
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 72(2) (2018), Pages 405–420

Directed in-out graphs of optimal size

D. Glynn M. Haythorpe

Flinders University
1284 South Road, Tonsley Park, SA

Australia
david.glynn@flinders.edu.au michael.haythorpe@flinders.edu.au

A. Moeini

University of Melbourne
Parkville, VIC

Australia
asghar.moeini@unimelb.edu.au

Abstract

We discuss the recently introduced concept of k-in-out graphs, and pro-
vide a construction for k-in-out graphs for any positive integer k. We
derive a lower bound for the number of vertices of a k-in-out graph for
any positive integer k, and demonstrate that our construction meets this
bound in all cases. For even k, we also prove our construction is opti-
mal with respect to the number of edges, and results in a planar graph.
Among the possible uses of in-out graphs, they can convert the gener-
alized traveling salesman problem to the asymmetric traveling salesman
problem, avoiding the “big M” issue present in most other conversions.
We give constraints satisfied by all in-out graphs to assist cutting-plane
algorithms in solving instances of traveling salesman problem which con-
tain in-out graphs.

1 Introduction

Consider a simple, connected, directed graph G of order n. The Hamiltonian cycle
problem (HCP) is: determine if there exists at least one simple cycle of length n in
the graph. Such simple cycles of length n are called Hamiltonian cycles (HC) and
graphs containing at least one HC are called Hamiltonian. Similarly, a simple path
of length n is called a Hamiltonian path.

We consider a family of graphs which possess a property called in-out, recently
defined in Haythorpe and Johnson [7]. Interchangably, they may be referred to as in-

ISSN: 2202-3518 c©The author(s). Released under the CC BY 4.0 International License

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 406

out graphs or in-out subgraphs, with the latter name used because many applications
occur when they are included as part of a larger graph. In-out graphs are defined as
follows.

Definition 1.1 Consider a graph S and suppose that, for some positive integer k,
there are k vertices in S that are labelled i1, . . . , ik and called the k incoming vertices,
while k vertices (possibly overlapping with the set of k incoming vertices) in S are
labelled o1, . . . , ok and called the k outgoing vertices. Then S is called a k-in-out
graph if it satisfies the following two conditions.

1. For all j,m = 1, . . . , k, there is a Hamiltonian path in S between vertices ij
and om if and only if j = m.

2. There is no union of more than one disjoint paths in S, each starting at an
incoming vertex and finishing at an outgoing vertex, such that all vertices in
S are visited.

We refer to the first condition as the paired vertices condition, and the second con-
dition as the single visit condition.

As mentioned previously, many applications occur when an in-out graph S is included
as part of a larger graph. A primary such application occurs in the context of HCP.
Consider any graph G satisfying the following conditions.

1. S is an induced subgraph of G.

2. Any edges going from G \ S to S (which we call incoming edges) are incident
with one of the incoming vertices of S.

3. Any edges going from S to G \ S (which we call outgoing edges) are incident
with one of the outgoing vertices of S.

Then, any Hamiltonian cycle H in G will contain precisely one incoming edge and
one outgoing edge, such that if the incoming edge is incident with incoming vertex
ij , then the outgoing edge will be incident with outgoing vertex oj . Thus, from
the perspective of HCP, the subgraph S functions the same way as a vertex within
a larger graph G, in that it must be visited precisely once due to the single visit
condition. However, although multiple edges may enter and exit S, once a particular
incoming edge is chosen, the set of possible outgoing edges is reduced to only those
incident with the corresponding outgoing vertex, due to the paired vertices condition.
Therefore, in-out subgraphs can be used to convert certain constrained forms of HCP
into standard HCP, such as can be solved by the excellent solvers due to Baniasadi
et al. [2], Chalaturnyk [4] or Helsgaun [8].

For some problems, it is often necessary to replace most or all of the vertices in a
graph with in-out subgraphs, and hence it is desirable to use in-out subgraphs of small

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 407

size whenever possible, to prevent the order of the resulting graph from growing too
large. In the following, we prove that a k-in-out graph must contain at least 2k − 1
vertices. We also prove that any k-in-out graph containing 2k−1 vertices must have
at least 4k− 4 edges. We then provide a construction which contains 2k− 1 vertices
for all k ≥ 4. For even k it contains 4k − 4 edges, while for odd k it contains 4k − 3
edges. The cases when k = 1, 2, 3 are handled separately, and contain 1, 3, and 6
vertices respectively; we show that k = 3 is the only size of in-out graph where it is
impossible to meet the 2k− 1 lower bound on the number of vertices. We also show
that our construction provides a planar graph if k �= 1 mod 4. We give an example
of the usage of in-out graphs by converting the generalized traveling salesman problem
(GTSP) to the standard traveling salesman problem. Most conversions of GTSP to
TSP described in literature to date have required the introduction of large weights
which are required to grow with the order of the instance, which in turn often leads
to numerical problems. The construction we give using in-out subgraphs avoids this
issue altogether. Finally, we provide a set of constraints that can be used in cutting-
plane approaches whenever an in-out subgraph is used in the context of HCP or
TSP.

