AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 69(2) (2017), Pages 184-196

Equitable block colourings for 8-cycle systems

PAOLA BONACINI LuciA MARINO

Unwversita degli Studi di Catania
Dipartimento di Matematica e Informatica
Viale A. Doria 6, 95125 Catania
Italy
bonacini@dmi.unict.it Imarino@dmi.unict.it

Abstract

Let X = (X, B) be an 8-cycle system of order v = 14-16k. A c-colouring of
type s is a map ¢: B — C, with C set of colours, so that exactly ¢ colours
are used and for every vertex x all the blocks containing x are coloured
with exactly s colours. Let 8k = gqs+r, with ¢, > 0. The colouring ¢ is
called equitable if for every vertex x the set of the 8% blocks containing
x is partitioned into r colour classes of cardinality ¢ + 1 and s — r colour
classes of cardinality q. This paper deals with a study of bicolourings,
tricolourings and quadricolourings with s = 2, 3, 4.

1 Introduction

Block colourings of 4-cycle systems have been introduced and studied in [3, 4, 7, 8],
and in [1, 2] block colourings were also studied for 6-cycle systems and systems of
4-kites. The purpose of this paper is to study block colourings of 8-cycle systems.

Let K, be the complete simple graph on v vertices. The graph on vertex set
{ai,az,...,a;} with edge set {{a1,ax},{a;,a;i1} | 1 < i < k} is called a k-cycle,
and it is denoted by (aq,as,...,ar). An n-cycle system of order v, briefly nC'S(v),
is a pair X = (X, B), where X is the set of vertices of K, and B is a set of n-cycles,
called blocks, that partitions the edges of K.

A colouring of an nC'S(v) ¥ = (X, B) is a mapping ¢: B — C, where C is a set
of colours. A c-colouring is a colouring where ¢ colours are used. The set of blocks
coloured with a colour of C is a colour class. A c-colouring of type s is a colouring in
which, for every vertex x, all of the blocks containing = are coloured with s colours.

Let ¥ = (X, B) be an nCS(v), let ¢: B — C be a c-colouring of type s, and let

”;1 = qs+r with ¢ > 0 and 0 < r < 5. Each vertex of an nCS(v) is contained
in ”;21 blocks. The mapping ¢ is equitable if for every vertex x the set of the ”gl
blocks containing z is partitioned into r colour classes of cardinality ¢ +1 and s —r
colour classes of cardinality q. A bicolouring, tricolouring or quadricolouring is an
equitable colouring of type 2, 3 or 4, respectively.
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The colour spectrum of ¥ = (X, B) is the set:

QM (2) = {c | there exists a c-block-colouring of type s of ¥}.

s

The focus of our study is the set:

() = [JarE)

= {c | there exists a c-block-colouring of type s of some nC'S(v) £},

where X varies in the set of all the nC'S(v).

The lower s-chromatic indez is defined as:
X{(Z) = min QY ()
and the upper s-chromatic index is
T(S) = max Q0 (%),

If an)(E) = (), then we say that ¥ is uncolourable.

In the same way we define
™ (v) = min QW (v) and Y™ (v) = max Q™ (v).

Block colourings for s = 2, s = 3 and s = 4 of 4C'S have been studied in [3, 7, §].
The problem arose as a consequence of colourings of Steiner systems studied in
6, 9, 10, 15].

This paper deals with nC'S of odd order v, with n even. In Section 2 we will
look more closely at bicolourings with v = 2kn + 1, and we completely give the

spectrum in such a case. In particular, the complete spectrum of bicolourings for
8C'S is shown. The following result is known (see [11] and [5, p. 374]):

Theorem 1.1. There exists an 8C'S(v) if and only if v =1+ 16k for some k € N.

In Sections 3, 4 and 5 the block colourings for 8C'S with s = 3 and s = 4 are
studied.

From now on, we construct 8-cycle systems from difference methods. This means
that we fix the vertex set Z,, and define a base block B = (a1, as, as, a4, as, ag, ar, ag);
its translates will be all the blocks of type B + i = (a1 + i,as + i,a3 + i,a4 +
i,as + i,a¢ + i,a7 + i,ag + 1), for every ¢ € Z,. Then, given z,y € X, z # vy,
the edge {z,y} will belong to one of the blocks B + i for some i if and only if
|z —y| € {la; — a;41]|: i =1,...,8}, where the indices are taken modulo 8.

