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Abstract

A total dominating set of a graph G = (V, E') with no isolated vertex is a
set D C V(@) such that every vertex is adjacent to a vertex in D. A total
dominating set D of GG is a locating-total dominating set if for every pair
of distinct vertices w and v in V. — D, N(u) N D # N(v) N D. Let 74 (G)
be the minimum cardinality of a locating-total dominating set of G. We
show that for a nontrivial tree T of order n, with ¢ leaves and s support
vertices, v/(T) > (n+ £ — s+ 1)/2, improving some previous bounds
presented by Chellali [Discussiones Math. Graph Theory 28 (3) (2008),
383-392] and Chen and Young Sohn [Discrete Appl. Math. 159 (13-14)
(2011), 769-773]. We also characterize the extremal trees achieving the
above bound.

1 Introduction

For notation and terminology not given here we refer to [5]. Let G = (V(G), E(G))
be a graph. The open neighborhood of a vertex v € V(G) is Ng(v) = N(v) = {u €
V(G)|uv € E(G)}, and the closed neighborhood of v is Ng[v] = N[v] = N(v) U {v}.
The degree of v is the size of its open neighborhood. A vertex of degree one in
a tree is called a leaf and its neighbor is called a support vertex. We denote by
L(T) (respectively, S(7T')) the set of leaves (respectively, support vertices) of a tree
T. The number of leaves and support vertices of a tree T are ¢ = ¢(T) = |L(T)| and
s = s(T) = |S(T)|, respectively. The subgraph induced in a graph G by a subset
of vertices S is denoted by G[S]. A subset S is an independent set if G[S] has no
edge. A subset D of vertices of G is a dominating set if every vertex in V(G) — D
is adjacent to a vertex in D. A subset D of vertices of G is a total dominating set
if every vertex in V(@) is adjacent to a vertex in D. The total domination number,
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7 (G) of G, is the minimum cardinality of a total dominating set of G. The literature
on the subject of total domination has been surveyed in a recent book [8].

A total dominating set D of a graph G is called a locating-total dominating set
(LTDS) if for every pair of distinct vertices v and v in V. — D, N(u) N D # N(v)N
D. The locating-total domination number vF(G) is the minimum cardinality of a
locating-total dominating set of (G. Locating-total domination was introduced by
Haynes et al. [4] and further studies for example in [1, 2, 3, 6, 7].

Let F be the family of trees that can be obtained from r disjoint copies of P, and
P; by first adding » — 1 edges so that they are incident only with support vertices
and the resulting graph is connected, and then subdividing each new edge exactly
once.

Theorem 1.1 (Chellali [1]). If T is a tree of order n > 2 with { leaves and s support
vertices, then vt > 2(n+ € — s+ 1)/5, with equality if and only if T = Py or T € F.

Theorem 1.2 (Chellali [1]). If T is a tree of order n > 2, then vyt > (n+2 — s)/2.

Chen and Sohn [3] obtained a new family (» of trees and gave the following
theorem.

Theorem 1.3 (Chen and Sohn [3]). If T is a tree of order n > 3 with ¢ leaves and
s support vertices, then v > (n+ €+ 1)/2 — s, with equality if and only if T € (s.

In this paper, we show that for any tree T" of order n > 2, with ¢ leaves and s
support vertices, v} > %(n +¢/2 — s+ 1), and characterize trees achieving equality
for this bound. We thus improve Theorem 1.1 for trees with n > %6 +s—1, Theorem
1.2 for all trees, and Theorem 1.3 for trees with ¢ < 2s. The following is useful.

Lemma 1.4. Forn > 2, vE(P,) = v(P,) = [n/2| + [n/4] — [n/4].

2 Lower bound on the locating-total domination number of
a tree

Let ¢ = {P3}U{Py|k > 1}, S* be a v} (Py)-set for k > 1, and S = S(P3)U(U,~, 5%).
Let ¢ be the family of trees that can be obtained from t disjoint copies of trees in ¢
by first adding ¢t — 1 edges in such a way that they are incident only with vertices in
S and the resulting graph is connected, and then subdividing each new edge exactly
once.

Theorem 2.1. If T is a tree of order n > 2, with { leaves and s support vertices,
then £ > (n+£€/2 — s +1)/2, with equality if and only if T € €.

Proof. Let T be a tree of order n > 2 with ¢ leaves and s support vertices. Let D be
a yL(T)-set such that |L(T)ND| is minimum. Set B = {v ¢ D : |[N(v)ND| =1} and
C={vé¢ D||Nw)nD|>2}. Then V(T) = DUBUC. Let Q1 = D—(L(T)US(T))
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and Q2 = B—L(T'), and w be the number of components of T[D]. Then D = (L(T)N
D)USUQ,. By minimality of |L(T)N D], we may assume that |L(T)ND| = ¢—s and
|L(T)NB| = s. Let |[D, BUC]| be the number of edges with one end-point in D and
the other end-point in BU C. Clearly, |[D, BUC]| > |B| +2|C| = 2n — 2|D| — | B|.
On the other hand, |[D,BUC|| = n—1— |E(T[D])| — |E(T[Q2 U C])|. Thus we
obtain n — 1 — |E(T[D])| — |E(T[Q2 U C])| > 2n — 2|D| — | B].