2 Bounds

In this section, we consider bounds on the number of vertices and edges required
to induce the in-out property. First, we consider the minimum number of vertices
required for an in-out graph.

Proposition 2.1 Every k-in-out graph S has number of vertices (order) at least
2k − 1.

Proof: Consider an in-out graph S with order v. Without loss of generality, it is
possible to label the vertices so that incoming vertex i1 = 1, outgoing vertex o1 = v,
and there is a path between them traversing vertices 1 → 2 → 3 → · · · → v.

Now, suppose there is some incoming vertex i and some outgoing vertex o such that,
with this labelling, o directly precedes i. Such a situation is illustrated in Figure 1.
It clear that, in this scenario, it is possible to find a union of two disjoint paths in S,
the first starting at i1 and finishing at o, and the second starting at i and finishing
at o1 = v, that covers all the vertices of S. However, this is impossible because, from
Definition 1.1, S must satisfy the single visit condition. Hence, it can never be the
case that an outgoing vertex is directly followed by an incoming vertex in our chosen
labelling.

There are k outgoing vertices in S. One of them (o1) is labelled v, so no vertex
follows it in our labelling. However, for each of the other k − 1 outgoing vertices,
there is a vertex which follows it which, as argued above, cannot be an incoming
vertex. Hence, S contains k − 1 vertices which cannot be incoming vertices, plus k
incoming vertices, and so must contain at least 2k − 1 vertices. �

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 408

Figure 1: The scenario where an outgoing vertex directly precedes an incoming vertex
on the Hamiltonian path between a different pair of incoming and outgoing vertices.
In such a case the single visit condition is violated, and so this can never be the case
for an in-out graph.

Suppose that a k-in-out graph has 2k − 1 vertices. We next consider the minimum
number of edges this graph must contain.

Theorem 2.2 Any k-in-out graph of order 2k − 1 contains at least 4k − 4 directed
edges.

Proof: Consider a k-in-out graph S of order 2k − 1, and suppose that S contains
a minimal number of edges. The set of vertices V in S can be partitioned into
four disjoint subsets as follows. Denote by I the set of incoming vertices which are
not also outgoing vertices. Denote by O the set of outgoing vertices which are not
also incoming vertices. Denote by B the set of vertices which are both incoming
and outgoing vertices. Denote by N the set of vertices which are neither incoming
nor outgoing vertices. We denote their cardinalities as a = |I| = |O|, b = |B| and
c = |N |. Then, since a+ b = k and 2a+ b+ c = 2k− 1, it can be seen that c = b− 1.
Hence the number of vertices in N is one fewer than the number of vertices in B.

The proof will be organised as follows. First, we will consider the case where a = 0
and show that this case is trivial, and so we will then restrict attention to the
case where a ≥ 1. First we will show that no edges can go from vertices in O to
vertices in I. Then we will show that, for any labelling of the vertices such that
1 → 2 → · · · → 2k − 1 is a Hamiltonian path in S, the vertices of the graph are
divided into segments each separated by a single vertex in N , and each containing
exactly one vertex from B. We will then prove edges emanating from vertices in I
and N can only go to vertices in I or B, and similarly, edges emanating from vertices
in B and O can only go to vertices in O or N . Finally, we will use the paired edge
condition to determine the minimal number of edges required.

Consider first the case where a = 0, that is, all incoming vertices are also outgo-
ing vertices. We note that this is the case for the construction given later in this
manuscript. Then b = k and c = k − 1. Suppose that S is labelled in order of
one of the Hamiltonian paths. We will refer to such a labelling as a path-labelling.
Consider any two consecutive vertices x and y. It is clear that they cannot both be
in B, otherwise it would be possible to start at the initial vertex, travel along the
path to x and depart, then re-enter at y and complete the rest of the path, violating
the single visit condition. Hence, by the pigeonhole principle, the vertices must be
ordered starting with a vertex from B, then a vertex from N , then a vertex from B,

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 409

and so on. Since this must be true for any path-labelling in S, it is obvious that any
edges between two vertices in B are unnecessary, and similarly, any edges between
two vertices of N are unnecessary. Since S is optimal, none of these unnecessary
edges exist and hence S is bipartite. Now consider any consecutive vertices x ∈ N
and y ∈ B. Since y ∈ B, it is an incoming vertex, and hence a Hamiltonian path
must exist which terminates in its corresponding outgoing vertex. Since x ∈ N , it
cannot be the corresponding outgoing vertex. Hence, the Hamiltonian path must
eventually reach x and then leave it. Since it cannot return to y, there must be at
least one more edge emanating from x besides (x, y). Since this must be true for
any x ∈ N , we conclude that all vertices in N have out-degree at least 2. Similarly,
consider any two consecutive vertices x ∈ B and y ∈ N . Since x is an outgoing
vertex, there must be a Hamiltonian path which ends at x, and which cannot have
started at y. Hence, there must be at least one more edge going into y besides (x, y).
Since this is true for any y ∈ N , we conclude that all vertices in N have in-degree
at least 2. Since S is bipartite, the set of edges departing vertices in N is disjoint
with the set of edges entering vertices in N . Hence, at least 4c = 4k − 4 edges are
required.

