfect squares are given in Figure 2.

0 16 23 | 63 79 59 | 45 34 41
64 80 57 | 46 35 39 1 17 21
47 33 40 2 15 22 | 65 78 58

7 14 18 | 70 77 54 | 52 32 36
71 75 55 | 53 30 37 8 12 19
51 31 38 6 13 20 | 69 76 56

5 9 25 | 68 72 61 | 50 27 43
66 73 62 | 48 28 44 3 10 26
49 29 42 4 11 24 | 67 74 60

0 31 48 47 | 56 39 8 23
59 36 11 20 3 28 51 44
6 25 54 41 | 62 33 14 17
61 34 13 18 5 26 53 42
7 24 55 40 | 63 32 15 16
60 35 12 19 4 27 52 43
1 30 49 46 | 57 38 9 22
58 37 10 21 2 29 50 45

Figure 2: Left: A type-2 (classical) most-perfect square of order-8. Right: A type-3
most-perfect square of order 9. The gridlines serve as an aid in locating complemen-
tary entries.

Type-p most-perfect squares specialize to classical most-perfect squares when p =
2, in which case n must be doubly even [10]. The tasks of counting and constructing
classical most-perfect squares were first approached by McClintock [5] and culminate
in the work of Ollerenshaw and Bree [7], which gives a count of the classical most-
perfect squares for any doubly even order n, along with a construction method for all
such squares. As mentioned above, classical most-perfect squares are used in [11] and
[6] for constructing Franklin squares. When p > 2, a linear construction of type-p
most-perfect squares of order p” (r > 2) is given in [4].

1.4 Type-p Franklin Squares

Let p be prime. We say that a natural square S of order n = kp® is a Franklin
square of type p if it has the following properties:

e (p x p property): This is as described above for type-p most-perfect squares.

e (1/p-property for both rows and columns): We say that S possesses the
1/p column property if upon splitting a column of R naturally into p parts, the

n(n*—1) Th

———~. The

entries in each part add to i times the magic sum, or rather 5
p

1/p row property is defined similarly.

e (Franklin pattern pr(<)1)2erty)): The numbers in every Franklin pattern in S
n(n® —1

add to the magic sum . Franklin patterns specialize to bent diagonals

in the case p = 2. A detailed description of these patterns is given in Section 3.
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An example of a type-3 Franklin square of order 27 is given in Figure 3. The
following discussion assumes that Figure 3 has been rotated 90° clockwise, so that
the square is viewed in its ordinary orientation. In the lower region of this square
the boxed entries indicate the 1/3-row and column properties and the 3 x 3 property.
In the upper portion of the square we observe a collection of boxed entries sitting
within a frame of 3 x 3 subsquares. These boxed entries, when taken together, look
like the letter “W.” This collection of entries is a Franklin-up pattern. These entries
add to the magic sum and can be translated vertically throughout the square (with
vertical wraparound). There are also analogous downward Franklin patterns, as well
as left and right versions. A detailed description of Franklin patterns is given in
Section 3. In Sections 4 and 5 we show that type-p Franklin squares exist in orders
p" with > 3. The appendix contains a larger rendition of this square (Figure 6.)

Inspiration for these results comes chiefly from [11] and [6], where the authors
introduce an involution # that maps classical most-perfect squares into pandiagonal
classical Franklin squares. This involution may be generalized (see Section 2) so that
it applies to type-p most-perfect squares, examples of which exist in all orders p” with
r > 2 by [4]. Therefore, in searching for a reasonable definition for type-p Franklin
squares, one could do worse than studying 6(R) where R is a type-p most-perfect
square. One readily finds that 6(R) is pandiagonal, has the p x p property, and has
the 1/p-row and column properties (see Section 2). Determining reasonable Franklin
patterns is considerably harder, but we are guided by the complementary property
of R and Lemma 4.2 (see Sections 4 and 5). The type-3 order-27 Franklin square
given above has the form 6(R), where R is a (linear) most-perfect square constructed
using the method of [4].

2  An Involution and its Application to Most-Perfect Squares
of Type-p

Let n = kp” with r > 2 and let R be an array of order n. We may view R as an
order-p? array
R=(R;;) with 0<i,j<p*—1, (1)

where each R, ; is an array of order ]%. We define an involution 6 on arrays of order
n by

[0(R):; = R (2)
where, if i = fp +m with £,m € {0,1,...,p — 1} then i = mp + ¢. We emphasize
that ¢ depends on p.

