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Abstract

The coprime graph of a group G, denoted by ΓG, is a graph whose vertices
are elements of G and two distinct vertices x and y are adjacent if and
only if (|x|, |y|) = 1. In this paper we discuss some basic properties of
ΓG and try to classify all finite groups whose coprime graphs are toroidal
and projective.

1 Introduction

In order to get a better understanding of a given algebraic structure A, one can
associate to it a graph G and study an interplay of algebraic properties of A and
combinatorial properties of G. In particular there are many ways to associate a
graph to a group. For example, commuting graph of groups, non-commuting graph
of groups, non-cyclic graph of groups and generating graph of groups have attracted
many researchers towards this dimension. One can refer to [1, 2, 3, 6, 14, 15] for such
studies. Let G be a finite group. One can associate a graph to G in many different
ways. Since the order of an element is one of the most basic concepts of group theory,
X. Ma et al. [13] defined the coprime graph of a group G, denoted by ΓG, as follows:
take G as the vertices of ΓG and two distinct vertices x and y are adjacent if and
only if (|x|, |y|) = 1. In this paper, we discuss some basic properties of ΓG and try
to classify all finite groups whose coprime graphs are toroidal and projective.

Now recall some definitions of graph theory which are necessary in this paper.
A graph G in which each pair of distinct vertices is joined by an edge is called a
complete graph. We use Kn to denote the complete graph with n vertices. A subset
Ω of V (G) is called a clique if the induced subgraph of Ω is complete. The order of
the largest clique in G is its clique number, which is denoted by ω(G). The chromatic
number of G, χ(G), is the minimum k for which there is an assignment of k colors,
1, . . . k, to the vertices of G such that adjacent vertices have different colors. An
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r-partite graph is one whose vertex set can be partitioned into r subsets so that no
edge has both ends in any one subset. A complete r-partite graph is one in which
each vertex is joined to every vertex that is not in the same subset. A complete
bipartite graph (2-partite graph) with part sizes m and n is denoted by Km,n. If
G = K1,n where n ≥ 1, then G is a star graph. A split graph is a simple graph in
which the vertices can be partitioned into a clique and an independent set. A graph
G is said to be unicycle graph if it contains a unique cycle. A tree is a connected
acyclic graph. A graph is outerplanar if it can be embedded into the plane so that
all its vertices lie on the same face.

The genus of a graph is the minimal integer t such that the graph can be drawn
without crossing itself on a sphere with t handles (that is an oriented surface of genus
t). Thus a planar graph has genus zero, because it can be drawn on a sphere without
self-crossing. A genus one graph is called a toroidal graph. In other words, a graph
G is toroidal if it can be embedded on a torus, this means that, the graph’s vertices
can be placed on a torus such that no edges cross. Usually it is assumed that G is
also non-planar. A subdivision of a graph is any graph that can be obtained from the
original graph by replacing edges by paths. A remarkable characterization of planar
graphs was given by Kuratowski in 1930. Kuratowski’s Theorem says that a graph
G is planar if and only if it contains no subdivision of K5 or K3,3.

Let G be a group and N and H be subgroups of G with N normal (but H is not
necessarily normal in G) and N ∩H = {e} and every g ∈ G can be written uniquely
as g = nh, where n ∈ N, h ∈ H . Define φ : H → G

N
, by φ(h) = h = hN , which

is an isomorphism. Then one can construct G = N �φ H a new group called the
semidirect product of N and H . Let π(n) be the set of prime divisors of a natural
number n, and denote π(|G|) by π(G). Throughout this paper, we assume that G is
a finite group. We denote the group of integers addition modulo n by Zn. For basic
definitions on groups, one may refer to [9].

In this paper, we will prove the following main results.

Theorem 1.1. Let G be a finite group. Then γ(ΓG) = 1 if and only if G is iso-
morphic to one of the following groups: S3, Z2 × Z6, Z12, Z15, Z20, Z2 × Z10, or
Z21.

Theorem 1.2. Let G be a finite group. Then γ(ΓG) = 1 if and only if G is isomor-
phic to S3, Z12, Z6 × Z2, or Z15.