Next, consider the case where a ≥ 1. It is clear that b = c + 1 ≥ 1. Suppose
that S is labelled with a path-labelling starting from a vertex in I. Consider any two
consecutive vertices x and y. Using an identical argument to the previous paragraph,
it is clear that it cannot be the case that x ∈ O ∪B and y ∈ I ∪B or else the single
visit condition is violated. Then consider any vertex x ∈ B. Clearly the vertex
which succeeds it must be from O ∪ N . If that vertex is from O, then the next
vertex must also be from O ∪ N , and so forth. Hence, for any path-labelling of S
according to a Hamiltonian path, it must be the case that any two vertices from B
which appear consecutively in the path-labelling have at least one vertex from N
in between them. Since b = c + 1, the pigeonhole principle implies that there will
be precisely one vertex from N between them. So the vertices in B and N come in
alternating order for any path-labelling. We will say that, given a path-labelling of
S, the vertices of the graph can be divided into segments plus the vertices from N .
That is, the first segment contains the vertices labelled 1, 2, . . . , j − 1 where j is the
first vertex in N , then the second segment contains vertices j + 1, j + 2, . . . , m − 1
where m is the second vertex in N , and so on. Then each segment contains precisely
one vertex from B. From the above arguments it is clear that segments must start
with some number of (possibly zero) vertices from I, then a single vertex from B,
followed by some number of (possibly zero) vertices from O. Since this must be the
case for all path-labellings, and S has a minimal number of edges, we can conclude
the following:

• Edges which emanate from vertices in I can only go to vertices in I ∪ B.

• Edges which emanate from vertices in O can only go to vertices in O ∪N .

• Edges which emanate from vertices in B can only go to vertices in O ∪N .

• Edges which emanate from vertices in N can only go to vertices in I ∪B.

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 410

Now, consider any vertex y ∈ I ∪B in the path-labelling of S, except the initial one.
It is clear that the vertex x that precedes it will be from I ∪N . Then, there must be
a Hamiltonian path that begins at y and travels through x at some point, so there
must be another edge emanating from x besides (x, y). It can be easily seen that if
all vertices y ∈ I ∪B are considered in this way, then the union of preceding vertices
is equal to I ∪N . Hence every vertex in I ∪N must have out-degree at least 2 and
so these edges contribute at least 2a+ 2c edges to S.

Next, consider any vertex x ∈ O ∪ B in the path-labelling of S, except the final
one. It is clear that the vertex y that succeeds it will be from O ∪ N . Then,
there must be a Hamiltonian path that ends at x, after having travelled through y
previously. Hence, there must be another edge going to y in addition to (x, y). Since
we considered a+b−1 = k−1 vertices, there are at least 2k−2 edges here, and from
above, we know that each of these edges must emanate from vertices in O ∪ B, so
they are disjoint with the set of edges considered in the previous paragraph. Hence,
there must be at least 2a+ 2c+ 2k − 2 = 4k − 4 edges. �

3 Construction

In this section, we give a construction that produces k-in-out graphs of minimal order
for any k ≥ 4. The cases when k = 1, 2, 3 are considered individually. To begin with,
we consider a class of bipartite graphs and show that the single visit condition is
satisfied by them.

Lemma 3.1 Suppose that a graph G is a bipartite graph, that is, its vertex set can be
partitioned into {V1, V2} such that all edges in G are incident with an element from
both V1 and V2. Furthermore, suppose that |V1| = |V2| + 1, and that every incoming
vertex and every outgoing vertex is contained in V1. Then G satisfies the single visit
condition.

Proof: Since all incoming vertices are in V1, it is clear that whenever G is entered,
a vertex in V1 is visited. From here, because G is bipartite, a vertex in V2 is visited
next, then a vertex in V1, and so on until S is departed. This departure must also
occur at a vertex in V1 since there are no outgoing vertices in V2. It is clear that
during this visit, precisely one more vertex from V1 is visited than from V2. Hence,
if G is visited m times, there must be m more vertices of V1 visited than those of V2.
However, since |V1| = |V2|+ 1, it follows that G must be visited precisely once, and
so the single visit condition is satisfied. �

Hence, from Proposition 2.1 and Lemma 3.1 it is clear that if a bipartite graph of
order 2k − 1 satisfying the conditions of Lemma 3.1 also satisfies the paired vertices
condition, then it is an optimal k-in-out graph with respect to the number of vertices.
Call such a graph Sk. Recall that we can verify whether or not Sk satisfies the paired
vertices condition by finding all Hamiltonian paths between pairs of incoming and
outgoing vertices in Sk.

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 411

For small k we can find such graphs explicitly by exhaustive search. For k = 1, S1

contains a single vertex corresponding to both i1 and o1. For k = 2, S2 contains 3
vertices and the directed edges (1, 2), (2, 1), (2, 3), (3, 2) with i1 = 1, i2 = 3, o1 = 3,
o2 = 1. It can be checked the S1 and S2 both meet the conditions of Lemma 3.1 and
satisfy the paired vertices condition, and in both cases they contain 2k − 1 vertices
and 4k − 4 directed edges. We will leave the case where k = 3 for the end of this
section.

