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Abstract

The rainbow connection number (respectively, strong rainbow connection
number) of a graph G, denoted by rc(G) (respectively, src(G)), is the
smallest number of colors needed to color the edges of G so that any two
vertices are connected by a path (respectively, geodesic) whose edges all
have different colors. In this paper, we examine the rc and src of a general
graph join. We prove lower and upper bounds for the rc and src of the join
of two graphs in terms of several parameters of the individual graphs: the
number of vertices of degree 0, maximum degree, independent domination
number, clique number, and independence number. These bounds are
best possible, in the sense that equality is satisfied for infinitely many
non-isomorphic graphs.

1 Introduction

All graphs in this paper are finite, undirected, and simple. By a k-coloring (or simply
“coloring”) on a graph G we mean any map γ : E(G) → {1, . . . , k}. We write

x
i−y

to mean xy is an edge with color γ(xy) = i. A path is called rainbow if all of its edges
have different colors. A coloring is called rainbow if any two vertices are connected
by a rainbow path. A simple way to achieve this is by coloring each edge differently
(we call this a trivial coloring), but usually there is a more efficient way. The rainbow
connection number of a graph G, denoted by rc(G), is defined as the smallest k for
which G has a rainbow k-coloring.
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A geodesic is a shortest path between two vertices. A coloring is called strong
rainbow if any two vertices are connected by a rainbow geodesic. The strong rainbow
connection number of G, denoted by src(G), is the smallest k for which G has a
strong rainbow k-coloring. Any trivial coloring is strong rainbow, so src(G) always
exists. In fact, as observed in [2], we have

diam(G) ≤ rc(G) ≤ src(G) ≤ |E(G)|.
The concepts of rainbow connection were introduced by Chartrand et al. in 2008
[2]. For a detailed survey on rc and src, the reader is referred to [6]. Some authors
(e.g. [1, 4]) have studied the effect that some graph operations (such as Cartesian
product, direct product, lexicographic product, and strong product) have on rc and
src. Typically, a bound is proved for the rc (or src) of the result of a graph operation
in terms of the parameters of the individual graphs. In this paper we examine the
rc and src of a graph join. Recall that the join of two vertex-disjoint graphs G and
H is a new graph G +H obtained by connecting each vertex of G to each vertex of
H by a new edge.

It is immediate to see that rc(G + H) ≤ max{rc(G), rc(H)} if G and H are
connected, because we can simply color each graph independently, and color the
“crossing” edges in any manner. Note that even if G or H is disconnected, G +H
is always connected. In such a case rc(G + H) exists but the previous bound fails,
since rc is only defined for connected graphs. Thus we need more general bounds for
rc(G+H). It turns out that information about vertices of degree 0 play an important
role.

Since diam(G+H) ≤ 2, the distance between vertices in each graph is typically
destroyed in the join graph. However, there is a useful way to exploit distance in the
individual graphs : if two vertices in one of the two graphs have distance at least
3 in that graph, then any geodesic between them in G +H must pass through the
other graph. We will use this observation to construct a strong rainbow coloring
on the join graph by locally defining several strong rainbow colorings in one graph
and tying them together by using an independent dominating set in the other graph.
Thus an upper bound for src(G + H) is obtained. We also use this idea to obtain
lower bounds on src(G +H).

2 Main results

We first recall some definitions and notation. Following [7], we denote by ni(G) the
number of vertices of degree i in a graph G. Following [3], we define the square of G
as a new graph G2 with V (G2) = V (G) such that two vertices are adjacent in G2 if
and only if they have distance at most 2 in G.

Following [5], we use the following definitions. A set of pairwise adjacent vertices
which is maximal with respect to this property is called a clique. The clique number
of G, denoted by ω(G), is defined as the largest size of a clique in G. A set of pairwise
non-adjacent vertices is called an independent set. The independence number of G,
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denoted by β0(G), is defined as the largest size of an independent set in G. A set
of vertices for which any other vertex has at least one neighbor in the set is called
a dominating set. The independent domination number of G, denoted by i(G), is
defined as the smallest size of an independent dominating set in G.