2 Bicolourings

This section deals with the study of block colourings of type 2 for n-cycle systems,
where n is even. It begins by determining an upper bound on the number of colours
used in such colourings.
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Theorem 2.1. Let X = (V,B) be an nCS(2kn+1), withn € N, n even, and k € N,
and let ¢: B — C' be a c-bicolouring of . Then c < 3.

Proof. Let |C] = ¢ and let v € C. Any element v € V is incident with kn blocks,
and if it is incident with blocks colored ~, then it must be incident with precisely "“2—”
blocks colored . This implies that there are at least kn + 1 vertices incident with
blocks colored ~. Thus

(14 kn) < 2(1 4+ 2kn),

so that ¢ < 3. I

In this section we completely determine the colour spectrum of bicolourings for
nCS(v), with v = 2kn + 1. In order to do this, the following lemma must first
be proven. Given a graph G = (V| E) and given two disjoint sets X, Y C V| let
eq(X,Y) denote the number of edges in G incident to one vertex in X and one in Y.

Lemma 2.2. Let C,, be a cycle of length m whose vertices belong to two disjoint
sets X and Y. Then ec,, (X,Y) is even.

Proof. The statement is proven by induction on m. If m = 3, it is trivial.

So let m > 4. If ec, (X,Y) = 0, then the statement is proved. Suppose that
{1, 22} is an edge of C), so that =1 € X and z, € Y. If C,, = (21, 22,...,Tp), let
C = (x1,23...,%my). So C has length m — 1 and

E(C) = E(Cp)U{{z, 23t} \ {{z1, 22}, {72, 23} }.

By induction on m we can say that ec(X,Y) is even. At this point there are two
possibilities. If x3 € X, theneg, (X,Y) =ec(X,Y)+2. Ifz3 € Y, theneg, (X,Y) =
ec(X,Y). Since ec(X,Y) is even, the statement is proven. O

We can now formulate our main results of this section.

Theorem 2.3. If k is odd, then Q" (2kn + 1) = 0.

Proof. Let ¥ = (V,B) be an nCS(v), where v = 2kn + 1, and let ¢: B — C be a
2-bicolouring of . Let v € C' and let B, be the set of blocks of B colored . Then
any vertex of V' belongs to %” blocks of B,. Thus

kn
Voo vk
B|="2"2_"F%
|'7| 2

n

Since k is odd, we get a contradiction.

Now suppose that ¥ = (V, B) is an nC'S(v), where v = 2kn+1, and let ¢: B — C
be a 3-bicolouring of . In this case we proceed as in [7, Lemma 2.1]. We can assume
that C' = {1,2,3} and let X denote the set of vertices incident with blocks of colour
1 and 2, and Y denote the set of vertices incident with blocks of colour 1 and 3, and
Z denote the set of vertices incident with blocks of colour 2 and 3. Let z = |X]|,

y=1|Y|and z = |Z|.
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We note that these sets are pairwise disjoint and that in each block there are
vertices belonging to at most two of the sets X, Y and Z. Moreover, by Lemma
2.2 a block cannot contain an odd number of edges having vertices incident to two
different sets. This implies that the products xy, rz and yz are even. It follows that
among x, y and z at most one is odd. However, since x + y + 2z = v, one of them is
odd, while the others are even. Since

Bee+y)  k@+y)

B = -2 =
Bl n 2 7
Byl = kn Az +2) _klz+2)
2 n 9 )
|B | _ l%n'(y"i_z) _ k(y+z)
3 ] 92 )
we obtain a contradiction, because k is odd. This shows that 3 ¢ Q(zn)(le +1) and
so O (2kn + 1) = () by Theorem 2.1. 0O

Now let us recall two results:

Theorem 2.4 ([11, 13],[5, p.382]). For any n € N, n even, and k € N, there exists
a cyclic decomposition of Kogni1 into n-cycles.

