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Abstract

In this paper we study the largest parts in integer partitions according
to multiplicities and part sizes. Firstly we investigate various properties
of the multiplicities of the largest parts. We then consider the sum of the
m largest parts - first as distinct parts and then including multiplicities.
Finally, we find the generating function for the sum of the m largest parts
of a partition, i.e., the first m parts of a weakly decreasing sequence of
parts.

1 Introduction

A partition of n is a representation of n as a sum of positive integers where the
summands are arranged left to right in weakly decreasing order. The summands are

∗ This material is based upon work supported by the National Research Foundation under grant
numbers 89147, 86329 and 81021.
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called parts of the partition. Thus a partition λ of n into k > 0 parts will generally
be expressed as

λ = λ1λ2 · · ·λk, where λ1 ≥ λ2 ≥ · · · ≥ λk > 0. (1.1)

Standard properties of partitions can be found in Andrews (see [1]). In this paper
we are interested in statistics relating to the largest parts in partitions, such as
those in [2–7]. In some of these references statistics related to the largest part and
multiplicities thereof (in partitions) have been considered. In this paper, we extend
these results to the mth largest parts - not previously considered - by using the
framework below.

Multiplicities and part sizes of partitions are well-studied statistics. These statis-
tics have invariably been studied in terms of generating functions which have been
obtained by a method involving functional equations which relate a larger case of the
statistic to smaller cases. A recursion is generated upwards based on the smallest
cases (smallest to largest).

Here, however, we provide a different conceptual framework in order to develop
our generating functions. Namely, we begin the analysis by defining the generating
function on the basis of the largest term in the partitions. To obtain an explicit
version of this generating function, we use the functional recursion which moves
from the largest term to smaller terms. This device enables generating functions for
previously unstudied statistics in partition theory to be investigated.

In Section 2, we start by discussing the multiplicities of the largest parts in a
partition in three different ways. In Section 3 we consider the sum of the m largest
(distinct/unequal) parts in a partition. We include multiplicities in Section 4 and
calculate the sum of the m largest parts in a partition where each part is added as
many times as it occurs in the partition (its multiplicity). The last case is dealt with
in Section 5, where we sum the first m parts of a partition (expressed again as a
(weakly) decreasing sequence of parts).

For partitions where all parts are distinct, all three of these variations of counting
largest parts are the same and for all of our results, the special case m = 1 has been
previously studied. Here we use the above method and extend the results to m > 1.

2 Multiplicity of the largest parts in a partition

We start with the following generating function:

Da1(t) = Da1(t|x1, x2, . . .) =
∑

π=a
s1
1 a

s2
2 ···asjj

ts1a1+s2a2+···+sjaj

j∏
i=1

xsi
i ,

where the sum is over all partitions π = as11 as22 · · · asjj with a1 > a2 > · · · > aj > 0 and
s1, . . . , sj > 0, where si counts the multiplicity of part ai. Thus the xi’s sequentially
count the multiplicity of the next largest part in the partition. Note that x1, x2, . . .
in Da1(t|x1, x2, . . .) is not an infinite sequence and has at most a1 terms.
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Since each partition with first part a1 can be written either as as11 or as as11 π with
π a partition such that its first part is at most a1 − 1, we obtain

Da1(t|x1, x2, . . .) =
x1t

a1

1− x1ta1
+

x1t
a1

1− x1ta1

a1−1∑
j=1

Dj(t|x2, x3, . . .). (2.1)

Define
D(t, u) = D(t, u|x1, x2, . . .) = 1 +

∑
a1≥1

Da1(t|x1, x2, . . .)u
a1.

By multiplying (2.1) by (1− x1t
a1)ua1 and summing over a1 ≥ 1, we get∑

a1≥1

Da1(t|x1, x2, . . .)u
a1 − x1

∑
a1≥1

Da1(t|x1, x2, . . .)(tu)
a1

= x1

∑
a1≥1

(tu)a1 +
x1tu

1− ut

∑
j≥1

Dj(t|x2, x3, . . .)(tu)
j,

which implies the following result.

Theorem 2.1 We have

D(t, u|x1, x2, . . .) = 1− x1 + x1D(t, tu|x1, x2, . . .) +
x1tu

1− ut
D(t, tu|x2, x3, . . .).

Proposition 2.2 Theorem 2.1 with xj = 1 for all j ≥ 1 yields

D(t, u|1, 1, . . .) = 1

1− tu
D(t, tu|1, 1, . . .),

which implies that

D(t, u|1, 1, . . .) = 1∏
j≥1

(1− utj)
,

in accordance with the well-known partition generating function.

