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Abstract

The independence number of a graph G, denoted by «a(G), is the max-
imum cardinality of an independent set of vertices in G. The transver-
sal number of GG is the minimum cardinality of a set of vertices that
covers all the edges of G. If G is a bipartite graph of order n, then
it is easy to see that § < a(G) < n — 1. If G has no edges, then
a(G) = n = n(G). Volkmann [Australas. J. Combin. 41 (2008), 219—
222] presented a constructive characterization of bipartite graphs G of
order n for which o(G) = [§]. In this paper we characterize all bipartite
graphs G of order n with o(G) = k, for each [§] < k < n —1. We
also give a characterization on the Nordhaus-Gaddum type inequalities
on the transversal number of trees.

1 Introduction

In this paper we study independence number and transversal number in bipartite
graphs. For notation and also terminology not given here, we refer to [7]. Let
G = (V, E) be a simple graph with vertex set V = V(G) and edge set £ = E(G).
We denote by n(G) and m(G), or just n,m if G is specified, the order and size of
G, respectively. For a vertex v € V, let Ng(v) = {uuv € E(G)} denote the open
neighborhood of v. The degree of a vertex v, degq(v), or just deg(v), denotes the
number of neighbors of v in G. We refer A(G) and 6(G) as the mazimum degree and
the minimum degree of the vertices of G, respectively. A leaf in a graph is a vertex
of degree one, and a support vertex is one that is adjacent to a leaf. We say that a
support vertex is strong if it is adjacent to at least two leaves. An edge of G is called
a pendant edge if at least one of its vertices is a leaf of G. The distance between two
vertices of a graph is the number of edges in a shortest path connecting them. The
eccentricity of a vertex is the greatest distance between it and any other vertex. The
diameter of a graph G, denoted by diam((G), is the maximum eccentricity among all
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vertices of G. For a subset S of V(G), we denote by G[S] the subgraph of G induced
by S. A clique is a subset of vertices such that its induced subgraph is complete.
The clique number, w(G), of a graph G is the number of vertices in a maximum
clique in G. In this paper we denote by P, the path on n vertices. A star S, is
the complete bipartite graph K ,. The vertex with degree n in the star 5, is called
central verter. A double star is a tree with precisely two vertices that are not leaves,
called the central vertices of the double star. A double-star with central vertices of
degrees m and n is denoted by 5, ,,,. Note that the corona of a graph G, denoted by
cor((@), is a graph obtained from G by adding a leaf for every vertex of G. If T' is a
rooted tree, then for any vertex v we denote by T, the subtree rooted at v.

A set S of vertices in a graph G is an independent set if no pair of vertices of
S are adjacent. The independence number of G, denote by a(G), is the maximum
cardinality of an independent set in G. An independent set of cardinality a(G) is
called an a(G)-set. A matching (or independent edge set) in a graph is a set of
edges without common vertices. The matching number of G, denote by o/(G), is the
maximum cardinality of a matching in G. A vertex covers an edge if it is incident
with the edge. A transversal in G is a set of vertices that covers all the edges of
G. We remark that a transversal is also called a vertex-cover in the literature. The
transversal number of G, denoted by 7(G), is the minimum cardinality of a transver-
sal in G. A transversal of cardinality 7(G) is called a 7(G)-set. The independence
number is one of the most fundamental and well-studied graph parameters (see, for
example, [1, 2, 3, 4, 6, 7, 8, 10]). The following is well-known.

Theorem 1.1 (Gallai [5]). For any graph G of order n, we have a(G) + 7(G) = n.

According to the above relation, it is enough to discuss about only one of the
independence number and transversal number. If G is a graph with connected com-
ponents G, ..., Gy, then it is obvious that 7(G) = Zle 7(G;). Therefore, in this
paper we will consider connected graphs.

If G is a bipartite graph with partite sets V; and V5, then V; and V5 are indepen-
dent sets and also transversals. Thus the following holds for every bipartite graph
G.

1<7(G) < -<a(G)<n-1 (1)

n
2
As mentioned above, a(G) = n = n(QG) is possible, for example for n = 1. Volkmann
in [11] characterized bipartite graphs G of order n with a(G) = [5]. In this paper,
we will characterize bipartite graphs G' of order n with a(G) = k, for each [5] < k <
n — 1. We also give a characterization on the Nordhause-Gaddum type inequalities
on the transversal number of trees. We make use of the following results for the next.