Theorem 2.5 ([14, Theorem B|). The complete bipartite graph K, can be decom-
posed into 2k-cycles if and only if m and n are even, m > k, n > k and 2k divides
mn.

Theorem 2.4 and Theorem 2.5 are used to prove the following:
Theorem 2.6. If k and n are even, then Q(Qn)(Qk:n +1) =1{2,3}.

Proof. Let V' = Zogp1. From Theorem 2.4, let us consider a cyclic decomposition
of the complete graph over Zog,+1 with base blocks A; for i € {1,...,k}. If kK = 2h,
assign colour 1 to the blocks A; and all of their translated forms for i € {1,... h}.
Also assign colour 2 to the blocks A; and all their translated forms for i € {h +
1,...,2h}. Let B be the set of all these blocks; then ¥ = (Zogy 11, B) is an nC'S(2kn—+
1) and the previous assignment determines a 2-bicolouring of ¥. In particular, any
vertex is contained in 2hAn blocks, An of them colored 1 and hn colored 2.

We now prove that 3 € Q(zn)(Qk:n +1). Let k = 2h and consider two disjoint sets

A and B, with |A| = |B| = 2hn, and a vertex co ¢ AU B. By Theorem 2.4 let us

consider two nC'S(2hn+1), £; = (AU{oo}, By) and ¥y = (BU{oo}, By). According

to Theorem 2.5 it is possible to take an nC'S 33 = (K4 g, Bs) on the bipartite graph

Kusp. Then ¥ = (AU B U {o0}, By UBy U Bs) is an nCS(2kn + 1). By assigning
colour 7 to the blocks of B;, for i = 1,2, 3, we get a 3-bicolouring of .

This implies that 3 € Q(zn)(le +1) and by Theorem 2.1 the statement is proved.

O

Note that if n = 2" for some > 2 then an nC'S(v) exists if and only if v = 2kn+1
for some k > 1 (see [5, p.374]). Thus the previous results provide the complete
spectrum of nC'S in this particular case.
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3 Lower 3-chromatic index for an 8C'S

In this section we treat an 8C'S, and only in the case s = 3 since the case s = 2 has
been covered completely in Section 2.

Theorem 3.1. X3 (16k +1) =3 for any k > 1.

In the proof of Theorem 3.1 we need to distinguish between the cases k = 0,1, 2
mod 3. Theorem 3.1 will be proven for k =1 and k = 2.

Theorem 3.2. ng)(17) =3.
Proof. Let us consider the following blocks on Z7:

=(0,1,3,5,8,6,4,2)
=(0,3,6,10,9,5,1,4)
=(0,5,7,4,3,2,1,6)
= (11,14, 13,16,12,9, 15,8)
= (9,13,12,7,14, 15,11, 16)
= (7,8,16,14, 10, 15,12, 11)
=(0,7,1,12,2,11,3,8)
=1(0,9,1,8,2,7,3,10)
=(0,11,1,10,2,9,3,12)
Aw = (4,13,5,16,7,15,6,14)
Ay = (4,15,5,14,8,13,6, 16)
A = (9,11,13,15, 16, 10, 12, 14)
Az = (0,13,1,16,3,15,2, 14)
Ay = (0,15,1,14,3,13, 2, 16)
A = (2,5,4,8,10,13,7,6)
A = (4,9,8,12,6,11,5, 10)
Ay = (4,11,10,7,9,6,5,12).

The system ¥ = (Zy7, \~, A;) is an 8C'S of order 17. Let ¢: |J A; — {1,2,3} be the
colouring assigning the colour 1 to the blocks A;, fori =1,...,6, the colour 2 to the
blocks A;, for : = 7,...,12 and the colour 3 to the blocks A; for i =13,...,17. Then
¢ is a 3-tricolouring of ¥. In particular, all vertices occur in exactly three blocks
coloured 1, except for vertices 2, 10 and 13, which belong to two blocks colored 1; all
vertices occur in exactly three blocks coloured 2, except for vertices 4, 5 and 6, which
belong to two blocks colored 2; the vertices 0,1,3,7,8,9,11,12, 14,15, 16 occur in
exactly two blocks colored 3 while the remaining ones belong to three blocks colored
3. This proves the statement. O