We now provide a procedure for constructing k-in-out graphs Sk of order 2k − 1 for
k ≥ 4.

Construction for Sk

For even k ≥ 4, Sk contains the following edges:

• Undirected edges (4i− 2, 4i− 1), (4i− 1, 4i) and (4i, 4i+ 1) for i = 1, . . . , k−2
2
.

• Directed edges (4i− 2, 4i+ 5) and (4i+ 1, 4i+ 2) for i = 1, . . . , k−4
2
.

• Directed edges (1, 2), (2k − 6, 2k − 1), (2k − 3, 2k− 2), (2k − 2, 1), (2k − 2, 5),
(2k − 1, 2k − 2).

For odd k ≥ 5, Sk contains the following edges:

• Undirected edges (4i− 2, 4i− 1), (4i− 1, 4i) and (4i, 4i+ 1) for i = 1, . . . , k−1
2
.

• Directed edges (4i− 2, 4i+ 5) and (4i+ 1, 4i+ 2) for i = 1, . . . , k−3
2
.

• Directed edges (1, 2), (2k − 4, 1), (2k − 2, 5).

In both cases, we define the incoming vertices to be ij = 2j − 1 for j = 1, . . . , k.
The outgoing vertices require a bit more care to define. In both cases, we can
define the majority of the outgoing vertices as o2j = 4j + 3 and o2j+1 = 4j − 3 for
j = 1, . . . , �k−3

2
�. Then, for the case where k is even, the remaining outgoing vertices

yet to be defined are o1 = 3, ok−2 = 2k− 1, ok−1 = 2k− 7, ok = 2k− 3. For the case
where k is odd, the remaining outgoing vertices yet to be defined are o1 = 2k − 1,
ok−1 = 3 and ok = 2k − 5. An example of each of the two constructions is displayed
in Figure 2.

It can be easily checked that Sk is a bipartite graph satisfying the conditions of
Lemma 3.1. Hence, all that remains is to check the Hamiltonian paths between pairs
of incoming and outgoing vertices. In Theorem 3.2 we will prove that there are no
such Hamiltonian paths between incoming vertices ij and outgoing vertices om for
j �= m, and in Proposition 3.3 we will show that there is a Hamiltonian path between
ij and oj for all j.

Theorem 3.2 For k ≥ 4, there are no Hamiltonian paths in Sk starting at incoming
vertex ij and finishing at any outgoing vertex om for j �= m.

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 412

Figure 2: In-out graphs constructed from the above construction for k = 9 and
k = 10. The solid thick edges are undirected, and the large vertices are the incom-
ing/outgoing vertices. For each large vertex, the inner label “j/m” implies the vertex
is incoming vertex ij and outgoing vertex om. For larger k, the middle pattern is
simply repeated as many times as necessary.

Proof: We present the full proof for the even case here. The proof for the odd
case follows from analogous arguments. We will partition the incoming vertices into
several categories, namely:

• Incoming vertex i1

• Incoming vertices i2j for j = 1, 2, . . . , k−4
2

• Incoming vertices i2j+1 for j = 1, 2, . . . , k−2
2

• Incoming vertex ik−2

• Incoming vertex ik

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 413

Consider first incoming vertex i1 = 1. Consider a Hamiltonian path P that begins
at this vertex and finishes at an outgoing vertex. After P begins at vertex 1, it
must proceed to vertex 2, and then there is a choice to proceed either to vertex 3
or 9. Suppose that P proceeds to 3, then it is forced to further proceed to 4 and 5.
However, at some stage in the future, P must reach vertex 2k − 2, at which point
the only options are to either proceed to vertex 1, or vertex 5. Neither choice is still
valid, and P cannot conclude here since 2k− 2 is not an outgoing vertex. Hence, we
conclude that P must not proceed from 2 to 3. However, since vertex 3 is of degree
2, if P does not proceed from 2 to 3, then P must finish at vertex 3 = o1.

Next consider any incoming vertex i2j = 4j − 1 for j = 1, 2, . . . , k−4
2
. Consider a

Hamiltonian path P that begins at this vertex and finishes at an outgoing vertex.
After P begins at vertex 4j − 1, it must proceed to the degree 2 vertex 4j, or else
when that vertex is visited later there will be nowhere to go and P would finish here,
which is a contradiction since 4j is not an outgoing vertex. So P will go to 4j and
then continue on to vertices 4j + 1 and 4j + 2. At this point, there is a choice to
either proceed to vertices 4j+3 or 4j+9. Suppose that P proceeds to 4j+3, then it
is forced to further proceed to vertices 4j + 4 and 4j + 5. However, at some stage in
the future, P must reach vertex 4j− 2, at which point the only options are to either
proceed to vertex 4j−1 or 4j+5. Neither choice is still valid, and P cannot conclude
here since 4k − 2 is not an outgoing vertex. Hence, we conclude that P must not
proceed from 4j + 2 to 4j + 3. However, since vertex 4j + 3 is of degree 2, and P
does not proceed from 4j + 2 to 4j + 3, then P must finish at vertex 4j + 3 = o2j .

