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Abstract

The Strong Splitter Theorem is used to give a short proof that the class
of binary matroids with no 4-wheel minor consists of a few small matroids
and the infinite family of binary spikes.

1 Introduction

The class of binary matroids with no minor isomorphic to M(W4) was characterized
as follows by Oxley [2], Theorem 2.1:

Theorem 1.1. Let M be a 3-connected binary matroid. Then M has no minor
isomorphic to M(W4) if and only if M is isomorphic to U0,1, U1,1, U1,2, U1,3, U2,3,
M(W3), F7, F

∗
7 , or Zr, Z

∗
r , Zr\ar or Zr\cr, for r ≥ 4.

Besides the small matroids that are trivially in the class, there is one infinite
family Zr (subsequently named the binary spike). Matrix representations for Zr and
Z∗r are shown below, where we use the name of the matroid to also stand for the
matrix representing it:

Zr =



b1 · · · br a1 a2 · · · ar−1 ar cr

0 1 · · · 1 1 1
1 0 · · · 1 1 1

Ir 1 1 · · · 1 1 1

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
1 1 · · · 0 1 1
1 1 · · · 1 0 1


Z

∗
r =



b1 · · · br+1 a1 a2 · · · ar−1 ar

0 1 · · · 1 1
1 0 · · · 1 1

Ir+1 1 1 · · · · · ·
.
.
.

.

.

.
.
.
.

.

.

.

.

.

.
1 1 · · · 0 1
1 1 · · · 1 0
1 1 · · · 1 1



Observe that Zr has two non-isomorphic 3-connected single-element deletions
Zr\ar and Zr\cr, both of which are self-dual. Moreover, Zr\{ar, cr} = Z∗r−1,
Z∗r /br+1 = Zr\cr, Z∗r /br ∼= Zr\ar, and Z∗r /{br, br+1} ∼= Zr−1. Since Zr\cr/br ∼= Zr−1
and Z4 has no minor isomorphic to the self-dual matroid M(W4), neither does Zr

nor Z∗r .
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The main technique used in [2] was the Splitter Theorem [4]. The main technique
used here is the Strong Splitter Theorem [1].

Theorem 1.2. Suppose N is a 3-connected proper minor of a 3-connected matroid
M such that, if N is a wheel or a whirl, then M has no larger minor isomorphic to
a wheel or whirl, respectively. Let j = r(M) − r(N). Then there is a sequence of
3-connected matroids M0,M1, . . . ,Mt such that M0

∼= N , Mt = M , Mi−1 is a minor
of Mi for 1 ≤ i ≤ n, and for some j ≤ t:

(i) For 1 ≤ i ≤ j, r(Mi)− r(Mi−1) = 1 and |E(Mi)− E(Mi−1)| ≤ 3; and

(ii) For j < i ≤ t, r(Mi) = r(M) and |E(Mi)− E(Mi−1)| = 1.

Moreover, when |E(Mi)−E(Mi−1)| = 3, for some 1 ≤ i ≤ j, E(Mi)−E(Mi−1) is a
triad of Mi.

Let M be a class of matroids closed under minors. We may focus on the 3-
connected members of M since matroids that are not 3-connected can be pieced
together from 3-connected matroids using the operations of 1-sum and 2-sum [3],
8.3.1. Let us denote a simple single-element extension of M by an element e as
M + e and a cosimple single-element coextension of M by an element f as M ◦ f .
Note that a simple extension of a 3-connected matroid is also 3-connected. Likewise
for cosimple coextensions.

Suppose N is a 3-connected proper minor of a 3-connected matroid M such that, if
N is a wheel or a whirl, then M has no larger minor isomorphic to a wheel or whirl,
respectively. The Splitter Theorem states that there is a sequence of 3-connected
matroids M0,M1, . . . ,Mt such that M0

∼= N , Mt = M , and for 1 ≤ i ≤ t either
Mi = Mi−1 +e or Mi = Mi−1 ◦f [3], Cor. 12.2.1. Thus to reach a matroid isomorphic
to M , one may start with N and perform simple single-element extensions and
cosimple single-element coextensions. The Splitter Theorem imposes no conditions
to restrict how N can grow to (a matroid isomorphic to) M . Theorem 1.2 extends
the Splitter Theorem by proving that after two simple single-element extensions
a cosimple single-element coextension must be performed, and it puts additional
restrictions on how the coextensions are obtained.