2.1 The multiplicity of the largest part in partitions

In this subsection, we rederive the generating function for the number of parti-
tions of n according to the multiplicity of the largest part (see [4]) by a different
method, using Theorem 2.1. That is, we study the generating function F1(t, u, q) =
D(t, u|q, 1, 1, . . .).
Theorem 2.3 We have

F1(t, u, q) = 1 +
∑
j≥1

qjtju∏
i≥j

(1− uti)
.

Moreover, the generating function for the number of partitions of n such that the
largest part appears exactly r ≥ 1 times is given by

tr∏
i≥r

(1− ti)
.
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Proof: By Theorem 2.1 with x1 = q and xj = 1 for all j ≥ 2, we have

F1(t, u, q) = 1− q + qF1(t, tu, q) +
qtu

1− ut
D(t, tu|1, 1, . . .).

Thus, by Proposition 2.2, we obtain

F1(t, u, q) = 1− q + qF1(t, tu, q) +
qtu∏

j≥1

(1− utj)
.

By iterating infinitely many times (we assumed that |q| < 1), we have

F1(t, u, q) =
∑
j≥0

qj

⎛
⎜⎝1− q +

qtj+1u∏
i≥j+1

(1− uti)

⎞
⎟⎠ ,

which is equivalent to

F1(t, u, q) = 1 +
∑
j≥1

qjtju∏
i≥j

(1− uti)
,

as required. �

Example 2.4 Theorem 2.3 with q = −1 yields

F1(t, 1,−1) = 1 +
∑
j≥1

(−1)jtj∏
i≥j

(1− ti)
.

Thus, by Proposition 2.2, we see that the generating function for the number of
partitions of n such that the multiplicity of the largest part is an even number is
given by

1

2

⎛
⎜⎝ 1∏

j≥1

(1− tj)
+ 1 +

∑
j≥1

(−1)jtj∏
i≥j

(1− ti)

⎞
⎟⎠ ,

and the generating function for the number of partitions of n such that the multi-
plicity of the largest part is an odd number is given by

1

2

⎛
⎜⎝ 1∏

j≥1

(1− tj)
− 1−

∑
j≥1

(−1)jtj∏
i≥j

(1− ti)

⎞
⎟⎠ .

Corollary 2.5 The generating function for the total multiplicity of the largest part
in all partitions of n is given by

∑
j≥1

jtj∏
i≥j

(1− ti)
=

1∏
i≥1(1− ti)

∑
j≥1

jtj
j−1∏
i=1

(1− ti).
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Proof: By Theorem 2.3 we have that

∂

∂q
F1(t, 1, q)

∣∣∣
q=1

=
∑
j≥1

jtj∏
i≥j

(1− ti)
,

as required. �

2.2 The multiplicity of the m-th largest part in partitions

Here we focus on new results, namely the generating function for the number of
partitions of n according to the multiplicity of the m-th largest part. That is, we
study the generating function Fm(t, u, q) = D(t, u|x1, x2, . . .) with xm = q and xj = 1
for all j �= m.

Theorem 2.6 Let m ≥ 1; then

Fm(t, u, q) =
∑

jm,jm−1,...,j2≥1

m∏
i=2

utji+ji+1+···+jm

1− utji+ji+1+···+jm

(
1 +

∑
j1≥1

qj1tj1+j2+···+jm∏
�≥j1+j2+···+jm

(1− ut�)

)
.

Proof: By Theorem 2.1 with xm = q and xj = 1 for all j �= m, we have

Fm(t, u, q) = Fm(t, tu, q) +
tu

1− ut
Fm−1(t, tu, q). (2.2)

Iterating (2.2) on u infinitely many times and summing, we obtain

Fm(t, u, q) =
∑
jm≥1

utjm

1− utjm
Fm−1(t, ut

jm, q).

Hence, by induction on m,

Fm(t, u, q) =
∑

jm,jm−1,...,j2≥1

m∏
i=2

utji+ji+1+···+jm

1− utji+ji+1+···+jm
F1(t, ut

j2+j3+···+jm , q).