2.1 Bounds for rc

Our first result is a lower bound and an upper bound for the rc of a graph join, in
terms of the number of vertices of degree 0 in the individual graphs.

Theorem 2.1 Let G and H be vertex-disjoint graphs, with E(G) �= ∅. Then

min
{
3, n0(G)

1

|V (H)|
}
≤ rc(G+H) ≤ max {3, n0(G)} .

. If E(G) = ∅, then the lower bound continues to hold. If E(G) �= ∅ and E(H) = ∅,
then the lower bound can be improved to min

{
4, n0(G)

1

|V (H)|
}
.

Proof: Let I := {v1, . . . , vn0(G)} be the set of isolated vertices in G (if any). We
first prove the upper bound. Let F be a spanning forest for G\I with a bipartition
V (F ) = W1 ∪W2. Let k := max{3, n0(G)}. Define a k-coloring on G+H as follows.

1. Each H−W1 edge is colored 1.

2. Each H−W2 edge is colored 2.

3. Each H−vi edge is colored i.

4. All other edges are colored 3.

Now we prove that this is a rainbow coloring. Let x, y ∈ V (G+H) be non-adjacent.
We will produce a rainbow path in G+H from x to y.

Case 1 : x, y ∈ I.

Let x = vi, y = vj , i < j, and choose any h ∈ V (H). Then vi
i−h

j−vj is rainbow.

Case 2 : x ∈ I and y ∈ W1 ∪W2.

Say x = vi and y ∈ W1. Choose any h ∈ V (H) and c ∈ W2 ∩NG(y). If i �= 1, then

vi
i−h

1−y is rainbow. If i = 1, then vi
1−h

2−c
3−y is rainbow.

Case 3 : x, y ∈ W1 or x, y ∈ W2.

Say x, y ∈ W1. Let h ∈ V (H) and c ∈ W2 ∩NG(y). Then x
1−h

2−c
3−y is rainbow.

Case 4 : x ∈ W1 and y ∈ W2.

Choose any h ∈ V (H). Then x
1−h

2−y is rainbow.

Case 5 : x, y ∈ V (H).

Choose any edge uv with u ∈ W1 and v ∈ W2 (this is possible since E(G) �= ∅).
Then x

1−u
3−v

2−y is rainbow. The proof of the upper bound is completed.
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Next, we prove the lower bound without assuming E(G) �= ∅. Let b := |V (H)| and
k := min

{
2,
⌈

b
√

n0(G)
⌉
− 1

}
. Suppose rc(G+H) ≤ k. Then G+H has a rainbow

k-coloring γ. Let V (H) = {x1, . . . , xb}. For each vi ∈ I we define

code(vi) := (γ(vix1), γ(vix2), . . . , γ(vixb)) (2.1)

Each code is a b-tuple of numbers taken from 1, . . . , k, so there are at most kb different
codes. Note that kb < n0(G) = |I|. Thus, some two vertices in I have the same
code, say code(vi) = code(vj) for some 1 ≤ i < j ≤ n0(G). Let L be a rainbow path
in G + H from vi to vj . Since dG+H(vi, vj) = 2, the length of L is at least 2. So
L : vi−xu−· · ·−xv−vj for some xu, xv ∈ V (H) (since vi and vj are isolated in G). If
L has length at least 3, then not all of its edges can have different colors (since k ≤ 2).
So L has length exactly 2, and xu = xv. Since L is rainbow, γ(vixu) �= γ(vjxu). This
contradicts code(vi) = code(vj), and the lower bound is proved.