Let us now consider the case k = 2.
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Theorem 3.3. ) (33) = 3.
Proof. On the set X = {x;: € Zy1, i = 1,2, 3}, consider the following blocks:

AZ' - (Oza 11'7 31'7 6i7 21'7 71'7 1i+17 1i+2)

Bi = (0i41, Liza, 10541, 2542, 911, Tia, Liv1, 8ita),

where we take indices modulo 3, so that x4 := x; and x5 := x5 for any =z € Zq;.
Let B; be the set of blocks A; and B; and their translated forms, for any i = 1,2, 3,
where 7 is kept fixed. So this means that

Ait+ =0 U +1)i (G+3)i (G +6)i, (54 2) G+ Ty (U + Digas (7 + Dig2)

and

Bi+j=
(Jiv1, (G + Diga, (3 +10)ig1, (5 + 2)iv2, (G +9)ix1, (7 + Vige, (7 4+ Digr, (7 + 8)iga),

for any j € Zqy;. Then ¥ = (X, B; U By U Bs) is an 8C'S of order 33. Moreover,
the colouring ¢: By U By U By — {1,2,3} which assigns colour i to the blocks of B;
is a 3-tricolouring of ». The statement is proven because for a fixed ¢+ = 1, 2,3 the
vertices 0, ..., 10; belong to six blocks colored 7, while the other vertices 0;, ..., 10,,
with j # i, belong to five blocks colored 1. O

Let us now proceed to the proof of Theorem 3.1.

Proof of Theorem 3.1. We distinguish three cases.

(1) Let k=0 mod 3, so that k = 3h for some h > 1. If v = 16k + 1 = 48h + 1 we
need to consider three pairwise disjoints sets Ay, Ay, Az so that |A;| = 16h for any
i, and take oo ¢ A; for any i. According to Theorem 1.1 it is possible to consider
three 8C'S 3; = (A; U {0}, B;) for i = 1,2,3. By Theorem 2.5 we can decompose
the complete bipartite graph K4, a, into 8-cycles Cj, i = 1,...,32h? the complete
bipartite graph Ka, 4, into 8-cycles D;, i = 1,...,32h?% and the complete bipartite
graph K, 4, into 8-cycles E;, i = 1,...,32h% If

32h2
B:BluBQUB:SU U(CzUDzUEz)a

i=1

then the system ¥ = (A; U Ay U A3 U {o0}, B) is an 8C'S of order v. Let us define a
colouring assigning the colour 1 to the blocks of B; and to the blocks Fj;, the colour
2 to the blocks of By and to the blocks of D;, and the colour 3 to the blocks of Bs
and to the blocks C;. Thus this is a 3-tricolouring of ¥, because any element of
Ay U Ay U Az U {oo} belongs to precisely 8h blocks colored i, for i = 1,2, 3.

(2) Let k=1 mod 3, so that £ = 3h + 1 for some h > 0, and let v = 48h + 17.
According to Theorem 3.2 it is possible to suppose that h > 1. Let us consider
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pairwise disjoint sets X7, Xo, X3, Y7, Y5, Y3, i with |X3| = 4, |Xs| = |X3| = 6,
|Y1] = |Ya| = |Y3| = 16h, and consider an element oo ¢ |JX; UJY].

By Theorem 3.2 we can consider an 8C'S ¥ = (X; U Xo U X3 U {oo}, By) with a
3-tricolouring. The blocks of By are divided into three subsets C;, Ca, C3, where the
blocks of C; are colored i.

Similarly, as seen in the case k = 0 mod 3, it is possible to consider an 8C'S
Yo = (YUY, UY3U {oo}, By) with a 3-tricolouring. The blocks of B are divided
inito three subsets Dy, Dy, D3, where the blocks of D; are colored i. Moreover, by
Theorem 2.5 the bipartite graphs KX, y,, for any 7,7 = 1,2, 3, can be decomposed
into a family &;; of 8-cycles.