By Theorem 2.3, we have

Fm(t, u, q) =
∑

jm,jm−1,...,j2≥1

m∏
i=2

utji+ji+1+···+jm

1− utji+ji+1+···+jm

(
1 +

∑
j1≥1

qj1tj1+j2+···+jm∏
�≥j1+j2+···+jm

(1− ut�)

)
,

as claimed. �

2.3 The sum of the multiplicities of the first m largest parts

We now study the generating function for multiplicities of the first m largest parts,
that is, we study the generating function Gm(t, u, q) = D(t, u|x1, x2, . . .) with x1 =
x2 = · · · = xm = q and xj = 1 for all j > m.
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Theorem 2.7 For all m ≥ 1,

Gm(t, u, q) = 1 +
∑
j≥1

qjtju

1− utj
Gm−1(t, t

ju, q),

with G0(t, u, q) =
1∏

j≥1
(1−utj )

.

Proof: In a similar fashion to the proof of Theorem 2.3, we obtain

Gm(t, u, q) = 1− q + qGm(t, tu, q) +
qtu

1− ut
Gm−1(t, tu, q),

which leads to

Gm(t, u, q) = 1 +
∑
j≥1

qjtju

1− utj
Gm−1(t, t

ju, q).

�

Example 2.8 Putting m = 1 in Theorem 2.7 yields Theorem 2.3. Putting m = 2
in Theorem 2.7 yields

G2(t, u, q) = 1 +
∑
j2≥1

qj2tj2u

1− utj2

⎛
⎜⎝1 +

∑
j1≥1

qj1tj1+j2u

1− utj1+j2

1∏
j0≥1

(1− utj0+j1+j2)

⎞
⎟⎠ .

2.4 The difference between the multiplicities of the second largest part
and the largest part

Now we focus on the generating function M(t, u, q) := D(t, u|q, 1/q, 1, 1, . . .). By
Theorem 2.1, we have

M(t, u, q) = 1− q + qM(t, tu, q) +
qtu

1− ut
D(t, tu|1/q, 1, 1, . . .).

Using Theorem 2.3, we obtain

M(t, u, q) = 1− q + qM(t, tu, q) +
qtu

1− ut

(
1 +

∑
j≥1

q−jtj+1u∏
i≥j+1(1− uti)

)
.

Solving this recursion gives

M(t, u, q) = 1 +
∑
s≥1

qstsu

1− tsu

(
1 +

∑
j≥1

q−jtj+su∏
i≥j+1(1− uti+s−1)

)
.

The usual approach to summing the quantities under consideration is to compute
∂
∂q
M(t, u, q)|q=1. However, a simpler expression (2.4) can be obtained by the following

approach.
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In order to calculate the difference between the multiplicities of the second largest
and largest part, we use the conjugate of a Ferrers diagram of a partition. From this
we see that the sum of the multiplicities of the largest and second largest parts is
equal to the sum of the second smallest part of all partitions of n. Also∑

π∈P(n)

(multiplicity of second largest part - multiplicity of largest part)

=
∑

π∈P(n)

(second smallest part size - 2 × smallest part size) (2.3)

or, if there is only one part size this is

−
∑

π∈P(n)

(smallest part size).

For partitions with only one part size, the sum of the multiplicities of the largest and
second largest parts equals the sum of the smallest part in partitions of this type,
i.e., ∑

π=rr···r
r =

∑
r|n

r =: σ(n),

with generating function

∑
k≥1

kzk

1− zk
.

For the sum of second smallest parts in partitions of n, let the second smallest part
be k ≥ 2. The generating function for the sum of second smallest part sizes is

∑
k≥2

k−1∑
l=1

zl

1− zl
kzk

1− zk

∏
i≥k+1

1

1− zi
.

Thus the generating function obtained from (2.3) is

∑
k≥2

k−1∑
l=1

zl

1− zl
kzk

1− zk

∏
i≥k+1

1

1− zi
− 2

∑
j≥1

∏
i≥j

jtj

1− ti
+
∑
k≥1

kzk

1− zk
. (2.4)

3 Sum of the m largest (distinct) parts

In this section we sum the m largest (distinct) parts in a partition. For example,
given the partition 666533211111 the sum for m = 1 would be 6, the sum for m = 2
would be 6+5 = 11 and the sum for m = 3 would be 6+5+3 = 14. The m = 1 case
can also be seen as the number of parts if you consider the conjugate of the Ferrers
diagram. This was studied by Erdös and Lehner in [3] in 1941.
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We define the following function for a fixed a1, where a1 is the size of the first
(largest) part. Let xi mark the size of the next largest distinct part in the sequence
of parts. The variable t marks the size of the partition (counted by n). Let

D̃a1(t) := D̃a1(t|x1, x2 . . . ) =
∑

π=a
s1
1 a

s2
2 ...a

sj
j

tn
j∏

i=1

xai
i , (3.1)

where n = s1a1 + s2a2 + · · · sjaj . Then

D̃a1(t|x1, x2, . . . ) =
(x1t)

a1

1− ta1
+

(x1t)
a1

1− ta1

a1−1∑
j=1

D̃j(t|x2, x3, . . . ). (3.2)

Now define

D̃(t, u) := D̃(t, u|x1, x2, . . . ) = 1 +
∑
a1≥1

D̃a1(t|x1, x2 . . . )u
a1 .