2 Some basic properties of ΓG

In this section, we study some fundamental properties of the coprime graph.

Remark 2.1. Let G be a p-group, where p is prime. Then for any two non-identity
elements x, y ∈ G, (|x|, |y|) > 1 and so the subgraph induced by G − {e} in ΓG is
isomorphic to K |G|−1. Hence ΓG

∼= K1,|G|−1.

The characterization for split graphs was given by S. Földers et al. [11]. Using
this characterization, we charcterize all finite groups G whose ΓG is a split graph.
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Theorem 2.2. [11, Theorem 6.3] Let G be a connected graph. Then G is a split
graph if and only if G contains no induced subgraph isomorphic to 2K2, C4, C5.

Theorem 2.3. Let G be a finite group. Then ΓG is a split graph if and only if G is
a p-group or G ∼= Z2 ×Q where Q is a q-group with q odd.

Proof. Assume that ΓG is a split graph. If G is a p-group, then clearly ΓG is a split
graph. Suppose G is not a p-group. Then |G| = pα1

1 pα2
2 · · · pαk

k where pi’s are distinct
primes, p1 < p2 < · · · < pk, k ≥ 2 and αi ≥ 1 for all i. Let Spi be the union of Sylow
pi-subgroups of G. If k ≥ 3, then every vertex in Sp2−{e} is adjacent to every vertex
in Sp3 − {e} and so ΓG contains C4 as a subgraph, a contradiction. Hence k = 2. If
|Sp1| − 1 ≥ 2, then every vertex in Sp1 − {e} is adjacent to every vertex in Sp2 − {e}
so that C4 as a induced subgraph of ΓG. Thus p

α1
1 − 1 ≤ |Sp1| − 1 < 2, pα1

1 = 2 and
so |G| = 2pα2

2 . Thus the Sylow 2-subgroup and Sylow p2-subgroup are normal and
hence G ∼= Z2 ×Q, where Q is a p2-group.

The converse is clear.

The following theorem is used in the subsequent theorem.

Theorem 2.4. [10] χ(ΓG) = ω(ΓG) = π(G) + 1.

Theorem 2.5. Let G be a finite group. Then ΓG is not a unicycle graph.

Proof. Assume that ΓG is unicycle. Clearly G is not a p-group. Therefore |G| =
pα1
1 pα2

2 · · · pαn
n , where p1, p2, . . . , pn are distinct prime integers, n ≥ 2, pi < pj for

i < j and αi ≥ 1 for i ∈ {1, 2, . . . , n}. Let ai be an element of order pi. Then ΓG

contains two cycles e− a1− a2− e and e− a1− a−1
2 − e, which is a contradiction.

Theorem 2.6. Let G be a finite group. Then ΓG is a tree if and only if G is
isomorphic to a p-group.

Proof. Assume that ΓG is a tree. Suppose G is not a p-group. Then at least two
prime integers divides |G|. By Theorem 2.4, ω(ΓG) ≥ 3 and so ΓG contains a cycle,
a contradiction. Thus G is isomorphic to a p-group.

Conversely, if G is a p-group, then ΓG
∼= K1,|G|−1 and hence ΓG is tree.

The following characterization of outerplanar graphs was given by Chartrand and
Harary [8]. Using this characterization, we charcterize all finite groups G whose ΓG

is outerplanar.

Theorem 2.7. [8] A graph G is outerplanar if and only if it contains no subdivision
of K4 or K2,3.

Theorem 2.8. Let G be a finite group. Then ΓG is outerplanar if and only if G is
a p-group or G ∼= Z6.
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Proof. Assume that ΓG is outerplanar. Suppose G is not a p-group. Let |G| =
pα1
1 pα2

2 · · · pαk
k , where pi’s are distinct primes with p1 < p2 < · · · < pk, k ≥ 2 and

αi ≥ 1. If k ≥ 3, then K2,3 is a subgraph of ΓG, a contradiction. Therefore k = 2.