Next consider any incoming vertex i2j+1 = 4j + 1 for j = 1, 2, . . . , k−2
2
. Consider a

Hamiltonian path P that begins at this vertex and finishes at an outgoing vertex.
After P begins at vertex 4j + 1, it must proceed to the degree 2 vertex 4j, or else
when that vertex is visited later there will be nowhere to go and P would finish here,
which is a contradiction since 4j is not an outgoing vertex. So P will go to 4j and
then continue on to vertices 4j−1 and 4j−2. However, at some stage in the future,
vertex 4j − 3 will be visited. If j = 1, this is vertex 1 and it can only go to vertex 2
which has already been visited, and so the path must finish here. If j > 1 then there
are two cases to consider. Either vertex 4j − 3 is preceded by 4j − 4, or not. In the
latter case, then upon arriving at vertex 4j − 3, vertex 4j − 4 is the only remaining
destination (since vertex 4j − 2 has already been visited), which is then followed by
4j − 5 and 4j − 6, at which point there is nowhere to go. Since 4j − 6 is not an
outgoing vertex, this case must not have occurred. Hence, vertex 4j − 3 is preceded
by 4j − 4 and so upon arriving at vertex 4j − 3 there is nowhere left to go and P
must finish at vertex 4j − 3 = o2j+1.

Next consider incoming vertex ik−2 = 2k − 5. Consider a Hamiltonian path P that
begins at this vertex and finishes at an outgoing vertex. After P begins at vertex
2k−5, it must proceed to the degree 2 vertex 2k−4, or else when that vertex is visited
later there will be nowhere to go and P would finish here, which is a contradiction
since 2k − 4 is not an outgoing vertex. So P will go to 2k − 4 and then continue on
to vertices 2k − 3 and 2k − 2. However, at some stage in the future, vertex 2k − 1
will be visited. This vertex can only go to vertex 2k − 2, which has already been

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 414

visited. Since there is nowhere left to go, P must finish at vertex 2k − 1 = ok−2.

Finally, consider incoming vertex ik = 2k − 1. Consider a Hamiltonian path P that
begins at this vertex and finishes at an outgoing vertex. After P begins at vertex
2k− 1 it is forced to visit vertex 2k− 2. At this point, vertex 1 must be visited as it
will not be possible to reach 1 otherwise. Then for each subsequent vertex, the same
argument can be made: upon visiting vertex j we must visit vertex j + 1 or else it
will be impossible to return later. Hence all remaining vertices are visited, with P
finishing at vertex 2k − 3 = ok.

In each case, we have shown that any Hamiltonian path of Sk which starts at ij does
not end at om if j �= m, completing the proof. �

Proposition 3.3 For any k ≥ 4, there is a Hamiltonian path in Sk between each
pair of vertices ij and oj for j = 1, . . . , k.

Proof: It suffices to provide the paths. First, for the case where k is even:

From i1: Starting from 1, go to 2. Then repeat the path 4m+ 1 to 4m to 4m− 1 to
4m− 2 for m = 2, . . . , k−2

2
, followed by 2k − 1 to 2k − 2 to 5 to 4 to 3.

From i2j for j = 1, 2, . . . , k−4
2
: Starting from 4j − 1, go to 4j to 4j + 1 to 4j + 2.

Then repeat the path 4m+1 to 4m to 4m−1 to 4m−2 for m = j+2, j+3, . . . , k−2
2
,

followed by 2k − 1 to 2k − 2 to 1. Then travel in vertex order along 2, 3, . . . , 4j − 2.
Finally, go to 4j + 5 to 4j + 4 to 4j + 3.

From i2j+1 for j = 1, 2, . . . , k−2
2
: Starting from 4j + 1, go to 4j to 4j − 1 to 4j − 2.

Then repeat the path 4m+1 to 4m to 4m−1 to 4m−2 for m = j+1, j+2, . . . , k−2
2
,

followed by 2k − 1 to 2k − 2 to 1. Then travel in vertex order along 2, 3, . . . , 4j − 3.

From ik−2: Starting from 2k − 5, go to 2k − 4 to 2k − 3 to 2k − 2 to 1. Then travel
in vertex order along 2, 3, . . . , 2k − 6 and finally go to 2k − 1.

From ik: Starting from 2k − 1, go to 2k − 2 to 1. Then travel in vertex order along
2, 3, . . . , 2k − 3.

Next, for the case where k is odd:

From i1: Simply travel in vertex order along 1, 2, . . . , 2k − 1.

From i2j for j = 1, 2, . . . , k−3
2
: Starting from 4j − 1, go to 4j to 4j + 1 to 4j + 2.

Then repeat the path 4m+1 to 4m to 4m−1 to 4m−2 for m = j+2, j+3, . . . , k−1
2
,

followed by 1. Then travel in vertex order along 2, 3, . . . , 4j−2. Finally, go to 4j+5
to 4j + 4 to 4j + 3.