Now let us consider the system

3 3 3 3
X = (UXZUU}/]U{OO},UCZUUD]U U EU)
=1 j=1 i=1 j=1

4,5=1,2,3

It easily follows that X is an 8C'S of order v = 48h + 17. We can determine a
3-tricolouring of ¥ in the following way:

e assign the colour 1 to the blocks of Ci, Dy, &1, €22 and Es3;
e assign the colour 2 to the blocks of Cy, Dy, &2, €23 and &3 1;
e assign the colour 3 to the blocks of C3, Ds, &3, €21 and &3 5.

In particular, any vertex is contained in 24h+ 8 blocks, 8h+ 3 colored with one color,
another 8h + 3 colored with a second color and the remaining 8h + 2 colored with
the third color. This proves the statement in the case K =1 mod 3.

(8) Let k=2 mod 3, so that k = 3h + 2 for some h > 0, and let v = 48h + 33. By
Theorem 3.3 it is possible to suppose that A > 1. Let us consider pairwise disjoint sets
Xy, Xo, X3, Y1, Yo, Vs, with | X;| = 12, | Xs| = | X3] = 10, |Yi| = |Y3| = |Y3| = 16h,
and consider an element co ¢ |JX; U Y.

According to Theorem 3.3, we can consider an 8C'S ¥ = (X;UX,UX3U{o0}, By)
with a 3-tricolouring. The blocks of B; are divided into three subsets Cy, Co, C3, where
the blocks of C; are colored with the colour .

Similarly, as seen in the case & = 0 mod 3, we can consider an 8CS Y, =
(Y1UY2UY3U{oo}, By) with a 3-tricolouring. The blocks of B, are divided into three
subsets Dy, Do, D3, where the blocks of D; are colored i. Moreover, by Theorem 2.5
we can decompose the bipartite graphs K, y;, for any ¢, 7 = 1,2, 3, into a family &;
of 8-cycles.

Now let us consider the system

3 3 3 3
X = (UXZUU}/]U{OO},UCZUUD]U U EU)
=1 j=1 =1 j=1

4,7=1,2,3

It easily follows that X is an 8C'S of order v = 48h + 33. We can determine a
3-tricolouring of ¥ in the following way:
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e assign the colour 1 to the blocks of Ci, Dy, &1, €22 and Es3;
e assign the colour 2 to the blocks of Cy, Dy, &2, €23 and &3 1;

e assign the colour 3 to the blocks of C3, Ds, &1 3, €21 and E35.

In particular, any vertex is contained in 24h + 16 blocks, 8h + 6 colored with one
color, another 8h + 5 colored with a second color and the final 8h + 5 colored with
the third color. The result is now proved in the case k =2 mod 3. O

4 Upper 3-chromatic index

This section indicates upper bounds for the upper 3-chromatic index. Our aim is to
find its exact value in the case v = 16k + 1 and k£ = 0 mod 3.

Let ¥ = (X, B) be an 8C'S of order v and suppose that a c-colouring of type s
of X is given. Let us denote by B; the set of blocks colored i and by X; the set of
vertices belonging to blocks of B;.

Lemma 4.1. Let ¥ = (X, B) be an 8CS of order v with a c-tricolouring. Then:

1. ¢ <8 if k=0 mod 3;
2. ¢c<9i4fk=1,2 mod 3, with k > 1;
3. c<10ifk=1.

Proof. Let v =16k + 1. Then any x € X belongs to 8k blocks. Then, following the
notation, |X;| > 2[%| + 1. So we must have

(22 1) < st .

This inequality implies the lemma. O

Using the previous notation we need the following technical lemma, which will
determine an upper bound for Ygs)(lfik + 1) for any k. The idea comes from [8,
Lemma 5.3].

Lemma 4.2. Let ¥ = (X, B) be an 8C'S of order v with a c-colouring of type s, for
some s > 2. Then
8k
| X; UX;| >4 {—J +1
S

for any 1 # j.
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Proof. Let v = 16k + 1, for some k > 1. Then |X;| > 2[%| 4+ 1 for any i. Let
| Xi| = 2| %] + 1+ for some k; > 0 and for any i.

Let x € X; N X; for ¢ # j. Let us suppose that y € X; N X; for y # x. Either y
is not adjacent to = in the blocks of B; (which are at most k;) or in the blocks of B;
(which are at most k;). This means that |X; N X;| < k; +k; + 1. So

k k
IX;UX;| = 4{8 J+2+k thi— XN X > 4{8 J+1.
S

It is now possible to prove the first of the two main results of this section.