Suppose αi > 1 for some i, let it be α1, then ΓG contains K2,3 as a subgraph, a
contradiction. Hence α1 = α2 = 1. If pi ≥ 5 for some i, then K2,3 is a subgraph
of ΓG, which is again a contradiction. Thus |G| = 6 and so G ∼= Z6 or S3. But
ΓS3

∼= K1,2,3, which is not possible. Thus G ∼= Z6.

0 2

4 3

1

5

Fig. 1: ΓZ6

Conversely, if G is a p-group or Z6, then ΓG is isomorphic to either K1,|G|−1 or
the graph as given in Fig. 1.

Lemma 2.9. Let G be a group of order pα1
1 pα2

2 · · ·pαk
k where pi’s are distinct prime

integers for i ∈ {1, . . . , k} and k ≥ 2, then ΓG has a subgraph isomorphic to
K1,p

α1
1 −1,p

α2
2 −1,...,p

αk
k −1.

Proof. Note that G has a Sylow pi-subgroup of order pαi
i for every i ∈ {1, 2, . . . , k}.

Also every element of Sylow pi-subgroup is adjacent to every element of Sylow pj-
subgroup for all i �= j, which completes the proof.

Lemma 2.10. Let G be a finite cyclic group and not a p-group. Then ΓG is the
union of Kφ(d1),φ(d2),...,φ(dk) where di’s are divisors of |G| and (di, dj) = 1 for all i �= j.

Proof. It is straight forward.

A subset S of a graph G is said to be an independent set if no two vertices in S
are adjacent. The independent number α(G) is the number of vertices in the largest
independent set in G.

Theorem 2.11. Let G be a group of order pα1
1 pα2

2 · · · pαn
n , where pi’s are distinct

primes, n ≥ 1. Then α(ΓG) ≥ max{|npi| : i = 1, . . . , n} where npi = {x ∈ G : pi||x|}.
Moreover if G is cyclic, then α(ΓG) = max{|npi| : i = 1, . . . , n}.

Proof. Consider the set npi = {x ∈ G : pi||x|}, 1 ≤ i ≤ n. Since (|x|, |y|) �= 1 for
every x, y ∈ npi , x and y are not adjacent in ΓG. Therefore npi’s are independent sets
of ΓG and by defintion of independent number, α(ΓG) ≥ max{|npi| : i = 1, . . . , n}.
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Remark 2.12. Let G = Z2 × Z2 × Z3 × Z5. Let S be the collection of set of all
x ∈ G such that |x| = 6, 10, 15 or 30. In ΓG, |np5| = 48, which is maximum. But
|S| = 50 > |np5|.

3 Proof of Theorem 1.1

The main goal of this section is to determine all finite groups G whose coprime graph
has genus one. Dorbidi [10] determine the finite groups G for which ΓG is planar.
The following observation proved by Dorbidi [10] is used frequently in this article
and hence given below.

Theorem 3.1. [10, Theorem 3.6] Let G be a finite group. Then ΓG is a planar graph
if and only if G is a p-group or G ∼= Z2 ×Q where Q is a q-group.

It is well known that any compact surface is either homeomorphic to a sphere,
or to a connected sum of g tori, or to a connected sum of k projective planes (see [12,
Theorem 5.1]). We denote by Sg the surface formed by a connected sum of g tori,
and by Nk the one formed by a connected sum of k projective planes. The number
g is called the genus of the surface Sg and k is called the crosscap of Nk. When
considering the orientability, the surfaces Sg and sphere are among the orientable
class and the surfaces Nk are among the non-orientable one.

A simple graph which can be embedded in Sg but not in Sg−1 is called a graph
of genus g. Similarly, if it can be embedded in Nk but not in Nk−1, then we call
it a graph of crosscap k. The notations γ(G) and γ(G) are denoted for the genus
and crosscap of a graph G, respectively. It is easy to see that γ(H) ≤ γ(G) and
γ(H) ≤ γ(G) for all subgraph H of G. Also a graph G is called planar if γ(G) = 0,
and it is called toroidal if γ(G) = 1.

For a rational number q, 	q
 is the first integer number greater or equal than q.
In the following lemma we bring some well-known formulas for genus of a graph (see
[5]).