By way of illustration, if p = 2 then

}goo%g[Jngoz%lI;O?,% }ﬁoo%?c&“ﬁfw%goz’,]
R_[Rzo[Rzl [ R22 | Ra3 | :H(R)_IR10[R12 I Rll[Rl‘Bl
| R3o | Rz || Rs2 | R33 | | Rzo | Ra2 || R3,1 | R33

Likewise, if p = 3 then
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A type-3 Franklin square of order 27.
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Ro,0 Ro,1  Ro,2 || Ro,3 Roa Roys || Ro,e Ror  Rogs
Rio Ri Ry 2 Ri3 Ria4 Rijs Ri¢ Ri17 Ris
Rao Rz,1  Rapo Ra3 Rpa4 Ras Rae Ra7 Rog

R3zo Rsz1 Rs3p2 Rz 3 R34 R3s Rs e R37 R3s

Rso Rsi Rso || Rs3 Rsa Rss || Rsg Rsz  Rsgs
Rg,0 Re,1  Re,2 R¢,3 Rea Reys || Re,e Re,7  Re,s
R70 R71  Rrp R73 R7a4 Rrs || Rre  Rr7r  Rrgs
Rgo Rs,1 Rgo Rg3 Rga Rgs Rse Rg7 Rggs

implies

Ro,o Ro,3 Roe Ro,1  Ro,a Ro,7 Ro,2  Ro,5 Rog
R3zo Rs33 Rspe Rs 1 R3za R3zt R332 R3s R3s
Rso Res Res Re.1 Rea Rerr Re2 Res Res
Rio Ri3 Ris Ri1 Ria Rig Ri2 Ri1s5 Ris
Q(R) — | Ra,0 Raz Ras R4;1 Raa  Ragz Ra2 Ras Rasg |
R7o R73 Rre || Rrn Rra Rez || Rra Rrs Rrgs
Ry0 R2,3 Raps Ra,1 R2a4 Rapy Rz2  Rz55 Rag
Rso Rs3 Rspe Rs51 Rsa4 Rs77 Rs2 Rss Rss
Rgso Rss Rss Rs.1 Rga Rgy Rs2 Rgs Rsgs

The mapping 6 specializes to the involution given in [11] in the case p = 2 and n = §;
the reader may check that if R is the square in the left portion of Figure 2, then
0(R) is a Franklin square of order 8.

It is our intention to provide examples of type-p Franklin squares by applying 6
to most-perfect squares of type p. We begin this process over the next several results,
culminating in Proposition 2.6.

Proposition 2.1 Suppose n is triply divisible by p and that R is a square of order
n possessing the p X p property. Then 0(R) has the p X p property.

Proof: Observe that R has the p x p property if and only if for any (p+1) x (p+1)-
subsquare A of R formed from consecutive rows and columns (allowing wraparound),
with

a1 @12 cee Q1p a1,p4+1
21 29 cee A2p a2 p4-1
A= : \
p1 Ap2 Gpp Ap,p+1
Ap+1,1 Ap+1,2 --- Aptip | Gp41p41

p p p p
we have E a; = E apy1,; and E a1 = E a;pt+1. Also, we may define variants
j=1 =1 j=1 j=1

j
0,00 and 0., of 6 by

[0row(R))i; = R; and  [0ea(R)i; = R;j,

(]
where 7 and j are as in (2).

We first show that 6,,,(R) possesses the p x p property. We may view obtaining
0,00 (R) from R by swapping one pair of rows at a time. Let r be a row of R lying
in the band R, ¢, R;1, ..., R; 2—1 of subsquares. According to the definition of 6,,,
we swap r with a row 7 in R that lies in the same relative position in the band of
subsquares R; o, I 1, ..., ;,2_;. Therefore r is being swapped with a row 7 that lies
i —1|(n/p?) units distant from 7. Because -5 is a multiple of p, the characterization
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of the p x p property given at the beginning of this proof indicates that the p x p
property remains intact after this row swap. It follows that 6,,,(R) possesses the
p X p property. A similar argument shows that 6.,(R) possesses the p X p property,
and a combination of these two results gives that 0(R) = 0.,/(0,0uw(R)) possesses the

p X p property. O

Proposition 2.2 Let n be triply divisible by a prime p and let R be a type-p most-
perfect square of order n. Then 6(R) has the 1/p row and column properties.

Proof: 1t suffices to show that 6,..,,,( R) has the 1/p column property. First we establish

some notation: Fix k € {0, ..., 55— 1} and let o, ; denote the sum of the entries in

the k-th column of R; ;. This sum has n/p* terms, a fact that will be important later

in the proof. Similarly let &;; denote the sum of the entries in the k-th column of
[0row(R)]; ;. Recall throughout that 4,5 € {0,1,...,p* — 1}.