Theorem 4.3. X (161{: +1) <7 forany k>2 and X5 )(17) < 6.

Proof. Let us use the fixed notation. Given v = 16k + 1, we consider an 8C'S
¥ = (X, B) of order v with a c-tricolouring.

Now let v = 17, so that k = 1. Clearly we must have |X;| > 8 for any i. So

51=3-|X| = Z|X|>8c

This implies that ¢ < 6 and so X3 (17) < 6. We can now suppose that £ > 2. By
Lemma 4.2,

8k
X, UX;| >4 ng +1,

for any ¢ # j. Since any vertex belongs to three of the sets Xi,...,X., we get

()= () Jomen=gmoni= () (4[5 +1)

i#j
and so . -
(3¢ — 6)(16k + 1) > C(C; ) (4 {?J v 1) . (1)
Let ¢ = 9. Then by (1) we get:
112k — 5 > 48 ﬁ(ﬂ > 18 =2 ek 27 <0

The only possibility is that k£ = 1, so that |B| = 17. However, since ¢ = 9, we would
have |B;| = 1 for some i, which is not possible, because we should have |B;| > 2 for
any ¢. Together with Lemma 4.1 this proves that ¢ < 8 for any k. It must be noted
that if ¢ = 8 a contradiction is obtained, impling that we must have ¢ < 7.
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Let us suppose ¢ = 8. By (1) we have

9(16k +1) > 14 (4 {%J + 1)

—2
14(481{3 +1),

which implies 16k —97 < 0.

v

It is clear that the only possibility is that £ < 6.

If £ = 2, then any z € X belongs to 16 blocks, six coloured with a first colour, five
coloured with a second colour and five coloured with a third colour. So |X;| = 11+ k;
forany ¢+ =1,...,8, and

8 8
3-33 = > |[Xi|=> k=1L
i=1 i=1
If k; = 0 for some 7, then the blocks of B; are a decomposition of the complete graph
on X; in 8-cycles. However, this is not possible, because |B;| = % ¢ N. Then k; =1
for at least one 4, so that |X;| = 12. In this case any element of X; must belong to
five blocks of B;. Therefore this is not possible, because |B;| = 222 ¢ N. So k # 2.

If £ =3,5,6, by (1) and by the fact that ¢ = 8, we obtain a contradiction.
If k£ =4, then |X| = 65 and any x € X belongs to 32 blocks, 11 coloured with

a first colour, 11 coloured with a second colour and 10 coloured with a third colour.
We know that | X;| = 21 + k;, where k; > 0, for any i and moreover:

8
3-65 = Y |X|
=1

8
which implies Zkl = 2T (2)
i=1

Let us denote by Y; the set of elements of X; belonging to 11 blocks of B; and by Z;
the set of of elements of X; belonging to 10 blocks of B;. For any i, 7, with ¢ # j, we
have
XiNnX; = YinY,))u(Y;NZ;)U(Z;NY;).
Taking any x € X; N X}, either x belongs to Y; or to Yj. It is possible to suppose
that x € Y;, which implies that k; > 2. Taking any y € X; N X, y # x, either {z,y}
does not belong to any block in B; or does not belong to any block in B;. So y either
is one of the k; — 2 elements of X; not adjacent to x in any of the blocks of B; or is
one of the k; elements of X; not adjacent to x in any of the blocks of B;. This shows
that
IXiNX;| < ki+k;j—1,

for any i, 7, with ¢ # j. Therefore

IXI= Y 1xinX < Y (kitk—1)

1<i<j<8 1<i<j<8
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which implies that
8
8
195 < — 7y k.
<)
By (2) we obtain a contradiction, and this proves the theorem. O

In the next result we determine the exact value of Xég)(lfik + 1) in the case that
k=0 mod 3.

Theorem 4.4. Yy (16k +1) =7 for any k=0 mod 3.