Theorem 1.2 (Konig [9]). If G is a bipartite graph, then 7(G) = o/(G).

Observation 1.3 (Volkmann [11]). If G is a connected graph with a mazimum
matching M, then G contains a spanning tree with the maximum matching M.
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2 Main Results

We begin with the following straightforward observation.

Observation 2.1. For the star S,, the double star S, ,, and the path P,, we have
7(Sp) =1, 7(Spm) =2 and 7(P,) = [ %].

2

Proposition 2.2. For every integers n and k with 1 < k < 3, there exists a bipartite
graph G of order n with 7(G) = k.

n

Proof. Let n and k be integers with 1 < k < 5. We construct a bipartite graph
G of order n with transversal number k. Let GG be a bipartite graph of order k
with vertex set V = {vy,...,v;}. We construct a graph Gy, from cor(G) by adding

n — 2k new vertices uy, s, . . ., U,_or together with new edges v;u;, 1 <1 < n — 2k,
where the indices of vertices in V' are taken in modulo k£ when n — 2k > k. It can be
checked that Gy, is a bipartite graph of order n with 7(Gy,,) = k. O

We next wish to characterize bipartite graphs G with 7(G) =k for 1 <k < | Z].
For this purpose we first consider trees. For 1 < k < [%], we define a family 7, of
trees as follows. Let 7T, be the collection of trees T of order n that can be obtained
from a sequence 11,75, ..., T}, of trees as follows. If n is even, then T} = P, and
otherwise 77 = P3, and let v; be the central vertex of 77 (Note that each of vertices
of P, is a central vertex of P,). If k > 2 then T}, can be obtained recursively from
T; by the following operation.

e Operation O: Assume that v is an arbitrary vertex of T;. Then T;,; is
obtained from T; by adding a path P, with vertex set {v;,1,w;,1} and joining
U 10 Vjq1.

Finally, add n; > 0 leaves to v; for i = 1,2, ..., k in the tree T} such that Zle n; =
n — 2k if n is even and Zle n; = n — 2k — 1 if n is odd. We call vy, v, ..., v}, the
special vertices of Tj,.

We are now ready to establish the following result.

Theorem 2.3. Let T' be a tree of order n. Then 7(T) =k for 1 <k < |3/, if and
only if T € Tp.

Proof. (<) Let T € T. By definition of the family 7y, T is obtained from a
sequence 11, Ty, ..., T} of trees, by adding some leaves to special vertices of Ty. If
k = 1, then T is a star. By Observation 2.1, 7(7") = 1. Thus assume that k > 2,
and so Tj,; is obtained from 7; according to Operation O, for i = 1,2,....k — 1,
by adding a path P, = v;11w;11 and joining v;41 to a vertex of T;. We prove that
T(Tiyq) = 7(T;) + 1 for i = 1,2,....,k — 1. Let S be a 7(7})-set. Clearly S U {vi1}
is a transversal for T;yq, and so 7(T;41) < 7(T;) + 1. Since V(T;) N {vip1, wir1} = 0,
no 7(7;)-set covers the edge v; w1 in Tj1. Thus 7(T;41) > 7(7T;) + 1. Therefore,
7(Ti11) = 7(T;) + 1. Hence, 7(T}) = k, since 7(77) = 1. It is easy to see that
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{v1,..., v} is a transversal for Ty. Since T is obtained from T} by adding n; > 0
leaves to v; for i = 1,2, ..., k, {vy, ..., v} is also a transversal for T, and so 7(T) < k.
But T} is an induced subgraph of 7', and thus 7(7') > 7(T}) = k. Therefore,
(T) = k.