Observe that 6o + -+ + 7,1, is the sum of the first n/p entries of the j - 1% + k
column of 6,4, (R). (We could address another collection of n/p entries in this same
column by replacing 6o ; with ;10 ;, etc., but this clutters the indices so we consider
the top n/p entries only.) Applying Equation (2), the p x p property of R (actually
the characterization given at the beginning of the proof of Proposition 2.1), and the
complementary property of R in succession, we obtain

005+ 015+ +0p_1; =005+ 0pj+ 02+ "+ 0p-1)p;

= 00,4 + Opjtp T O2pjt2p T+ O(p—1)p,j+(p—1)p
n pn*—1) n(n*-1)

P> 2 2p

as desired. The use of the complementary property to obtain the last line of the

displayed equation requires a bit more explanation: Gather the first terms of each
2

sum oy, j+ep- These add to w by the complementary property, as does the

collection of second terms, etc. Since each oy ;¢ has 1% terms, we obtain ’@

exactly 1% times. a

Next we go about showing that if R is a type-p most-perfect square of order n,
then 0(R) is pandiagonal. We begin with a pair of lemmas.

Lemma 2.3 Let m,n € N and consider a nonnegative integer array A of size (mp+
1) x (np + 1) with
a v b

A= u D w .

c z d

Here a,b,c,d € 7, u,w are lists of length mp — 1, v, z are lists of length np — 1, and
D is an (mp—1) X (np—1) array. If A possesses the px p property then a+d = c+b.
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Proof: By the p x p property
at+u+v+D=b+v+w+D=c+u+z+D=d+z4+w+ D,

where the additions indicate the total sums of symbols in each type of list. It follows
that

(a+u+v+D)+(d+z+w+D)=(b+v+w+ D)+ (c+u+z+ D),

and cancellation gives the result. O

Lemma 2.4 Letm € Z* and A = (a; ;) be an mxm array such that if(zil’jl Zil’ﬁ)

12,1 12,52
is a 2 X 2 subarray of A, then a;, j, + Qi, j, = Qi j, + iy 5, . Then all transversals of
A have the same sum.

Proof: Let T' = {a1,,a2j,, - - ., mj,. } be a transversal for A. We show that the sum
of the elements of T equals the sum of the main diagonal elements of A. This is done
by constructing a chain of transversals, culminating in the diagonal transversal, each
of which has the same sum. We form a new transversal 77 from T as follows: if
aij, = a1, then Ty =T. If ay j, # a1 1, then, because T is a transversal, there exists
1 < k < m with j, = 1. Using the the fact that j, = 1 and the array property in the
hypothesis, we have that

Ak,j, + Q1,1 = Qg + Q15 = 15, + Qg jy -

So if we declare T} to be the set we obtain from 7' by replacing a;; and ayj,
by a1, and ayj,, then T and T have the same sum, and, importantly, a;; € T;.
Furthermore, 77 is a transversal of A because all rows and columns of A are still
accounted for in 7.

Observe that if we eliminate the first row and column from A and remove a,; from
T1, then the remaining elements of 77 form a transversal of the new array, and we
can repeat the process above to obtain a transversal 75 = {a11,a2,2, ..., 0, } of A
that has the same sum as 73, with a7 and as in 75. Continuing in this fashion,
we see that the sum of T is equal to the sum of T},, which is the main diagonal
transversal of A. O

Proposition 2.5 Let p be prime and n triply divisible by p. If R is a type-p most-
perfect square of order n then 0(R) is pandiagonal.

Proof: Let dy,...,d,—; denote the elements of a broken diagonal in §(R) with d;
lying in the j-th column of #(R). Let k € {0,1,..., -5 — 1} and put

a; = di~;—§+k (0 S 1 S p2 - 1).
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We claim that ag + a1 + -+ - + ap2_1 = ]@. If this is true then

I
.

X p’(n*—1) n(n*-1)

n
g =2
Top? 2 2 ’

<
Il
o

as desired.

We set about proving the claim. Due to their construction, all of the a;’s lie in the
same (relative) location within an [#(R)]; ;. Because the mapping R — 6(R) is of
order two and merely permutes the R;;’s without altering the relative locations of
entries within R; ;’s (see Equation (2)), we also know that if B = (b;;) is the p* x p?
subarray of R consisting of all entries lying in this same relative location within
some R, ;, then {ag,a1,...,a,2_1} is a transversal of B. Because R has the p X p
property and n is triply divisible by p, we may apply Lemma 2.3 to the various 2 x 2
subarrays of B, and so the hypotheses of Lemma 2.4 are satisfied for B. Therefore
ag +ay + -+ a,e_q is equal to the sum byo + b1 + -+ - b2y 21 of the diagonal
transversal of B.

Observe that adjacent terms of the sum by +b1,1 +- - - by2_1 p2_; are actually 1% units
apart on the main diagonal of R. Therefore if we rewrite this sum as

bo,o + bl,l + -+ bp2_1,p2_1 = (bo,o + bp7p + pr,Qp + -+ b(pfl)p,(pfl)p)
+ (b1,1 + bigpasp + bryopriop + o+ 111+ (p-1)p)
o (bpip1 T byprop 1 o b2 )

then within each parenthetical summand there are p terms and adjacent terms are

n/p units apart in R. Because R possesses the complementary property, we then

p(n®-1)
2

know that each parenthetical summand adds to . Because there are p paren-

thetical summands, we may then conclude that

n?—1 2(n? -1
a0+a1+-'-—f-ap2_1:b070—|—b171+...bp2_1’p2_1:p_p( 5 ):p( 5 )

Therefore the claim is proved. O
We may summarize the previous results as follows:

Proposition 2.6 Letn be triply divisible by p and suppose R is a type-p most-perfect
square of order n. Then O(R) is semi-magic, possesses the p X p property, possesses
the 1/p row and column properties, and is pandiagonal.

