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Abstract

The following problem appeared in the 44th William Lowell Putnam
Mathematical Competition: “For positive integers n, let C(n) be the
number of representations of n as a sum of nonincreasing powers of 2,
where no power can be used more than three times . . . Prove or disprove
that there is a polynomial P (x) such that C(n) = �P (n)� for all positive
integers n.” We use generating functions to generalize this problem to
enumerating a two-parameter family of m-ary integer partitions, b∗m,j(n).
In addition, we use generating functions and a bijection to give an identity
between b∗m,j(n) and another family of m-ary partitions.
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1 Introduction

Problem B2 of the 44th Putnam Exam in 1983 asked participants to find a function
to count the number of ways of representing n as a sum of powers of 2 with no power
being used more than three times [1]. To restate in terms of integer partitions, the
challenge was to find an expression for the number of binary partitions of n wherein
each part is used at most three times.

It is natural to extend the Putnam question to partitions into powers of m,
although there are several options for how one might pose an analogous restriction
on the maximum number of times each part is allowed to appear. With this in
mind, we define a two-parameter family of m-ary partition functions, b∗m,j(n), which
enumerates the partitions of n where each part is a power of m and each part is used
at most mj −1 times. This choice is motivated by the following observation of Rucci
[3] in her 2016 Master’s thesis:

b∗m,2(n) =
⌊ n

m

⌋
+ 1 . (1)

To see why this is true, let B∗
m,2(q) be the generating function for b∗m,2(n),

B∗
m,2(q) =

∞∑
n=0

b∗m,2(n)q
n =

∞∏
k=0

(
1 + (qm

k

) + (qm
k

)2 + . . .+ (qm
k

)m
2−1

)
. (2)

Now, we rewrite the generating function as

B∗
m,2(q) =

∞∏
k=0

1− (qm
k
)m

2

1− qmk

=
1− qm

2

1− qm0 · 1− qm
3

1− qm1 · 1− qm
4

1− qm2 · 1− qm
5

1− qm3 · . . .

=
1

1− q
· 1

1− qm

=
(
1 + q + q2 + q3 + . . .

) · (1 + qm + q2m + q3m + . . .
)
.

When the right hand side is expanded, there will exist an integer a such that the
degree n term is

qn · 1 + qn−m · qm + qn−2m · q2m + qn−3m · q3m + . . .+ qn−am · qam = (a+ 1)qn .

Here, a will be as large as possible such that n− am ≥ 0, so we may conclude that
a = �n/m�. Since the coefficient of qn is b∗m,2(n), this verifies the claim (1) above.

Using (1), we note that the answer to the Putnam problem is

b∗2,2(n) =
⌊n
2

⌋
+ 1 .

Although this approach is different than the published solution technique [1], the
generating functions above are suggestive of a further extension. Thus, we add the
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second parameter j and now consider the function b∗m,j(n), which we defined above.
In Section 2, we use generating functions to show that these partition functions relate
to another family of m-ary partitions. We present a straightforward bijection of this
relationship in Section 3 and provide illustrative examples. We close in Section 4 by
returning to the Putnam problem and generalizing Rucci’s result (1).

2 An m-ary identity from generating functions

Rather than restricting m-ary partitions by the number of times a part may be used,
we may instead bound the sizes of parts that may be used. Rødseth and Sellers [2]
defined bm,j(n) to be the number of m-ary partitions of n with the largest part at
most mj−1. While proving congruences for this partition function, they note that
Bm,j(q), the generating function for bm,j(n), is

Bm,j(q) =
∞∑
n=0

bm,j(n)q
n =

∏
0≤k<j

1

1− qmk . (3)

Following an argument similar to that in the previous section, we have the following
identity:

Theorem 1. Let m ≥ 2 and j ≥ 1. Then, for all n, b∗m,j(n) = bm,j(n).

Proof. We begin with the generating function B∗
m,j(q) from (2). Note that

B∗
m,j(q) =

∞∏
k=0

(
1 + (qm

k

) + (qm
k

)2 + . . .+ (qm
k

)m
2−1

)

=
(
1 + q + q2 + . . .+ qm

j−1
)
·
(
1 + (qm) + (qm)2 + . . .+ (qm)m

j−1
)
·(

1 + (qm
2

) + (qm
2

)2 + . . .+ (qm
2

)m
j−1

)
· . . .

=
1− qm

j

1− q
· 1− (qm)m

j

1− qm
· 1− (qm

2
)m

j

1− qm2 · . . .

=
∏

0≤k<j

1

1− qmk

= Bm,j(q).