Claim 1. |E(T[Q2UC))| > @, and the equality holds if and only if T'[Q, U C] =
|C| K7 + |Q2—2|K2 and C' is an independent set in T[Q2 U C].

Proof of Claim 1. Since deg(v) > 2 for any v € @)y, we have N(v) N (C'U Q) # 0.
Thus,

1
|[E(T[Q U C))| Z degrig,uc)(v) > 5 Z degrig,uc) (V) > —

UEQQUC VEQR2

Assume that equality holds. Then

Z degT QQUC] Z degT[QQUC]( ) T’

UEQQUC v€Q2

and thus degr(g,uc(v) = 0 for each vertex v € C and degy(g,uc(v) = 1 for each

vertex v € (Jy. Consequently, T[Qy U C] = ‘QQ‘K + |C|K; and C' is an independent
set in T'[Q2 U C]. The converse is obvious.

Claim 2. |E(T[D])| > %, the equality holds if and only if T[D] = %Kz.

Proof of Claim 2. Since D is a total dominating set of T, every component of T'[D]
has at least two vertices. Thus, w < % and so |E(T[D])| = |D|—w > |D|—% =12

2
Moreover, the equality |E(T[D])| = % holds if and only if T[D] = %KQ,

By Claims 1 and 2, 2n—2|D|—|B| < n—l—%—‘%—ﬂ. Thus, we have n+1—|B| <

@ - ‘Q—;‘ But |B| = |@Q2| + |B N L(T)|. Thus we obtain that
|Q2| |Q2| < 3|D|.

n+1-22 BALT)|=n+1- <=

It is obvious that each vertex of D is adjacent to at most one vertex of ()s. If
u € DN (L(T)U S(T)) then by the minimality of D, we have Q N N(u) = (). We
deduce that |Qs| < |D|—|(L(T)ND)US(T)| = |D|—¢. We now have n+1+£—s <
(2 + 1)|D|, and thus, v/(T) > 3(n+% — s+ 1), as desired.

We next prove the equality part. Assume that /' = %(n + g — s+ 1). Then
|E(T[QUC))| = |%—2|K2—|—|C’|K1, C is an independent set in T[Q,UC], [N (v)ND| = 2
for every vertex v € C, |Q2| = |D| — ¢, and T[D] = %Kg. Since |Q1] = |D| — ¢,
we obtain |Q1] = |Q2]. If |Q1] = |Q2| = 0, then D C L(T) U S(T). For every
component C” of T[D U B], since |Qs] = 0 and T'[D] = %Kg, we have v (C") = 2.
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Therefore ¢ = P3 or Py. On other hand since every vertex in C’ is adjacent to
exactly two vertices in D, we get T' € £&. Now we consider the case |Q1] = |Q2] # 0.
Let Ty, Ty, ..., T,, be the components of T[D U B]. Clearly, DNV (T;) is a LTDS for
T; fori=1,2,...,w;. Now

1 ¢ L
sty —st)=D| = 2;|DmV(Ti>|

2
> ()
=1

> Sve+ Y
= %(n—(wl—l)—kg—s—i—wl)

v

v

Thus v2(T;) = %(|V(TZ)|+@ —s(T;)+1) foreach i = 1,2,...,wy. HV(T;)NQy =0
for some component T;, then as before we obtain that T; € {P3, Py}. Assume that
V(T;) N Q2 # 0 for some component T;. We show that 7; is a path of order 4k for
some integer k. Let v € V(T;). Suppose that degy (v) > 3. Let {z,y,2} C N(v).
If v € D, then we can assume that {y,z} C B, since T[D] = %Kg. But then
N(y) N D = N(z) N D = {v}, a contradiction. Thus, v ¢ D, and so v € B. Since
T[QuC] = ‘Q—;‘Kg + |C| Ky, we can assume that {y, 2z} C D. Then |[N(v) N D| > 2,
contradicting that v € B. We conclude that degy, (v) < 2. Consequently, T; is a path.
Since V(T;)NQo # 0, we have |V (T;)| > 5, and thus, £ = s = 2. Then v*(T;) = W
Now the Lemma 1.4 implies that 7T; is a path of order 4k for some integer k. Thus,
fore=1,2,...,w, we have T; € (. Note that every vertex in C'is adjacent to exactly
two vertices in D, thus T € €. The converse is straightforward. U

We note that Theorem 2.1 improves Theorem 1.1 for trees with n > %f +s5—1,
improves Theorem 1.2 for all trees, and improves Theorem 1.3 for trees with ¢ < 2s.
We also note that if £ > 3, then by Theorem 2.1, v2(T) > (n+£/2 — s +1)/2 >
(n+ 2 —s)/2, and thus a simple calculation leads the following characterization of
trees achieving equality of the bound of Theorem 1.2.

Corollary 2.2. If T is a tree of order n > 2, then vF(T) = (n+2 — s) if and only
if T'= Py, for some integer k > 1.
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