3 Defining Type-p Franklin Squares: Bent Diagonals

In the introduction we established precise characteristics of type-p Franklin squares,
with the exception of the bent diagonals, which we address presently. We will refer
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to the type-p analogs of bent diagonals as Franklin patterns. In the interest
of simplicity we describe Franklin patterns first in the special case n = p3 before
addressing the general case n = kp® (Section 5). These squares, except for the
smallest few primes, are large, so we will be using the special cases p = 2,3,5 to
illustrate several key points. Also, we will first focus our attention on the construction
of a particular Franklin pattern, called a Franklin-up pattern, an example of which
is given in Section 1.4. These patterns specialize to classical Franklin “V” patterns
when p = 2.

Consider a collection of n/p = p? consecutive rows of S, which we intend to serve
as a frame for a Franklin-up pattern . This frame can be partitioned into a p x p?
array 1" whose entries are subsquares T; ;, each of size p x p, where 0 < ¢ < p and
0 < j < p?*—1. Square T} ;, which we occasionally refer to as a block, lies in the i-row
and j-column of T. We describe which subsquares of T" have non-trivial intersection
with W. The array T' can be partitioned into p x p subarrays By, ..., B,_1 (called
bands), each containing p columns of T', where By contains the leftmost p columns
of T', B; contains the next p columns of 7', and so on. For 0 < j < p%l, the
Franklin-up pattern W intersects each entry of the main diagonal of B; when j is
even, and each entry of the off-diagonal of B; when j is odd. The locations of these
intersections reflect across the central band B(,_1)/2, so that W intersects each entry
of the off-diagonal of B(,_1)—; when j is even, and each entry of the main diagonal
of B(,—1)—; when 7 is odd. When p is odd there will be a central band B,_1)/2, in
which intersection with W will rise to a central peak when (p—1)/2 is odd and fall to
central valley when (p —1)/2 is even. These intersections of W with 7" are indicated
below in cases p = 2, 3, 5; double vertical lines separate bands.

* * *

X ||k * x|k

In the figure above, we emphasize that each small rectangle represents some p x p
array 7; ; in T, not an individual entry in S.

In case the description above is not sufficiently specific, the Franklin-up pattern
we construct in this frame will intersect the following subsquares:

T 0mptj and Tj 2 _1)—(2mp+j) for 0 < j<p—Tand 0 <m < %,
and

. p—1
T 2mp-1)—j and T} (2 _1)_(@mp—-1)—j) for 0 <7 <p—Tand 0 <m < 0
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Further, if p is odd, then W will also intersect the following subsquares, depending
on the parity of (p — 1)/2: If (p — 1)/2 is even then W intersects T 2 and

’2

T.

JECEINEY and ij,(p;lu for0<j<p-—1.

(p—1)—1%]
On the other hand, if (p —1)/2 is odd then W intersects T} Jas and

T andT Jf0r0<j<p—1

2

We've seen which of the arrays 7; ; intersect W non-trivially, and we now need to
determine those intersections precisely. For 0 < 7 <p—1 with j # (p — 1)/2, we let
Bi denote the p X p square in the i-th row of B; that intersects W. Further, when p is

odd we let Bp . and B . denote the left and right squares, respectwely, in the ¢-th

row of Bp 1. These squares will coincide exactly when i = 0 and 2= is odd or when

1=p—1 and 2=L i even. (Each B;- is a T}, ¢ for some k, ¢, and Whlle we can make this
connection eXpheltly, it seems unnecessary and perhaps counterproductive.) Below
we indicate the positions of the B} in cases p = 2,3, 5:

0 00 _ 01 0
BY RO B 0 - B 1 B 1 T B2

0 1 1 ; ; 1

By | B! B b [

Bg By By B%
By BY | By By B Bi
B B By" By’ Bs By
B} B Bj:-z Bé‘i B3 B
B} B} By By B} B}
EAER By" = By B; | Bi

Let 1 <o, <pwitha+ 8 =p,andlet 0 <j < (p—1)/2. Recall that each B;
is a p x p array. The Franklin-up pattern W will intersect the Bji» as follows, where
in each instance 1 <7 < p.

e [f j is even then B; N W consists of the first a entries in row 2j and the last
entries in row 2j + 1 of Bj.

e If j is even then B, ; ; N W consists of the last § entries in row 2j and the
first v entries in row 2j +1 of B,

e If j is odd then B; N W consists of the last § entries in row 2j and the first «

entries in row 2j + 1 of Bj.
e If 7 is odd then lea 1—; MW consists of the first « entries of row 2j and the

last § entries of row 25 + 1.