Finally, suppose that E(G) �= ∅ and E(H) = ∅. Redefine
k := min

{
3,
⌈

b
√
n0(G)

⌉
− 1

}

and repeat the previous paragraph up to the conclusion that L : vi−xu−· · ·−xv−vj
for some xu, xv ∈ V (H). If xu = xv then we get a contradiction as before. Now
assume xu �= xv. Because E(H) = ∅, the vertices xu, xv are not adjacent. So the
length of the rainbow path L is at least 4, contradicting the fact that the number of
colors is k ≤ 3. With this, the proof of the lower bound is finished. �

Tight example For any G and H with n0(H) ≤ 3 and n0(G) > 2|V (H)|, we have
rc(G+H) = 3 by Theorem 2.1 (switching the role of G and H for the upper bound).

Alternatively, we may simply take H to be a singleton and n0(G) = 3 or n0(G) =
4, where both sides of the theorem are the same. Interestingly, if H = K1 and
n0(G) ≥ 3, then only the right hand side of Theorem 2.1 becomes an equality.

Corollary 2.2 If E(G) �= ∅ and n0(G) ≥ 3, then rc(G+K1) = n0(G).

Proof: By Theorem 2.1 it remains to show rc(G+K1) ≥ n0(G). Note that n1(G+
K1) = n0(G). By a lemma of [7], we have rc(G) ≥ n1(G) for any graph G. So we
obtain rc(G+K1) ≥ n1(G+K1) = n0(G). �

2.2 Bounds for src

Our second result is a lower bound and an upper bound for the src of a graph join, in
terms of independence number, clique number, maximum degree, and independent
domination number.

In the proof, we need the following two facts from [2]. The “spanning subgraph
bound” states that if G has a connected spanning subgraph H with diam(H) = 2,
then src(G) ≤ src(H). The second fact is the src of a complete bipartite graph,
src(Kq,p) = 
 q

√
p � provided that 1 ≤ q ≤ p.
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Theorem 2.3 Let G and H be vertex-disjoint graphs. Then

max

{
β0(G

2),
|V (G)|
ω(G2)

} 1

|V (H)| ≤ src(G+H)

≤ max
{
Δ(G),

⌈
i(G)

1

|V (H)|
⌉
,
⌈
|V (H)|

1

i(G)

⌉}
.

Proof: We first prove the upper bound. Let X ⊆ V (G) be an independent dom-
inating set in G with |X| = i(G), and let U be the subgraph of G +H induced by
X and H . Then U is the join of 〈X〉 (i.e. the subgraph of G induced by X) and
H . Since it is a graph join, U has a spanning subgraph which is complete bipartite
Kq,p with p := max{i(G), |V (H)|} and q := min{i(G), |V (H)|}. By the spanning
subgraph bound,

src(U) ≤ src(Kq,p) = 
 q
√
p � (2.2)

Let γ be a strong rainbow 
 q
√
p �-coloring on U , and let k := max{Δ(G), 
 q

√
p �}. We

extend γ to a new coloring γ∗ : E(G +H) → {1, . . . , k} in several steps as follows.

1. Color the edges of U according to γ.

2. For each t ∈ X, let Gt be the G-neighborhood star around t, i.e. V (Gt) =
{t} ∪ NG(t) and E(Gt) = {tx : x ∈ NG(t)}. Put a strong rainbow degG(t)-
coloring on Gt. This is well-defined, because X being independent is equivalent
to E(Gt) ∩ E(Gu) = ∅ for all t, u ∈ X with t �= u.

3. Next, put color 1 on all the previously uncolored edges in G.

4. For each v ∈ V (G)\X choose one (arbitrary but fixed) tv ∈ X that is adjacent
to v; this is possible since X is dominating. For any crossing edge vy, with
v ∈ V (G)\X and y ∈ V (H), put γ∗(vy) := γ(tvy). This is possible since
tvy ∈ E(U) and the edges in U have been colored in the first step.