From i2j+1 for j = 1, 2, . . . , k−1
2
: Starting from 4j + 1, go to 4j to 4j − 1 to 4j − 2.

Then repeat the path 4m+1 to 4m to 4m−1 to 4m−2 for m = j+1, j+2, . . . , k−1
2
,

followed by 1. Then travel in vertex order along 2, 3, . . . , 4j − 3.

From ik−1: Starting from 2k−3, go to 2k−4 to 1 to 2. Then repeat the path 4m+1
to 4m to 4m− 1 to m− 2 for m = 2, . . . , k−3

2
. Finally, go to 2k− 1 to 2k− 2 to 5 to

4 to 3. �

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 415

Theorem 3.4 For any k ≥ 4, the graph Sk is a k-in-out graph of optimal size.

Proof: From Lemma 3.1 it is clear that Sk satisfies the single visit condition, while
from Theorem 3.2 and Proposition 3.3 it is clear that Sk satisfies the paired vertices
condition. Hence from Definition 1.1 it follows that Sk is a k-in-out graph. Then,
from Proposition 2.1 we can see that Sk is of minimal order, completing the proof.�

Next, we consider the number of edges in our construction. For even k, Sk contains
4k − 4 directed edges, and for odd k, Sk contains 4k − 3 directed edges. Recall
from Theorem 2.2 that any k-in-out graph of order 2k − 1 must contain at least
4k − 4 edges. Hence, for even k the construction is also optimal with respect to
the number of edges. For odd k, the construction is this manuscript does not quite
meet the bound provided by Theorem 2.2. However, so far no examples of k-in-out
graphs with 4k−4 edges have been found for any odd k, which leads to the following
conjecture.

Conjecture 3.5 Any k-in-out graph of order 2k + 1 for odd k has at least 4k − 3
edges.

The construction provided in this manuscript produces in-out graphs which are bi-
partite, and this is also the case in the constructions for k = 1 and k = 2 given earlier.
We now show that, in addition to being bipartite, the in-out graphs we construct
are often also planar. This is certainly the case for k = 1 and k = 2. Consider Sk

defined as above for k ≥ 4.

Proposition 3.6 Sk is planar unless k = 1 mod 4.

Proof: We will consider separately the case where k is even, and the case where
k is odd. Suppose first k is even. It is clear that, for the embedding displayed in
Figure 2, the only edge crossings occur between successive sets of three undirected
edges, we call these poles. This can be avoided by “untwisting” every second pole by
effectively turning them upside down. The only potential issue is if there is an even
number of poles. In this case, vertex 2k − 1 can be relocated underneath the in-out
graph to permit a planar embedding, as shown in Figure 3. Hence, S is planar if k
is even.

Next, consider the case where k is odd. Again, for the embedding displayed in Figure
2 the only edge crossings occur between successive poles, so we can again untwist
every second pole. The only issue occurs when there is an even number of poles.
Each pole contains four vertices, two of which are incoming (and outgoing) vertices.
Since there is an even number of poles, the number of incoming vertices contained
in them is a product of four. Finally, there is one additional incoming vertex, so in
this case, k = 1 mod 4. In this case, Sk has a crossing number of 1; an embedding
of S9 with a single edge-crossing is displayed in Figure 4. �

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 416

Figure 3: Planar embeddings of in-out graphs for k = 10 and k = 11.

Figure 4: An embedding of the in-out graph for k = 9 with a single edge-crossing.

Obviously, if an planar graph is desired for k = 1 mod 4, a (k+1)-in-out graph can
just be constructed instead with one of the incoming/outgoing vertices treated as a
neutral vertex.

Finally, we consider the remaining case when k = 3. Exhaustive search shows that
there are no 3-in-out graphs on 5 vertices, bipartite or otherwise, and hence k = 3
is the only case where it is impossible to construct a k-in-out graph with 2k − 1
vertices. For k = 3, the minimal examples occur for six vertices, and among those,
the fewest number of directed edges possible is ten. An example of one such 3-in-out
graph, S3, can be constructed by taking the (directed) path graph on six vertices
and adding the directed edges (1, 5), (2, 1), (3, 2), (5, 1) and (6, 4). Then i1 = 1,
i2 = 3 and i3 = 6, while o1 = 6, o2 = 4 and o3 = 3. The three Hamiltonian paths
between pairs of incoming and outgoing vertices are P1 = 1 → 2 → 3 → 4 → 5 → 6,
P2 = 3 → 2 → 1 → 5 → 6 → 4 and P3 = 6 → 4 → 5 → 1 → 2 → 3. This 3-in-out
graph is displayed in Figure 5. Note that the resulting graph is planar, although it
is not bipartite; indeed, no 3-in-out graphs on 6 vertices are bipartite. The smallest
bipartite 3-in-out graph can be obtained by taking S4 and then simply treating one
of the incoming/outgoing vertices as a neutral vertex.

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 417

Figure 5: A minimal 3-in-out graph S3.