A pictorial representation of these intersections is given in Figure 4.
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B; B;flfj
............
j even: «c rows 27 and 2j + 1 A
=TT s
B; B;*I*J
...........
7 odd: A rows 25 and 25 + 1 o
..... B
e

Figure 4: Intersections of B and B} ; ; with W when 0 < j < (p — 1)/2.

It remains to see how, when p is odd, the squares Bf,jlfl in the central band will

2
intersect W:
e If 7 is even then B

i,0
B, .

2

291 N W consists of the first a entries in the bottom row of

2

e If 7 is even then Bf,fl N W consists of the last § entries in the bottom row of

i1 2
(3
Bp’—l‘

2

e If i is odd then Bf,jé N W consists of the last § entries in the bottom row of
. 2
B2,
2

e If i is odd then B%!, N'W consists of the first a entries in the bottom row of

X3
B,
2

e In the special case that Bi’?l = B!, their intersection with W consists of the

p—1>
2 2

. i,0
entire bottom row of B, .
b5

Below is a pictorial representation of these intersections:

In the case p = 3, « = 1, and § = 2, the intersections described above, which
characterize a Franklin-up W pattern, are illustrated in the order-27 square shown
in Section 1.4.

We observe that within its frame, a Franklin-up pattern W intersects each column
of S exactly once, and each row exactly p times, so W has n = p* entries. Also,
while W does not have vertical midline symmetry when p > 2, the blocks containing
W do possess this symmetry. Finally, we can obtain Franklin-right, Franklin-down,
and Franklin-left patterns from a Franklin-up pattern via clockwise rotations of the
ambient square S through 90°, 180°, and 270°, respectively. These constitute the
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T
3291 B;;l
= 2
7 even:
o B
7,0 1
Bp—l B;—l
2 2
1 odd:
B «
H\ -----

Figure 5: Intersections of Bf;]fl with W.

2

entirety of Franklin patterns in S, and they specialize to the classical Franklin “V”
patterns when p = 2. Therefore, we are now able to make the following definition:

Definition 3.1 We say that a natural square S of order n = p® is a Franklin
square of type p if it has the p x p property, the 1/p-property for both rows and
columns, and the numbers in every Franklin pattern in S add to the magic sum
n(n?—1)
—

The Franklin pattern requirement in Definition 3.1 applies to patterns arising
from any partition o + f = p with 1 < o, < p. One might reasonably weaken
Definition 3.1 by only requiring the existence of a partition a4+ 8 of p such that all
corresponding Franklin patterns have entries adding to the magic sum. Definition
3.1 and its weakened version both specialize to the definition of classical Franklin
squares in the case p = 2.

4 Construction of Type-p Franklin Squares

Let p be prime and let R be a type-p most-perfect square of order p®. Such squares
exist; a linear construction is given in [4]. In this section we show that S = 6(R) is a
pandiagonal type-p Franklin square, where 6 is the involution introduced in Section
2. Proposition 2.6 says S is pandiagonal, has the 1/p row and column properties, and
has the p x p property. It remains to show that the Franklin patterns of S (defined
in Section 3) add to the magic sum. A similar verification for orders p” with r > 3
is indicated in Section 5.

Lemma 4.1 Let m,n,p € N with p > 2, and consider a nonnegative integer array
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A of size (mp + 1) x np with

c dy |- [dys
Here a,b;,c,d; € Z for 1 <i<p—1and D is an (mp —1) X (n — 1)p array. If A
p—1 p—1

possesses the p X p property then a + Z b =c+ Z d;.
i=1 i=1

Proof: 1f n = 1 this follows immediately from the p X p property, so we assume n > 2.
Rewrite A as

a bo bl tee bp,1

C do dl dp,1

where by, dy € Z and D' is an array of size (mp — 1) x ((n — 1)p — 1). By Lemma
2.3 we have a + dy = ¢ + by. Also, because A has the p x p property, we have
bo + -+ bp—l = d(] + -+ dp—l- Therefore

p—1 p—1 p—1 p—1
a+d0:C+b():>CL+(sz—Zdl>:C+b0:>a+Zblzc—|—Zdl
=0 i=1 i=1 i=1

O

If A as in the lemma has the p x p property, then the result of the lemma will
continue to hold true if all other instances of p are replaced by a fixed multiple of p.
Lemma 4.1 has a useful generalization:

Lemma 4.2 Let m,n,k,p € N withp > 2 and 1 < k < p, and consider a nonnega-
tive integer array A of size (mp + 1) X np with

a, - ap besr -+ b,

c1 - o A1 - dp

Here all entries are integers and D is an (mp — 1) X (n — 1)p array. If A possesses
p—k

k k p—k
the p X p property then Z a; + Z bitj = Z ci + Z it j-
i=1 j=1

i=1 j=1



J. LORCH / AUSTRALAS. J. COMBIN. 73 (1) (2019), 84-106 98

Proof: If n = 1 this follows immediately from the p X p property, so we assume
n > 2. Let by, ..., b, be the entries in A immediately preceding by, in the same row
and b,11,...,by1 the entries immediately succeeding b, in the same row. Similarly
define dy, ..., d; and d,yq, ..., dprr. Applying Lemma 4.1 we have

aj+ (bjp1 4+ bjsp1) = ¢+ (dja + -+ djip)
for 1 < 7 < k. Adding gives

k k
D laj+ (bjer 4+ bp1)] = Y e+ (djsr + -+ + djgpr))-

j=1 j=1

Upon rearrangement, one can see that a great deal of cancellation occurs in the previ-
ous equation. Note that by borrowing terms from the first summand and distributing
them among the other summands, we obtain

k
D lag+ (bjar+ -+ bigp 1)) = [a1 + (bega + -+ + b))
j=1
k
+ > laj + (b5 + - 4 byep-1)]
j=2
k p—Fk k
= ai+ Y b+ Y (b4 D)
i=1 j=1 j=2
Likewise

k

7j=1

k p—k k
[+ (- dyp1)] = )it Y iy + ) (dy+ -+ dype).
i=1 j=1 j=2

k k
Finally, due to the p x p property, the sums Z(bj +---+bj4p—1) and Z(dj +---+
=2 =2
djip—1) are equal (in fact they are equal term by term), so cancellation gives

k p—k k p—k
E a; + » by = E ¢+ Y digg,
j=1 j=1

i=1 =1
as desired. O

Observe that the result of Lemma 4.2 still holds if the statement 1 < k < p is
replaced by 1 < k < ¢p where { € Z™.

Theorem 4.3 Let p be prime and n = p®. If R is a type-p most-perfect square of
order n, then 6(R) is an order-n pandiagonal Franklin square of type p. Further,
such squares R exist for every prime p.
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Proof: Type-p most-perfect squares of order n = p? exist due to [4]. Also, the square
0(R) has the 1/p-property for rows and columns, is pandiagonal, and has the p x p
property by Proposition 2.6. It remains to show that Franklin patterns in §(R) add
to the magic sum.

Let p = a+ f with 1 < a,8 < p and let W be a Franklin-up pattern in 6(R)
corresponding to this partition of p. We establish the following notation concerning
W

o Let WJ’ denote W N B; and w;'- denote the sum of the elements of I/VJ’ for 0 <
i,j <p-—1, with j £ 2L,

e W intersects B! in two consecutive rows of Bi. For 0 < i,j < p—1 with j # 2+
let W}, denote the portion of W} coming from the top-most of these two rows
in BZ and let W’ » denote the portlon of Wl coming from the bottom-most of
these two rows 1n B:. Let w}, denote the sum of the entries in VVZ and wj b
denote the sum of the entries in W7,. Note W} = W; UW/, and w} = w},+w?,.
The need for this distinction between “t” and “b” will be made clear later in
the proof when we apply Lemma 4.2.

e If pis odd, let W , denote Bp , NW, and let w , denote the sum of the

2

|k
elements of W7,
2

p—1
e For 0 < j <= weput s; = Z(w; +w, ;).
=0

e If p is odd, put Sp-1 = Z( p L+l 1). In the special case that Bg =
2 2

B’Ll

b1 the corresponding term in Sp1 is just wp 1, not wp 1 —i—w,, 1, as otherwise
2

we would incur duplication.

Observe that the sum of the entries in W is Z s;. We claim that s; = p*(p® —1)
o<j<et

2(,,6
—1
when 0 < j < ’%1, and that Sp-1 = % when p is odd. Assuming this claim,

we have that the sum of the entries of W is

D Y B o B A R et

. —1
0<j<rst
when p is odd, and the sum is

a0 PP -1 n@®-1)
Y si=s=p0' 1) = 7 = 3

._p—1
0<j<=5—

when p = 2. In either case, the sum of the entries of W is the magic sum, as desired.
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To finish, we need to verify the claims about the sums s;. We first present an
overview: If S = O(R), then we can follow the entries in W C S, and hence the
terms of the sums s;, back to R by considering §(.S). Then we use the complementary
property of R together with Lemma 4.2 to replace sums s; with equivalent sums §;
that have the claimed values.