Thus, since the generating functions are equal, we conclude that b∗m,j(n) = bm,j(n)
for all n ≥ 0, m ≥ 2, and j ≥ 1.

3 A bijective proof of Theorem 1

While the generating function proof of Theorem 1 mentioned above is satisfying,
it would be more illuminating to provide a bijective proof of Theorem 1. We now
provide such a proof.
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Proof. Let
f ∗
0m

0 + f ∗
1m

1 + . . .+ f ∗
rm

r (4)

be a partition of n counted by b∗m,j(n) where f ∗
i is the frequency each part appears,

0 ≤ f ∗
i ≤ mj − 1. Note that the largest part that may be used in any such partition

is mr where r = �logm(n)�. Also, each frequency f ∗
i may be written in base m using

no more than j digits (up to the mj−1 power). So, we write each f ∗
i in base m as

follows:

f ∗
0 = a01m

0 + a02m
1 + . . .+ a0jm

j−1

...

f ∗
i = ai1m

0 + ai2m
1 + . . .+ aijm

j−1

...

f ∗
r = ar1m

0 + ar2m
1 + . . .+ arjm

j−1

where 0 ≤ ai� ≤ m− 1.

Next, we form the matrix A, an (r + 1) × j matrix with the ai� coefficients, so
that

A =

⎛
⎜⎜⎜⎝
a01 a02 . . . a0j
a11 a12 . . . a1j

...
ar1 ar2 . . . arj

⎞
⎟⎟⎟⎠ .

This means each row of A gives the base m digits (in reverse order) of the frequency
that a part appears in the partition (4) above. Thus, each of the partitions enumer-
ated by b∗m,j(n) may be uniquely expressed as an (r + 1)× j matrix with all entries
between 0 and m− 1 (although, not all matrices of this type give such a partition of
n).

Now, we take n as written above

n = f ∗
0m

0 + f ∗
1m

1 + . . .+ f ∗
rm

r

= (a01m
0 + a02m

1 + . . .+ a0jm
j−1) ·m0

+ (a11m
0 + a12m

1 + . . .+ a1jm
j−1) ·m1

+ . . .

+ (ar1m
0 + ar2m

1 + . . .+ arjm
j−1) ·mr

and rearrange as

n = (a01m
0 + a11m

1 + a21m
2 + . . .+ ar1m

r) ·m0

+ (a02m
0 + a12m

1 + a22m
2 + . . .+ ar2m

r) ·m1

+ . . .

+ (a0jm
0 + a1jm

1 + a2jm
2 + . . .+ arjm

r) ·mj−1

= f0m
0 + f1m

1 + . . .+ fj−1m
j−1 ,



T.B. FLOWERS ET AL. /AUSTRALAS. J. COMBIN. 72 (2) (2018), 369–375 373

where we define fi−1 = a0im
0 + a1im

1 + . . .+ arim
r for i from 1 to j. This gives an

m-ary partition of n, with new frequencies for the parts and the largest part at most
mj−1, meaning this is one of the partitions counted by bm,j(n). We take these new
frequencies in base m, with digits in reverse order, and put these base m coefficients
into a matrix: ⎛

⎜⎜⎜⎝
a01 a11 . . . ar1
a02 a12 . . . ar2

...
a0j a1j . . . arj

⎞
⎟⎟⎟⎠ .

We note that this matrix is of size j× (r+1) and is equal to At. Further, we observe
that any m-ary partition of n with largest part at most mj−1 may be uniquely
expressed by a j × (r + 1) matrix of this form with entries between 0 and m− 1.

Thus, each partition of n counted by b∗m,j(n) has a corresponding matrix which
is mapped via matrix transposition to a matrix corresponding to a partition of the
same weight n counted by bm,j(n). This mapping is injective and is invertible since
matrix transposition is invertible. Therefore, there is a bijection between the two
types of partitions, which means b∗m,j(n) = bm,j(n).

We now provide two examples to demonstrate the ideas of this bijective proof of
Theorem 1.

Example 1. Let m = 2, j = 2, and n = 17.

We consider a partition of 17 into powers of 2 with each part used at most
3 = 22 − 1 times. So, r = �log2(17)� = 4. We choose the particular partition

17 = 1 · 20 + 0 · 21 + 2 · 22 + 1 · 23 + 0 · 24. (5)

Each frequency is then written into base 2 and we form matrix A with the coefficients:

1 = 1 · 20 + 0 · 21
0 = 0 · 20 + 0 · 21
2 = 0 · 20 + 1 · 21
1 = 1 · 20 + 0 · 21
0 = 0 · 20 + 0 · 21

=⇒ A =

⎛
⎜⎜⎜⎜⎝

1 0
0 0
0 1
1 0
0 0

⎞
⎟⎟⎟⎟⎠ .