(=) We prove by an induction on n to show that any tree 7' of order n with
(T) = k, 1 <k < [§], belongs to Ti. It is obvious that n > 2. If diam(7T") = 1,
then "= P; € T;. Now assume that diam(7") = 2. Thus 7" is a star. By Observation
2.1, 7(T") = 1. If n is even then T is obtained from a path P, by adding n — 2 leaves
to a vertex of P, and thus T" € 7. If n is odd then T is obtained from a path P
by adding n — 3 leaves to the central vertex of P3, and thus T" € 7;. Assume that
diam(7) = 3. Then T is a double star. Let abcd be a path of length three in T
If n is even, then T is obtained from the path ab by adding a path cd, and then
adding deg,(b) — 2 leaves to b, and deg;(c) — 2 leaves to ¢, and thus 7" € T5. Thus
assume that n is odd. Then clearly we may assume, without loss of generality, that
deg(b) > 3. Let by # a be a leaf adjacent to b. Then T is obtained from the path
abb; by adding a path cd, and then adding deg,(b) — 3 leaves to b, and deg;(c) — 2
leaves to ¢, and thus T" € T5. These are sufficient for the base step of the induction.
Now assume that diam(7") > 4. Assume that the result holds for every tree 7" of
order n’ < n. Assume that T has some strong support vertices. We remove all leaves
except one from each strong support vertex to obtain a tree 7" with no strong support
vertex. Clearly 7(7") < 7(T). Let S be a 7(T")-set. We can assume that S contains
every support vertex to cover each pendant edge. Then S is also a transversal for
T, and so 7(T) < 7(T"). Thus 7(T") = 7(T) = k. By the induction hypothesis,
T € Ti. Hence, T" is obtained from a sequence 17,75, ..., T} of trees according to
the Operation O and adding some leaves to the special vertices of Tj. Let vy, ..., vy
be the special vertices of Tj. It is easy to see that the support vertices of T}, are a
subset of {vy,...,v.}. Since T" is obtained from T}, by adding leaves to the special
vertices of T}, and T is obtained from 7" by adding leaves to some support vertices
of T', we obtain that T € 7.

Thus assume for the next that T" has no strong support vertex. We now root 1" at
a leaf z of a diametrical path zox; ... x4, where d =diam(7T’). Let 7" =T—-1T,, ,, and
let S be a 7(7")-set. Then SU{x4_1} is a transversal for T, and so 7(T") < 7(T") + 1.
Since V(T") N {x4_1,24} = O, no 7(T")-set in T covers the edge x4 174 Hence,
7(T) > 7(T") + 1. Thus, 7(7") = 7(T) — 1 = k — 1. By the induction hypothesis,
T' € Tp_1. Then T is obtained by adding the path P, : x4 124 and joining x4 to
xq_1 according to Operation O. Hence T € 7. O

T
T

Now we present our main result. As an immediate consequence of Theorem 2.3,
we have the following characterization of bipartite graphs of order n with transversal
number £, 1 <k < 7.

Theorem 2.4. Let G be a bipartite graph of order n. Then 7(G) =k for 1 < k <
|51, if and only if G has a spanning tree T € Ty, and no spanning tree of G belongs
to Ty for each k' > k.
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Proof. Let 7(G) = k, where 1 < k < [%]. Since G is a bipartite graph, by Theorem
1.2, G has a maximum matching M of cardinality k. Hence, by Observation 1.3,
G contains a spanning tree 7' with the maximum matching M. Then 7(T) = k.
Therefore, by Theorem 2.3, T' € T;. Suppose that G has a spanning tree 7" € Tp
where k' > k. Then, by Theorem 2.3, 7(1") = k’. But 7(G) > 7(T") = k' > k,
a contradiction. Conversely, assume that G has a spanning tree T" € T and no
spanning tree of G belongs to Ty for each k' > k. By Theorem 2.3, 7(T") = k. Thus
7(G) > 7(T) = k. Let 7(G) = k' > k. By the first part of the theorem, G has a
spanning tree 7" € Ty, a contradiction. Therefore, 7(G) = k. O

Theorem 2.4 is equivalent to a characterization of all bipartite graphs G of order
n with a(G) =k, for each [§] < k <n — 1 and also, all bipartite graphs G of order
n with o/(G) =k, for each 1 <k < [5].

We end the paper with a characterization on the Nordhaus-Gaddum type in-
equalities on the transversal number of trees. If G is a bipartite graph of order n,
then w(G) = 2, and so by Theorem 1.1, we have

7(G)=n—a(G)=n—-w(G) =n—2. (2)
Therefore, by (1) and (2), we obtain the following bounds that are sharp by Obser-
vation 2.1.

Observation 2.5. If G is a bipartite graph of order n, thenn —1 < 7(G) +7(G) <

%n — 2, and these bounds are sharp.

As a consequence of Theorem 2.3, we have the following characterization.

Corollary 2.6. Let T be a tree of order n. Then 7(T) +7(T) =k forn—1<k <

%n — 2, if and only if T € Typ_pnio.
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