And now on to details of the argument, which takes two cases: 0 < j < ’%1 and
Jj = ’%1. First suppose that 0 < j < p%l. Observe that for 0 < 7 < p — 1, each
entry of W/, UW}!_, . is p columns distant from its counterpart in W' UW, 5,
in S = 0(R), with no repetition of columns. (Here “counterparts” lies in the same
relative position within a block.) Further, we note that the columns of the subsquare
frame array 7" for W coincide with the columns of the subsquare array (Sg,,) as in
Equation 1. (This is not generally true for rows of 7'.) Also, for 0 < i < p—1, I/V;t lies
wholly within band B;, which in turn coincides with a natural band of p consecutive
columns in the subsquare array (Spm). A similar statement is true for W) ;..
Therefore subsquares in Sy, containing a pair of counterparts in Wj;, U W;_;_ .,
and VV;# U W;ﬂﬁ',t must lie in consecutive columns in S;,,. Taking all of this
into account, upon applying Equation (2), we find that elements in W;t U W]ﬁ_l_ﬂ
are p> = n/p columns distant from their counterparts in W/ U W] ., within
R = 6(S), with no repetition of columns. (Another way to view this is that the
squares containing these counterparts are p columns distant in the subsquare array
Ry,.) These same observations and conclusion are also true if W;t U W£—1—j7t is

replaced with W/, UW!_ | ;.

We have established that as i varies from 0 to p — 1, elements in W;, UW!_, |,
are p*> = n/p columns apart from their counterparts in Wﬁl U W;f}fu in R, and
similarly when “t” is replaced by “b”. If these same statements were also true with
“rows” in place of “columns”, then we could repeatedly apply the complementary

property of R to obtain

p—1
s; = wh +wy,_q_;

=0
p—1 p—1

= (w;‘,t + wpflfj,t) + (w;',b + wp,1,]7b)
=0 =0

p(p° -1 p(p® —1
=p|= )]er{( 5 ) =p’(p° - 1),

as claimed. (Here the multiplications by p in the penultimate line are due to the fact
that there are a+b = p members of W7 ,UW,_, ;. and similarly for W/, UW,_, ).
Unfortunately, because the rows of the frame array T = (7},,) do not generally
coincide with a natural band of p consecutive rows in (S¢,,), it is not always true
that elements in W}, UW, , , are p> = n/p rows apart from their counterparts in
WHLUWH iR,

Lemma 4.2 can be used to rectify this problem. Elements in V[/ﬁrl U W;fjl»_l’t may
not be p* = n/p rows distant in R from elements in W7, UW,_, |, but this distance
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is some multiple of p due to our construction of W and to Equation (2). By moving

vertically in R from V[/'jifrl Wf]l 1+ by some appropriate multiple of p units (possibly

zero), we encounter a set I/V?Jrl I/VHl _y, of p elements in R that is n/p = p* rows

distant from W uUw; EPERPS

i+1 i+1
iritl jritl
I/Vjat W:D—l—]t
Further, by applying Lemma 4.2, we have
z—i—l i+1 o ~z+1 ~i+1
—|—’LU —7—1,t — w + p—ji—1,0»
where w“rl is the sum of the elements in VVj“{l, and likewise for w”; 1+ The

vertical nature of this replacement has no effect on the relationship among columns:
it is still true that an element in Wi, U W:_,_,, and its counterpart in W/}' U
W”j 1 are n/p = p? columns dlstant from one another. These statements are also
true if “t” is replaced by “b”. By making these replacements systematically and
judiciously, so as to avoid repetition of rows, we may apply Lemma 4.2 together with
the complementary property in R to obtain

p . .
s; = w;- +wy,
=0
p—1 p—1
= Z(w;’,t ‘wy g )+ Z(w;’,b +wy, 1)
i=0 i=0 (3)
p—1 p—1
:Z(wjt+wplat +Z b+wp1jb)
=0 1=0
p°—1) p(p® —1
[ } p [%] :p2(p6—1)7

thereby proving the first portion of our claim on the sums s;.

Finally, we address the claimed value of s po1. Without loss of generality we assume
that B%"

ey = B01 . Foreach 1 <17 < p— 1, we may use Lemma 4.2 to consider

elements VVZ 01 U W . lying above I/VZ 01 U WZ 1 and in the same row as I/Vu as

2




J. LORCH / AUSTRALAS. J. COMBIN. 73 (1) (2019), 84-106 102

illustrated here:

=
Sl

,0 1,0 0,0 1 =921
s} Wp_1 I/VZD_1 1 w

-1
2 2 2 2 pT
P e e ——
%k Kk Skok kk Sk ok ok ok ok sk kk ok ok ok 5k ok kX
* % %k % * k ok
1,0 1,1
T W4 W, T
2 2
k >k 3k k ok ok ok
2,0 2,1
w2o w2
2 2

If we let 1212;91 + ’LZ);; be the corresponding sum of elements, we find by applying the

1/p row prozperty of 6(R) (Proposition 2.2) that

p—1
sp1 = wy + (wf,j?l + wé)
2 2 i1 2 2
p—1
—wply + 3 (@ + i) (4)
2 i—1 2 2
_1n@’=D] 1P -1 _pe° -1
p 2 p 2 B 2

as claimed. The other Franklin pattern categories (right, down, and left) have similar
verifications.