After the fourth step, all edges of G+H have been colored. Now we prove that γ∗ is
strong rainbow. Let x, y ∈ V (G +H) be non-adjacent vertices. So dG+H(x, y) = 2.
We will show that there is a rainbow geodesic in G+H from x to y.

Case 1 : x, y ∈ V (U).

In this case dU(x, y) = dG+H(x, y) = 2. So any rainbow geodesic in U from x to y is
also a rainbow geodesic in G+H .

Case 2 : x ∈ X and y ∈ V (G)\X.

Since x, y are non-adjacent, ty �= x. Let L be a rainbow geodesic in U from x to ty,
which exists because x, ty ∈ X ⊆ V (U). Since diam(U) ≤ 2 and X is independent,

dU(x, ty) = 2. So L : x
i−h

j−ty for some h ∈ V (H), i, j ∈ {1, . . . , k}, i �= j. We can
form the path x−h−y, by the definition of graph join. Since γ∗(yh) = γ(tyh) = j,

the path x
i−h

j−y is a rainbow geodesic.

Case 3 : x, y ∈ V (G)\X.
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If tx = ty = t then x, y ∈ Gt and we are done, since γ∗ was defined locally on Gt

as a strong rainbow coloring. So we suppose tx �= ty. Since diam(U) ≤ 2 and X

is independent, dU(tx, ty) = 2. Let L : tx
i−h

j−ty be a rainbow geodesic in U , where

h ∈ V (H), i, j ∈ {1, . . . , k}, i �= j. As in Case 2, we have a rainbow geodesic x
i−h

j−y.
The proof of the upper bound is now completed.

Next, we prove the lower bounds separately. Let b := |V (H)| and k :=
⌈

b

√
|V (G)|
ω(G2)

⌉
−1.

Suppose there is a strong rainbow k-coloring γ on G+H . Let V (H) = {x1, . . . , xb}.
For each v ∈ V (G), define

code(v) := (γ(vx1), γ(vx2), . . . , γ(vxb)) . (2.3)

Note that |V (G)| > ω(G2)kb. Since there are at most kb different codes, there must
be at least ω(G2) + 1 vertices in G with the same code. Let X be one such set of
vertices. Since |X| > ω(G2), X cannot induce a complete subgraph in G2. So there
are v, w ∈ X with dG2(v, w) ≥ 2, i.e. dG(v, w) ≥ 3. Let L be a rainbow geodesic in
G + H from v to w. Since v and w are non-adjacent and diam(G + H) = 2, the
length of L is exactly 2. So L : v−x−w for some x ∈ V (G+H). But x �∈ V (G) since
dG(v, w) ≥ 3. So x ∈ V (H). Since L is rainbow, γ(vx) �= γ(wx). This contradicts

code(v) = code(w), and the bound src(G +H) ≥
⌈

b

√
|V (G)|
ω(G2)

⌉
is proved.

Now let k :=
⌈

b
√
β0(G2)

⌉
− 1 and suppose there is a strong rainbow k-coloring γ

on G+H . Define code as before. Since β0(G
2) > kb, there must be an independent

set X in G2 with |X| > kb. There are at most kb different codes, so there must be
v, w ∈ X with v �= w and code(v) = code(w). Since X is independent in G2, we
have dG2(v, w) ≥ 2, i.e. dG(v, w) ≥ 3. The same line of reasoning as in the previous
paragraph follows through to produce a contradiction. �

Tight example If G = Kr is the complement of the complete graph Kr for some
r, then β0(G

2) = i(G) = r and Δ(G) = 0. So, for any graph H with |V (H)| ≤ r we
have src(Kr +H) = 
 |V (H)|√r �. This generalizes the src of complete bipartite graph.

As a side note, Theorem 2.3 has the following corollary.

Corollary 2.4 For any graph G, the following holds.

max

{
β0(G

2),
|V (G)|
ω(G2)

}
≤ max{Δ(G), i(G)}.

Proof: Take H = K1 in Theorem 2.3. �
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