Proof. Let k = 3h for some h > 1. Then, if v = 16k + 1 = 48h + 1, let us consider
six pairwise disjoints sets A;, for i = 1,...,6, so that |A;] = 8h for any 4, and
take oo ¢ A; for any i. According to Theorem 1.1 this can be considered as three
8CS, ¥; = (Agyj_1 U Ay; U {0}, B;) for j = 1,2,3. By [12, Theorem 2.15] it is
possible to decompose the complete equipartite graphs K4, a, 4, into 8-cycles Cj,
i =1,...,24h% K, a, .4, into 8-cycles D;, i = 1,...,24h% Ka, a, 4, into 8-cycles
E;,i=1,...,24h% and Ka, 4, a, into 8-cycles F;, i = 1,...,24h% 1If:

B = 81UBQU83UU(CZUDZUEzUE)7

then the system ¥ = (J7_, A; U {oco}, B) is an 8C'S of order .

Let ¢: B — {1,...,7} be the colouring assigning the colour 1 to the blocks of
B, the colour 2 to the blocks of By, the colour 3 to the blocks of Bs, the color 4 to
the blocks C}, the colour 5 to the blocks D;, the colour 6 to the blocks F;, and the
colour 7 to the blocks F;. Then it follows easily that ¢ is 7-tricolouring of >.. O

5 Quadricolourings for 8C'S

This section deals with quadricolourings, determining the exact value of Xfls)(16k+ 1)
in the case that K =0 mod 4 and giving an upper bound for XELS)(lfik +1).
By using the previous notation let us consider an 8C'S, ¥ = (X, B) of order v,

with a c-colouring of type s. We will denote by B; the set of blocks colored ¢ and by
X; the set of vertices belonging to blocks of B;.

Proposition 5.1. Y\ (16k + 1) < 14 for k > 6, and Y\ (16k + 1) < 13 for k < 5.

Proof. Let ¥ = (X, B) be an 8C'S of order v = 16k + 1 and let ¢: B — {1,...,¢} be
a colouring. Then any z € X belongs to 8k blocks and |X;| > 4k + 1. It is easy to
check that
c(dk +1) < 4(16k+1).
This implies that ¢ < 15. Since | X;| = 4k + 1 + k; for any i and for some k; > 0, we
have . .
41X| = Z | X;|, which implies Z k; = 64k + 4 — 4ck — c.

i=1 i=1
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Similarly, as in the proof of Lemma 4.2 we obtain

which implies
c C
6)X| = Z X, NX,| < (2) +(c—1) Zk:
1<J i=1
which implies

96k +6 < (;) + (¢ — 1)(64k + 4 — 4ck — c). (3)

Let us consider ¢ = 15. Then by (3) it can be noted that 40k + 55 < 0, which is not
possible. It follows that ¢ < 14. We now suppose that ¢ = 14; then by (3) we find
that 8k > 45, so that £ > 6. This proves the statement. O

Theorem 5.2. Xf)(lfik + 1) =4 if and only if k=0 mod 4.

Proof. Let ¥ = (X, B) be an 8C'S of order v with a 4-quadricolouring. Then X; = X

and
B = | X3 -2k k(16k+1)
v 8 N 4

for any ¢. Then we must have £k =0 mod 4.

Let us now consider £k = 0 mod 4, so that £k = 4h for some h > 0. If v =
16k + 1 = 64h + 1, let us consider, on Z,, the following blocks:

A; = (0,i+4h,48h + 1,i+ 12h,32h + 1,i + 16h, 28h + 1,1)

for : = 1,...,4h. Let B be the set of all the blocks A; and their translated forms.
Then ¥ = (Z,,B) is an 8CS of order v. Let ¢: B — {1,2,3,4} be the colouring
assigned in the following way:

e the blocks A;, for i = 1,...,h, and all their translated forms are colored 1;

e the blocks A;, for i = h+1,...,2h, and all their translated forms are colored
2;

e the blocks A;, for i = 2h+1,...,3h, and all their translated forms are colored
3;

e the blocks A;, for t = 3h+1,...,4h, and all their translated forms are colored
4.

It follows immediately that this is a 4-quadricolouring of ¥ and it shows that 4 €
Qf)(lfik +1) for k=0 mod 4. O
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