Lemma 3.2. The following statements hold:
(i) γ(Kn) =

⌈
1
12
(n− 3)(n− 4)

⌉
if n ≥ 3;

(ii) γ(Km,n) =
⌈
1
4
(m− 2)(n− 2)

⌉
if m,n ≥ 2.

If G is a graph and V ′(G) = {x ∈ V (G) : deg(x) = 1}, then we use G′ for the
subgraph G − V ′ and call it the reduction of G. Then we can easily observe that
γ(G) = γ(G′).

Proof of Theorem 1.1. Assume that γ(ΓG) = 1. Then by Theorem 3.1, G is not a
p-group. Let |G| = pα1

1 pα2
2 · · · pαk

k , where pi’s are distinct primes with p1 < p2 < · · · <
pk, k ≥ 2 and αi ≥ 1. If k ≥ 4, then by Lemma 2.9, K1,1,2,4,6 is a subgraph of ΓG

and so by Lemma 3.2, γ(ΓG) > 2, which is a contradiction. Therefore k ≤ 3.
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Case 1. k = 2. Then |G| = pα1
1 pα2

2 .

Suppose |G| is an odd integer. If αi > 1 for some i, let it be α1, then by Lemma
2.9, K1,8,4 is a subgraph of ΓG and hence γ(ΓG) ≥ 3. Thus αi = 1 for i = 1, 2. If
pi > 7 for some i, then by Lemma 2.9, ΓG contains a subgraph isomorphic to K1,2,10

and hence γ(ΓG) ≥ 2, a contradiction. Therefore pi ≤ 7 and so |G| = 15, 21 or 35.

If |G| = 35, then by Lemma 2.9, K1,4,6 is a subgraph of ΓG, which is a contradic-
tion.

If |G| = 15, then G is isomorphic to Z15.

If |G| = 21, then G is isomorphic to Z21 or Z7 � Z3.

Suppose G ∼= Z7 � Z3 = 〈x, y | x3 = y7 = 1, x−1yx = y2〉. Consider the vertex
sets W ′

1 = {xiyj : 1 ≤ i < 3, 0 ≤ j < 7} and W ′
2 = 〈y〉 − {1}. Since the order of

every element in W ′
1 is 3 and the order of every element in W ′

2 is 7, every element in
W ′

1 is adjacent to every element in W ′
2 and so ΓG contains a subgraph isomorphic to

K14,6. Thus γ(ΓZ7�Z3) ≥ 12, which is a contradiction. Hence G ∼= Z21.

Suppose |G| is an even integer. Then |G| = 2α1pα2
2 . If α1 = 1, then the Sylow

2-subgroup is not normal because if it is normal then ΓG is planar. Therefore in this
case, consider the Sylow 2-subgroup is not normal.

If αi ≥ 3 for some i, then K3,7 is a subgraph of ΓG and so γ(ΓG) ≥ 2, which is a
contradiction and hence αi ≤ 2 for i = 1, 2. Suppose α1 = α2 = 2. Then by Lemma
2.9, ΓG contains K1,3,7 as a subgraph, a contradiction.

(i) Consider α1 = 2 and α2 = 1. Suppose that p2 ≥ 7. Then by Lemma 2.9, K1,3,6

is a subgraph of ΓG, a contradiction. Therefore p2 < 7 and so |G| = 12 or 20.

If |G| = 12, then G is isomorphic to one of the following groups:

Z3 � Z4, Z12, A4, D12, Z6 × Z2.

Suppose G ∼= Z3 � Z4 = 〈x, y | x4 = y3 = 1, x−1yx = y−1〉. Consider the vertex
sets V ′′

1 = {xiyj : 1 ≤ i ≤ 3, 0 ≤ j ≤ 2} − {x2y, x2y2} and V ′′
2 = 〈y〉. Since every

element of V ′′
1 is adjacent to every element of V ′′

2 , K3,7 is a subgraph of ΓG and so
γ(ΓG) ≥ 2.

Consider G ∼= A4. Since A4 contains 3 elements of order 2 and 8 elements of order
3, ΓA4 contains an induced subgraph isomorphic to K3,8 induced by these elements
and hence γ(ΓA4) ≥ 2.