4 Generalized Traveling Salesman Problem

We now consider the generalized traveling salesman problem (GTSP) and show that
we can convert it to an instance of asymmetric TSP (ATSP) through the use of in-out
subgraphs. First, we recall the definition of the traveling salesman problem (TSP).
Consider any graph G and a set of weights wij on every directed edge (i, j) ∈ G. Any
path in G has path length equal to the sums of weights of the edges used in the path.
Then TSP can be defined as the problem of identifying the Hamiltonian cycle of G
with shortest path length. If the weights are different depending on the direction in
which the edge is traversed, or if some edges can only be traversed in one direction,
the problem is often called asymmetric TSP.

A specialisation of TSP is GTSP, wherein the vertices V of G are partitioned into
disjoint groups Vi, such that V is the union of all Vi. Then, GTSP is equivalent
to ATSP, except the requirement to visit each vertex from V is replaced by the
requirement to visit exactly one vertex from each Vi. This variation of ATSP has
been considered in various contexts, including order picking in warehouses [5], routing
of clients through welfare agencies [13], and computer file sequencing [9].

Rather than develop a specialised algorithm for solving GTSP, a common approach
in literature has been to convert instances of GTSP into instances of ATSP, so as
to take advantage of the wealth of excellent open-source TSP solvers available such
as Concorde [1] or LKH [8]. To the best of the authors’ knowledge, the earliest
such conversion is due to Lien et al. [11], which involved replacing each group with
a special subgraph that ensured each group would be visited exactly once. For an
instance of GTSP with n vertices and g groups, the conversion by Lien et al. results
in an instance of ATSP with 3n + g + 2 vertices.

Later in the same year, Noon and Bean [12] advocated an alternative approach of
adding edges between the vertices in each Vi, so as to introduce a cycle with zero
weight for each Vi, and then adding a large weight to all edges going between vertices
in different groups. Since the large weight renders these edges undesirable, a TSP
solver will seek to use as few of them as possible and hence will visit each group only
once. This conversion results in an instance of ATSP with only n vertices (that is,
there is no growth in the order of the instance) but the price paid is the introduction
of large weights on O(n2) edges. Each of these weights must be at least as large as the
sum of the n largest weights in the original instance, so the magnitude of the weights

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 418

grows with the size of the instance. Noon and Bean point out in their manuscript that
while the large weights pose no theoretical issues, they create practical difficulties
with solving. They indicate that methods such as subtour elimination algorithms
will require many branches before the the first non-zero bounds (ie bounds which
include any of the edges of large weight) are reached. Instead, they advocate cutting-
plane approaches, but indicate that the large weights will pose numerical stability
problems for any LP solvers and would inhibit variable elimination. A few years later,
Dimitrijević and Šarić [6] proposed a conversion which results in 2n vertices, but
only introduces n large weights. Then, a few years after that, Behzad and Modarres
[3] developed another conversion of GTSP to ATSP which, from an algorithmic
perspective, performs equivalently to the conversion by Noon and Bean and hence
contains n2 large weights as well.

In many cases (e.g. see Karapetyan and Gutin [10]), for applications of GTSP it suf-
fices to solve the problem approximately. Indeed, exact TSP solvers are often unable
to solve very large instances of TSP, particularly when they involve artificially chosen
weights such as those in the aforementioned conversions. In such cases, conversions
which involve large weights might not be useful.

Here, we propose a new alternative which does not involve any large weights.Through
the use of in-out subgraphs, we can convert GTSP to ATSP, where the single visit
condition will ensure the groups are only visited once, and the paired vertices condi-
tion can be used to ensure the appropriate weights are given to each outgoing edge.
Since the structure of in-out graphs allows us to satisfy the requirements of GTSP,
we are able to avoid the need to use large weights. The following procedure will
construct an instance of ATSP from any given instance of GTSP.

1. For each group Vi in the original instance, the new instance should contain a
k-in-out subgraph Si

k, where k = |Vi|. The weight on each of the edges of Si
k

should be 0.

2. For every directed edge (u, v) with weight wuv in the original instance, do the
following. If u is the s-th vertex in Vi and v is the r-th vertex in Vj, then add
an edge to the new instance between outgoing vertex os of Si

k and incoming
vertex ir of Sj

k with weight wuv.

If the original instance has n vertices, partitioned into g groups, and with m groups
having cardinality 3, the order of the resultant instance will be 2n − g + m. This
is obviously superior to the conversion due to Lien et al. It is also superior to the
conversion by Dimitrijević both in terms of size and also by avoiding the introduction
of large weights. Since g < n for any meaningful instance of GTSP, the conversion
given here results in a larger instance than that from Noon and Bean. However,
by avoiding introducing large weights, our conversion is considerably more numeri-
cally stable. We can also partially alleviate the burden of the larger size by taking
advantage of constraints for each in-out subgraph as described in the next section.