We multiply (3.2) by (1− ta1)ua1 and sum on a1 ≥ 1:∑
a1≥1

D̃a1(t|x1, x2, . . . )u
a1 −

∑
a1≥1

D̃a1(t|x1, x2, . . . )t
a1ua1

=
∑
a1≥1

(x1tu)
a1 +

∑
j≥1

D̃j(t|x2, x3, . . . )
∑

a1≥j+1

(x1tu)
a1

=
x1tu

1− x1tu
+
∑
j≥1

D̃j(t|x2, x3, . . . )
(x1tu)

j+1

1− x1tu
.

Thus we can write

[D̃(t, u|x1, x2, . . . )− 1]− [D̃(t, tu|x1, x2, . . . )− 1]

=
x1tu

1− x1tu

[
1 +

∑
j≥1

D̃j(t|x2, x3, . . . )(x1tu)
j

]
,

or

D̃(t, u)− D̃(t, tu) =
x1tu

1− x1tu
D̃(t, x1tu|x2, x3, . . . ). (3.3)

3.1 Sum of the sizes of the largest (distinct) part

In particular, we can find the generating function for the size of the largest part. For
example in partition 666533211111 the largest part is 6.

Let x1 = q and let x2, x3, · · · = 1 in (3.3) so that

D̃(t, u|q, 1, 1, . . . )− D̃(t, tu|q, 1, . . . ) = qtu

1− qtu
D̃(t, qtu|1, 1, . . . ).
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Define

D̃1(t, u, q) := D̃(t, u|q, 1, 1, . . . ),

then (see Proposition 2.2)

D̃1(t, u, q)− D̃1(t, tu, q) =
qtu

1− qtu
D̃1(t, qtu, 1) = qtu

1∏
j≥1

(1− uqtj)
.

We iterate this infinitely many times to obtain

D̃1(t, u, q) =
∑
i≥1

qtiu∏
j≥i

(1− uqtj)
. (3.4)

We no longer need the variable u, so we replace it by 1 and then differentiate with
respect to q:

∂

∂q
D̃1(t, 1, q) =

∑
i≥1

∏
j≥i

(1− qtj)ti − qti
∑
k≥i

∏

j≥i

(1−qtj )

1−qtk
(−tk)∏

j≥i

(1− qtj)2
.

Finally, replace q by 1 to get:

Proposition 3.1 The generating function for the sum of the largest part sizes over
all partitions of n is

∂

∂q
D̃1(t, 1, q)|q=1 =

∑
i≥1

ti

(
1 +

∑
k≥i

tk

1− tk

)
1∏

j≥i

(1− tj)
.

3.2 Recursion for the sum of the m largest (distinct) part sizes

We now generalise and let x1 = x2 = · · · = xm = q and xj = 1 for all j > m in (3.3)
to obtain the recursion

D̃m(t, u, q)− D̃m(t, tu, q) =
qtu

1− qtu
D̃m−1(t, qtu, q),

where we define
D̃m(t, u, q) := D̃(t, u, q|x1, x2, . . . )

with x1 = x2 = · · · = xm = q and xj = 1 for all j > m. For m ≥ 1, the latter
recursion can be solved as before to obtain

D̃m(t, u, q) =
∑
i≥1

quti

1− quti
D̃m−1(t, qut

i, q). (3.5)
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3.3 Sum of the two largest (distinct) part sizes

Now we sum the two largest (distinct) part sizes. For example in partition
666533211111 the sum would be 6+5 = 11. For the particular case where m = 2 we
have (from (3.5) and (3.4))

D̃2(t, u, q) =
∑
i≥1

quti

1− quti
D̃1(t, qut

i, q)

=
∑
i≥1

∑
k≥1

q3u2tk+2i

(1− quti)
∏
j≥k

(1− q2utj+i)
.