Suppose G ∼= D12 = 〈r, s | r6 = s2 = 1, sr = r−1s〉. Let us consider the vertex
sets S1 = {r2, r4, 1} and S2 = {r3} ∪ {sri : 0 ≤ i ≤ 5}. Since every vertex of S1 is
adjacent to every vertex of S2, ΓG contains a subgraph isomorphic to K3,7 so that
γ(ΓD12) ≥ γ(K3,7) = 2. Hence G ∼= Z12 or Z6 × Z2.

If |G| = 20. Then G is isomorphic to one of the following groups:

Z5 �1 Z4, Z20, Z5 �2 Z4, D20, or Z10 × Z2.

If G ∼= Z5 �1 Z4 = 〈x, y | x4 = y5 = 1, x−1yx = y−1〉, then consider the vertex
sets A1 = (〈x〉 − {1}) ∪ {xy, xy2} and A2 = 〈y〉 − {1}. It is easily seen that A1 and
A2 induces a subgraph isomorphic to K4,5 and so γ(ΓZ5�1Z4) ≥ 2.
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If G ∼= Z5 �2 Z4 = 〈x, y | x4 = y5 = 1, x−1yx = y2〉, then ΓZ5�2Z4 contains a
subgraph isomorphic to K4,5 induced by the vertex sets A′

1 and A′
2 where A′

1 =
{x2yi : 0 ≤ i ≤ 4} and A′

2 = 〈y〉 − {1}. Therefore γ(ΓZ5�2Z4) ≥ 2.

Suppose G ∼= D20 = 〈r, s | r10 = s2 = 1, sr = r−1s〉. It is easily seen that ΓD12

is a subgraph of ΓD20 . Therefore γ(ΓG) ≥ 12, a contradiction. Hence G ∼= Z20 or
Z2 × Z10.

(ii) Suppose α1 = 1 and α2 = 2. Then clearly K3,8 is a subgraph of ΓG, a
contradiction.

(iii) Suppose α1 = α2 = 1. If pi ≥ 11, then ΓG contains a copy of K3,10. Hence
γ(ΓG) ≥ 2, a contradiction and so pi < 11 for i = 1, 2. In this case the possible
orders of G are 6, 10 and 14.

If |G| = 10, then G ∼= Z10 or D10. By Theorem 3.1, G � Z10. If G ∼= D10 =
〈r, s | r5 = s2 = 1, sr = r−1s〉, then K4,5 is a subgraph of ΓD10 induced by the vertex
sets S ′′

1 and S ′′
2 where S ′′

1 = 〈r〉 − {1} and S ′′
2 = {sri | 0 ≤ i ≤ 4}. Thus γ(ΓG) ≥ 2,

a contradiction.

If |G| = 14, then G ∼= Z14 or D14. By Theorem 3.1, ΓZ14 is planar. Suppose
G ∼= D14 = 〈r, s | r7 = s2 = 1, sr = r−1s〉. It is clear that ΓD10 is a subgraph of
ΓD14 . Therefore γ(ΓD14) ≥ 2, which is a contradiction. Hence G ∼= S3.

Case 2. Suppose k = 3. If pi ≥ 7 for some i, then by Lemma 2.9, ΓG contains a
induced subgraph isomorphic to K1,1,2,6. So γ(ΓG) ≥ 2 and hence pi ≤ 5 for all i.
Since pi < pj for i < j, |G| = 2α13α25α3 . If αi ≥ 2 for some i, let it be α1, then
ΓG contains K1,3,2,4 as a subgraph, a contradiction. Thus αi = 1 for all i and so
|G| = 30. Hence G is isomorphic to one of the following groups:

Z30, Z3 ×D10, D30, or Z5 × S3.

Consider G ∼= Z30. Since G is cyclic and by Lemma 2.10, 2K3,4 as a subgraph
of ΓG formed by the vertex sets {V1, V2} and {U1, U2} where V1 contains elements of
order 5, V2 contains elements of order 2 and 6 and U1 contains elements of order 10,
U2 contains elements of order 3 and identity. Hence γ(ΓG) ≥ 2.