O

5 Type-p Franklin Squares of Order kp* with k > 1.

In this section we indicate how type-p Franklin squares of order kp?® can be defined,
and argue that these squares exist when k£ = p” for r > 0. This extends the results of
Sections 3 and 4, where we addresed the special case k = 1. Terminology and ideas
of Sections 3 and 4 will be used throughout.

The description in Section 1.4 characterizes type-p Franklin squares of order kp?
except for the Franklin patterns. As in Section 3, we focus on describing Franklin-up
patterns; the other varieties (right, down, and left) are obtained from Franklin-up
locations by rotating the ambient square. Let S be a square of order n = kp?, let
a+ B =pwith1l <a,f < p, and let W be a Franklin-up pattern in .S. The frame
for W consists of % = kp? consecutive rows of S. As in Section 3, we can partition
this frame into a p x p? array (7} ;) where T} ; is an array of size kp X kp. Therefore,
each of the squares B; and B,_;_; should be of size kp x kp, as should be B& in

2
case p is odd. To determine W it is necessary to describe the intersection of these
squares with .
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We first address I/VﬂBZ with 0 < j < E=. View BZ as a k x k array whose entries
are p X p subarrays. If j is even, recall that as ¢ increases from 0 to p — 1, the squares
B lie on a broken main diagonal of the array (7;;). In this case we declare that
W intersects Bj in each of the p X p submatrices on the main block diagonal of B
in the manner described in Section 3 (Figure 4). If j is odd, recall that the squares
B lie on a broken off diagonal of the array (7} ;). In this case we declare that W
intersects Bj in each of the p x p submatrices occupying the off block diagonal of B;
in the manner of Section 3. Intersections of W with B, _; are determined similarly.
A figure illustrating W N Bj with j even is shown below, where the smaller arrays
along the main diagonal are of size p x p.

*
*k

Wﬂ@: a

*
*k

Also, here is a frame showing all blocks B; in the classical case p =2 and n = 2-23 =
16:

* *
0 0
* <~ By Bj — *

1 1
Bg — * * — By

* *

It remains to address the intersection of the Franklin-up pattern W with the
middle band B = in the case that p is odd. Unlike the other bands, we will continue
to partition BpT—l into p X p subsquares as we did in Section 3. (This is reasonable
because we do not apply 6 to this band in Theorem 5.1, and so we do not need a
partition into squares of order = kp.) Further, we deﬁne Bl 01 and Bp 1, as well

as their intersections with W Just as we did in Section 3, except that 0 < z <kp-—1
rather than 0 < ¢ < p — 1 (Figure 5). We note that in the special case that Bp;1
2

and BQ coincide, then the intersection with W is the entire bottom row of this
2 .
square; this will happen when k is odd. Meanwhile, in the special case that Bﬁ
2

and Bp , are adjacent (borders touching) then their intersection with W consists of

the entlre bottom row of both squares. This latter case, which happens when k is
even, produces a row in the frame for W that intersects W in 2p locations rather
than p locations. An illustration is given in the following figure, which shows the
middle band B; in the case n = kp® = 3-33. Each entry is a 3 x 3 array; the asterisks
are the Bi’e’s. The boxed asterisk is B}"'; its intersection with W is shown in the
right portion of the figure (assuming o = 1 and § = 2).

- - B nw =
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Theorem 5.1 Let p be prime, k € Z*, and n = kp®. If R is a type-p most-perfect
square of order n then O(R) is an order-n pandiagonal type-p Franklin square. Fur-
ther, such squares R exist when k = p” for any prime p and any r > 0.

Proof: The proof, which shall be abridged, closely follows that for Theorem 4.3.
Notation will be identical to that of Theorem 4.3, with the exception that wj- will be
split into 2k summands rather than just two summands wj, and wj,. This is due to
the fact that W intersects B} in 2k rows rather than 2 rows. (A similar adjustment
is made for w;_;_;.)

Let S = 6(R). Due to Proposition 2.6, to establish that S is a type-p Franklin
square it remains to show that entries in Franklin patterns add to the magic sum. We
verify this for Franklin-up patterns only, the other patterns have similar verifications.
Following the proof of Theorem 4.3, and Equation (3) in particular, the use of Lemma
4.2 and the complementary property in R gives

S :§w§+w;1j =p []M] +4p [p<n2_1)] _ =)

2

~-
2k times

when 0 < j < p%l. Likewise, in the case that p is odd, applying Lemma 4.2 together

n(n?-1

with the 1/p-row property of S as in Equation (4) gives s T ). Tt follows

that the sum of the entries in W is
2
n(n®—1
> o=t
2
0< <25t

as desired.

Finally, the existence of type-p most-perfect squares of order p® (s > 3) is guaranteed

by [4]. O

6 Appendix

Appearing in Figure 6 is a larger version of the order-27, type-3 Franklin square
given initially in Section 1.4.
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Figure 6
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