A 3-connected rank k matroid in M that has no further 3-connected extensions
inM is called a monarch forM. Note thatM may have several monarchs of varying
sizes. (The class under consideration has just one monarch and that makes things
very easy.) Theorem 1.2 implies that every 3-connected rank r monarch in M is a
simple extension of a 3-connected rank r matroid Mr, where Mr is obtained from
a 3-connected rank r − 1 matroid Mr−1 in the following ways: Mr = Mr−1 ◦ f or
Mr = Mr−1 ◦ f + e or Mr = Mr−1 ◦ f + {e1, e2} or Mr = Mr−1 + e ◦ f , where f is
added in series to an element in Mr−1 or Mr = Mr−1 + {e1, e2} ◦ f , where {e1, e2, f}
is a triad. There is no reason to asssume a priori that Mr is unique for a specific
excluded minor class. However, if Mr happens to be unique, we get a recursive way
of defining it, and consequently a recursive way of defining the corresponding rank r
monarch.
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2 The proof

The proof of Theorem 1.1 essentially comes down to the following result [2], Theorem
2.2. The class of binary matroids with no minor isomorphic to P9 or P ∗9 is denoted
as EX[P9, P

∗
9 ]. The matroids P9 and P ∗9 are shown below:

P9 =


0 1 1 1 1

I4 1 0 1 1 1
1 1 0 1 0
1 1 1 1 0

P ∗9 =


0 1 1 1
1 0 1 1

I5 1 1 0 1
1 1 1 1
1 1 0 0


Theorem 2.1. Let M be a binary non-regular 3-connected matroid. Then M is in
EX[P9, P

∗
9 ] if and only if M is isomorphic to F7, F

∗
7 , or Zr, Z

∗
r , Zr\ar or Zr\cr, for

r ≥ 4.

Proof. The proof is by induction on the rank. It is easy to check that the binary
non-regular 3-connected rank 4 matroids in EX[P9, P

∗
9 ] are F ∗7 = Z4\{a4, c4}, Z4\a4,

and Z4\c4, and Z4. Assume a binary non-regular 3-connected matroid with rank at
most r is in EX[P9, P

∗
9 ] if and only if it, or its dual, is isomorphic to a member of

the known classes of matroids. Thus Z∗r−3 has no coextensions and its simple single-
element extensions Zr−2\ar−2 and Zr−2\cr−2 both coextend only to Z∗r−2 and Z∗r−2
extends only to Zr−1 in EX[P9, P

∗
9 ] (see Figure 1).

The next two claims complete the proof.

Figure 1: Growth of EX[P9, P
∗
9 ]

Claim A. Z∗r−2 has no coextensions and its simple single-element extensions
Zr−1\ar−1 and Zr−1\cr−1 both coextend only to Z∗r−1 in EX[P9, P

∗
9 ].

Proof. Suppose M is a cosimple coextension of Z∗r−2 in EX[P9, P
∗
9 ]. Theorem 1.2

implies that M must be a cosimple single-element coextension of Z∗r−2, Zr−1\cr−1,
Zr−1\ar−1, or Zr−1. Moreover, if M is a cosimple single-element coextension of Zr−1,
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then {br, ar, cr} forms a triad in M . By the induction hypothesis the only rows that
can be added to Zr−3 are [11 . . . 10] and [11 . . . 11] (see Figure 1). Adding [11 . . . 10]
gives Zr−2\cr−2 and adding [11 . . . 11] gives Zr−2\ar−2. Adding both gives Z∗r−2.
Therefore Z∗r−2 has no further cosimple coextensions in EX[P9, P

∗
9 ].

The only simple single-element extensions of Z∗r−2 in EX[P9, P
∗
9 ] are obtained

by adding columns ar−1 = [11 . . . 10]T and cr−1 = [11 . . . 11]T giving respectively,
Zr−1\cr−1 and Zr−1\ar−1. However, Zr−1\cr−1 and Zr−1\ar−1 are also single-element
coextensions of Zr−2 by rows [11 . . . 10] and [11 . . . 11], respectively. Adding both
these rows to Zr−2 gives Z∗r−1.