Consider the graph ΓZ3×D10 . Since ΓD10 is a subgraph of ΓZ3×D10 , γ(ΓZ3×D10)
≥ γ(ΓD10) ≥ 2.

Suppose G ∼= D30. It is clear that ΓD10 is a subgraph of ΓD30 . Therefore γ(ΓG) ≥
2, a contradiction.

Consider the group G ∼= Z5 × S3. Let us consider the vertex sets W1 = {ai ∈ G :
|ai| = 15} and W2 = {bi ∈ G : |bi| = 2}. Then it is easily seen that |W1| = 8 and
|W2| = 3 and every vertex in W1 is adjacent to every vertex in W2. Thus {W1,W2}
induced K3,8 as a subgraph of ΓG and hence γ(ΓZ5×S3) ≥ 2, a contradiction.

Conversely, suppose G is isomorphic to one of the following groups: S3, Z2 ×Z6,
Z12, Z15, Z20, Z2 × Z10 and Z21.

If G ∼= Z15, then by Lemma 2.10, K3,4 is a subgraph of the graph induced by
the vertex sets V ′

1 whose elements of order 3 and identity and V ′
2 whose elements of
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order 5 and hence γ(ΓZ15) ≥ 1. Consider Γ′
Z15

= ΓZ15 − {x ∈ Z15 : |x| = 15}. Then
the embedding in Fig. 2 explicitly shows that γ(ΓZ15) = 1.
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Fig. 2: Embedding of Γ′
Z15
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Fig. 3: Embedding of Γ′
Z21
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Fig. 4: Embedding of Γ′
Z12
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Fig. 5: Embedding of Γ′
Z20

Suppose G ∼= Z21, then by Lemma 2.9, K1,2,6 is a subgraph of ΓG and hence
γ(ΓZ21) ≥ 1. Let Γ′

Z21
= ΓZ21 − {x ∈ Z21 : |x| = 21} and the embedding in Fig. 3

explicitly shows that γ(ΓZ15) = 1.

Consider the graph ΓZ12 . Since Z12 is cyclic, by Lemma 2.10, ΓZ12 contains a
subgraph isomorphic to K3,3 and hence γ(ΓZ12) ≥ 1. Here Γ′

Z12
= ΓZ12 − {x ∈ Z12 :

|x| = 12 or 6}. Then the embedding in Fig. 4 explicitly shows that γ(ΓZ12) = 1.

If G ∼= Z2×Z6, then it is easily seen that ΓZ12
∼= ΓZ2×Z6 . Therefore γ(ΓZ2×Z6) = 1.

Consider G ∼= Z20. Since G is cyclic, by Lemma 2.10, K4,4 as a subgraph induced
by the vertex sets Ω1 and Ω2 where Ω1 contains elements of order 5 and Ω2 contains
elements of order 2, 4 and identity. Hence γ(ΓG) ≥ 1. Consider Γ′

G = ΓG − {x ∈ G :
|x| = 20 or 10}. Then the embedding in Fig. 5 explicitly shows that γ(ΓG) = 1.

Suppose G ∼= Z2 × Z10, then it is easily seen that ΓZ20
∼= ΓZ2×Z10 . Hence

γ(ΓZ2×Z10) = 1.

If G ∼= S3, then ΓS3
∼= K1,2,3. Also ΓS3 is a subgraph of ΓZ12 , then γ(ΓS3) = 1.�
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4 Proof of Theorem 1.2.

The main goal of this section is to determine all finite groups G whose coprime graph
has crosscap one. The following two results about the crosscap formulae of a complete
graph and a complete bipartite graph are very useful in the proof of Theorem 1.2.

Lemma 4.1. [16] The following statements hold:

(i) γ(Kn) =

{⌈
1
6
(n− 3)(n− 4)

⌉
if n ≥ 3 and n �= 7;

3 if n = 7

(ii) γ(Km,n) =
⌈
1
2
(m− 2)(n− 2)

⌉
, where m,n ≥ 2.

By slight modifications in the proof of Theorem 1.1 with Lemma 4.1, and using
Figs. 6 and 7, one can prove Theorem 1.2.
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