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 419

5 Constraints for in-out subgraphs

The use of in-out subgraphs allows us to pose constrained forms of HCP or TSP as
standard forms. However, a solver for one of these problems may not be “aware”
that the in-out subgraph satisfies the single visit condition or the paired vertices
condition, and could waste time trying to eliminate possibilities which are already
prevented by the in-out subgraphs. Hence, whenever possible, such as for cutting-
plane approaches, it is beneficial to include constraints which instruct the solver
about the in-out subgraphs. We conclude this manuscript with some such constraints.

In each of the following constraints, it is assumed that S is any k-in-out subgraph
with incoming vertices ij and outgoing vertices oj for j = 1, 2, . . . , k, and that xij is
the variable corresponding to using (directed) edge (i, j) in the tour.

∑

v �∈S

k∑

j=1

xv,ij = 1, (5.1)

∑

v �∈S

k∑

j=1

xoj ,v = 1, (5.2)

∑

v �∈S

(
xv,ij − xoj ,v

)
= 0, ∀j = 1, . . . , k. (5.3)

Constraint (5.1) ensures exactly one incoming edge is used, and constraint (5.2)
ensures exactly one outgoing edge is used. Constraints (5.3) ensure that an incoming
edge incident with incoming vertex ij is used if and only if an outgoing edge incident
with outgoing vertex oj is also used.

We can add further constraints if we consider the paths between pairs of incoming
and outgoing vertices. For the construction Sk given in this manuscript, there is a
unique Hamiltonian path Pj in Sk between incoming vertex ij and outgoing vertex
oj for each j = 1, 2, . . . , k. Hence, we can also add the following constraints, using
the shorthand that xe = xi,j if e = (i, j):

(2k − 2 + δ3k)
∑

v �∈Sk

xv,ij −
∑

e∈Pj

xe ≤ 0, ∀j = 1, . . . , k, (5.4)

xe −
∑

v �∈Sk

∑

j|e∈Pj

xv,ij = 0, ∀e ∈ Sk. (5.5)

Constraints (5.4) ensure that if an incoming edge incident with incoming vertex ij
is used, then every one of the edges in path Pj must also be visited. Note that δ3k
is the Kronecker delta that is equal to one if k = 3 and is zero otherwise; this term
is necessary because the Hamiltonian path in S3 contains 5 edges rather than the
normal 2k − 2 edges for all other Sk. Constraints (5.5) ensure that an edge e in Sk

is used if and only if an incoming edge incident with an incoming vertex ij is used
such that Pj contains e.

D. GLYNN ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 405–420 420

References

[1] D. L Applegate, R.B. Bixby, V. Chavátal and W. J. Cook, The Traveling Sales-
man Problem: A Computational Study, Princeton University Press, 2006.

[2] P. Baniasadi, V. Ejov, J.A. Filar, M. Haythorpe and S. Rossomakhine, De-
terministic “Snakes and Ladders” heuristic for the Hamiltonian cycle problem,
Math. Program. Comput., 6(1) (2014), 55–75.

[3] A. Behzad and M. Modarres, A new efficient transformation of the generalized
traveling salesman problem into traveling salesman problem, In: Proc. 15th Int.
Conf. Systems Engineering, (2002), 6–8.

[4] A. Chalaturnykr, “A fast algorithm for finding Hamilton cycles”, Masters The-
sis, University of Manitoba, 2008.

[5] R. L. Daniels, J. L. Rummel and R. Schantz, A model for warehouse order pick-
ing, European J. Oper. Res. 105 (1998), 1–17.

[6] V. Dimitrijević and Z. Šarić, An efficient transformation of the Generalized
Traveling Salesman Problem into the Traveling Salesman Problem on digraphs,
Inform. Comput. Sci. 102 (1997), 105–110.

[7] M. Haythorpe and A. Johnson, Change ringing and Hamiltonian cycles: The
search for Erin and Stedman Triples, Electron. J. Graph Theory Appl. (submit-
ted 2017). Available at: http://arxiv.org/abs/1702.02623.

[8] K. Helsgaun, An effective implementation of Lin-Kernighan Traveling Salesman
heuristic, European J. Oper. Res. 126 (2000), 106–130.

[9] A. Henry-Labordere, The record balancing problem—a dynamic programming
solution of a generalized traveling salesman problem, Rev. Francaise D Inform.
Rech. Oper. 3 (1969), 43–49.

[10] D. Karapetyan and G. Z. Gutin, Lin-Kernighan heuristic adaptations for the
generalized traveling salesman problem, European J. Oper. Res. 208(3) (2011),
221–232.

[11] Y-N. Lien, E. Ma and B.W. S. Wah, Transformation of the generalized
Traveling-Salesman problem into the standard Traveling-Salesman problem, In-
form. Sci. 74 (1993), 177–189.

[12] C. E. Noon and J.C. Bean, An efficient transformation of the generalized trav-
eling salesman problem, INFOR: Inform. Syst. Oper. Res. 31(1) (1993), 39–44.

[13] J. P. Saskena, Mathematical model of scheduling clients through welfare agen-
cies, J. Canadian Oper. Res. Soc. 8 (1970), 185–200.

(Received 30 Apr 2018; revised 16 Aug 2018)