Adding to Z∗r−2 both columns cr−1 and ar−1 gives Zr−1. The only cosimple single-
element coextension of Zr−1 we must check is the matroid Z ′r−1 formed by adding row
[00 . . . 011]. The matroid Z ′r−1/{b5, b6, . . . br−1}\{a5, a6, . . . ar−1} shown below has a
P ∗9 -minor.

Z ′r−1/{b5, b6, . . . br−1}\{a5, a6, . . . ar−1} =


0 1 1 1 1
1 0 1 1 1

I5 1 1 0 1 1
1 1 1 0 1
0 0 0 1 1


Claim B. Z∗r−1 extends only to Zr in EX[P9, P

∗
9 ].

Proof. We will prove that the only columns that can be added to Z∗r−1 are cr =
[11 . . . 11]T and ar = [11 . . . 10]T . First observe that Z∗r−1/br = Zr−1\cr−1 and
Z∗r−1/br−1

∼= Zr−1\ar−1. By the induction hypothesis applied to Z∗r−1/br, the only
columns that can be added are cr−1 with a zero or one in the last position, b1, b2, . . .
br−2, br−1 with a one in the last position, and a1, a2, . . . ar−2, ar−1 with the entry in
the last position switched. They are:

1. c0r−1 = [11 . . . 10]T and c1r−1 = [11 . . . 11]T ;

2. b11 = [100 . . . 01]T , b12 = [010 . . . 01]T up to b1r−2 = [000 . . . 0101]T , b1r−1 =
[000 . . . 011]T ; and

3. a01 = [0111 . . . 1110]T , a02 = [1011 . . . 1110]T up to a0r−2 = [111 . . . 1010]T , a0r−1 =
[111 . . . 1100]T .

Similary, the only columns that can be added to Z∗r−1/br−1 are ar−1 with a zero or
one, b1, b2, . . . br−2, br with a one in the second-last position, and a1, a2, . . . ar−2, cr−1
with the entry in the second-last position switched. They are:

(4) a0r−1 = [11 . . . 00]T and a1r−1 = [11 . . . 10]T ;

(5) b11 = [100 . . . 10]T , b12 = [010 . . . 10]T up to b1r−2 = [000 . . . 0110]T ,
b1r = [000 . . . 011]T ; and
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(6) a01 = [0111 . . . 1101]T , a02 = [1011 . . . 1101]T up to a0r−2 = [111 . . . 1001]T , and
a1r−1 = [111 . . . 1111]T .

Observe that the only overlapping columns among the first set of columns in (1),
(2), and (3) and in the second set of columns in (4), (5), and (6) are [11 . . . 10]T ,
[11 . . . 11]T , and [00 . . . 011]. The first is ar and the second is cr. They give the single-
element extensions Zr\cr and Zr\ar, and together the double-element extension Zr.
Lastly, let Z∗r−1 + b1r be the matroid obtained by adding b1r = [00 . . . 11] to Z∗r−1.
Observe that

(Z∗r−1 + b1r−1)/{b4, . . . , br−2}\{a4, . . . , ar−2} = Z∗5 + b14.

The matroid Z∗5 + b14 shown below has a P ∗9 -minor.

Z∗5 + b14 =


0 1 1 1 0
1 0 1 1 0

I5 1 1 0 1 0
1 1 1 0 1
1 1 1 1 1


This completes the proof of Theorem 1.1. �

Acknowledgements

The author thanks the unknown referees for many helpful suggestions and the editors
for their time and patience.

References

[1] S. R. Kingan and M. Lemos, Strong Splitter Theorem, Ann. Combin. 18-1 (2014),
111–116.

[2] J. G. Oxley, The binary matroids with no 4-wheel minor, Trans. Amer. Math.
Soc. 154 (1987), 63–75.

[3] J. G. Oxley, Matroid Theory, Second Ed., (2011), Oxford University Press, New
York.

[4] P. D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B
28 (1980), 305–359.

(Received 9 Mar 2017; revised 21 Aug 2017, 20 Jan 2018, 12 May 2018)