Next, we transpose the matrix, and interpret the rows as frequencies written in base
2, with digits in reverse order:

At =

(
1 0 0 1 0
0 0 1 0 0

)
=⇒ 1 · 20 + 0 · 21 + 0 · 22 + 1 · 23 + 0 · 24 = 9

0 · 20 + 0 · 21 + 1 · 22 + 0 · 23 + 0 · 24 = 4
.

We now write the binary partition

17 = 9 · 20 + 4 · 21, (6)

which is a partition into powers of 2, with largest part at most 22−1 = 2. Thus, the
bijection maps the partition (5) to the partition (6).
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Example 2. Let m = 5, j = 3, and n = 845.

Here, r = �log5(845)� = 4. We begin with a partition of 845 into powers of 5
with each part used at most 53 − 1 = 124 times. In particular,

845 = 5 · 50 + 3 · 51 + 8 · 52 + 0 · 53 + 1 · 54. (7)

Next, write each frequency into base 5 and use the coefficients to form matrix A:

5 = 0 · 50 + 1 · 51 + 0 · 52
3 = 3 · 50 + 0 · 51 + 0 · 52
8 = 3 · 50 + 1 · 51 + 0 · 52
0 = 0 · 50 + 0 · 51 + 0 · 52
1 = 1 · 50 + 0 · 51 + 0 · 52

=⇒ A =

⎛
⎜⎜⎜⎜⎝

0 1 0
3 0 0
3 1 0
0 0 0
1 0 0

⎞
⎟⎟⎟⎟⎠ .

Now we transpose the matrix, and interpret the rows as frequencies written in base
2, with digits in reverse order:

At =

⎛
⎝0 3 3 0 1
1 0 1 0 0
0 0 0 0 0

⎞
⎠ =⇒

0 · 50 + 3 · 51 + 3 · 52 + 0 · 53 + 1 · 54 = 715
1 · 50 + 0 · 51 + 1 · 52 + 0 · 53 + 0 · 54 = 26
0 · 50 + 0 · 51 + 0 · 52 + 0 · 53 + 0 · 54 = 0.

This gives the frequencies for a 5-ary partition of 845 with largest part at most
53−1 = 25. In fact,

845 = 715 · 50 + 26 · 51 + 0 · 52. (8)

Thus, (8) corresponds with the partition (7) under the bijection.

4 Closing Remarks

We close this note by considering whether we can provide an expression for b∗m,j(n)
to generalize the solution of the Putnam problem which motivated this work.

It is clear that b∗m,1(n) = 1 and we know

b∗m,2(n) =
⌊ n

m

⌋
+ 1

from Section 1. Next, let j = 3. Using the generating function (3) above,

Bm,3(q) = Bm,2(q) · 1

1− qm2

= Bm,2(q) ·
(
1 + (qm

2

) + (qm
2

)2 + (qm
2

)3 + . . .
)

= Bm,2(q) + qm
2 · Bm,2(q) + q2m

2 · Bm,2(q) + q3m
2 ·Bm,2(q) + . . . .

We extract the coefficient of qn from both sides and apply Theorem 1 to get back to
b∗:

b∗m,3(n) = b∗m,2(n) + b∗m,2(n−m2) + b∗m,2(n− 2m2) + b∗m,2(n− 3m2) + . . . .
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Since there will always be a point after which all terms of this sum will be 0, we may
truncate and conclude that

b∗m,3(n) =

� n
m2 �∑
k=0

b∗m,2(n− km2) =

� n
m2 �∑
k=0

⌊
n− km2

m

⌋
+ 1 .

Now, we may follow similar reasoning for any j ≥ 3. Thus,

Bm,j(q) = Bm,j−1(q) · 1

1− qmj−1

= Bm,j−1(q) ·
(
1 + (qm

j−1

) + (qm
j−1

)2 + (qm
j−1

)3 + . . .
)

= Bm,j−1(q) + qm
j−1 ·Bm,j−1(q)+q2m

j−1 ·Bm,j−1(q) + q3m
j−1 ·Bm,j−1(q) + . . .

which implies that

b∗m,j(n)

= b∗m,j−1(n) + b∗m,j−1(n−mj−1)+b∗m,j−1(n− 2mj−1) + b∗m,j−1(n− 3mj−1) + . . .

=

� n

mj−1 �∑
k=0

b∗m,j−1(n− kmj−1).

It is now possible to iterate the above process until we write b∗m,j(n) in terms of values
of b∗m,2(n), giving a generalization that is reminiscent of the solution to the original
Putnam problem.
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