We then let u = 1

D̃2(t, 1, q) =
∑
i≥1

∑
k≥1

q3tk+2i

(1− qti)
∏
j≥k

(1− q2tj+i)
.

Differentiate with respect to q, and then let q = 1 to obtain:

Proposition 3.2 The generating function for the sum of the two largest distinct
part sizes over all partitions of n is

∂

∂q
D̃2(t, 1, q)

∣∣∣
q=1

=
∑
i≥1

∑
k≥1

∏
j≥k

1

1− tj+i

[
3tk+2i − 2tk+3i

(1− ti)2
+
∑
l≥k

2tl+k+3i

(1− ti)(1− tl+i)

]
.

Here we do not count the case where there is only one distinct part.

3.4 Sum of the three largest (distinct) part sizes

For the case wherem = 3 (in partition 666533211111 this sum would be 6+5+3 = 14)
we do not count the case if there are only 1 or 2 distinct parts. We obtain:

D̃3(t, u, q) =
∑
l≥1

qutl

1− qutl
D̃2(t, qut

l, q)

=
∑
l≥1

∑
i≥1

∑
k≥1

q6u3t3l+2i+k

(1− qutl)(1− q2utl+i)
∏
j≥k

(1− q3utl+j+i)
.

Then let u = 1, which gives

Proposition 3.3 The generating function for the sum of the three largest distinct
part sizes over all partitions of n is

D̃3(t, 1, q) =
∑
l≥1

∑
i≥1

∑
k≥1

q6t3l+2i+k

(1− qtl)(1− q2tl+i)
∏
j≥k

(1− q3tl+j+i)
.
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4 Sum of the m largest parts including their respective mul-
tiplicities

In this section we sum the m largest parts including their respective multiplicities.
For example, in partition 666533211111 the sum for m = 1 is 6+ 6+ 6 = 18 and the
sum for m = 2 is 6 + 6 + 6 + 5 = 23.

This variation requires a slight change from the recursion in (3.2), where here xi

counts the sum of all the ith largest parts. We still fix a1, where a1 is the size of the
first part. The variables xi and t are as in Section 3.

D̂a1(t|x1, x2, . . . ) =
(x1t)

a1

1− (x1t)a1
+

(x1t)
a1

1− (x1t)a1

a1−1∑
j=1

D̂j(t|x2, x3, . . . ). (4.1)

Define

D̂(t, u) := D̂(t, u|x1, x2, . . . ) := 1 +
∑
a1≥1

D̂a1(t|x1, x2, . . . )u
a1 .

Multiply Equation (4.1) by (1− (x1t)
a1)ua1 and sum as before∑

a1≥1

D̂a1(t|x1, x2, . . . )u
a1−

∑
a1≥1

D̂a1(t|x1, x2, . . . )(x1t)
a1ua1

=
∑
a1≥1

(x1tu)
a1 +

∑
a1≥1

(x1tu)
a1

a1−1∑
j=1

D̂j(t|x2, x3, . . . )

=
x1tu

1− x1tu
+
∑
j≥1

D̂j(t|x2, x3, . . . )
(x1tu)

j+1

1− x1tu
.

We can express this as

D̂(t, u|x1, x2, . . . )− D̂(t, x1tu|x1, x2, . . . ) =
x1tu

1− x1tu
D̂(t, x1tu|x2, x3, . . . ). (4.2)

4.1 Sum of all largest parts

Using the above recursion we can now sum all of the parts with largest size. For
example in partition 666533211111 the sum is 6 + 6 + 6 = 18. To do this, we let
x1 = q and let xi = 1 if i �= 1 as before. This gives us

D̂(t, u|q, 1, 1, . . . )− D̂(t, qtu|q, 1, 1, . . . ) = qtu∏
j≥1

(1− uqtj)

from Proposition (2.2). We define

D̂1(t, u, q) := D̂(t, u|q, 1, 1, . . . ) (4.3)
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and iterate this function as before to obtain the trivariate function

D̂1(t, u, q) =
∑
k≥1

uqktk∏
j≥k

(1− uqktj)
. (4.4)

Now,

∂

∂q
D̂1(t, 1, q) =

∑
k≥1

kqk−1tk − qktk
∑
i≥k

1
1−qkti

(−kqk−1ti)∏
j≥k

(1− qktj)
.

By letting q = 1 in the above we have

Proposition 4.1 The generating function for the total sum of the largest parts over
all partitions of n is

∂

∂q
D̂1(t, 1, q)

∣∣∣
q=1

=

∑
k≥1

ktk
(
1 +

∑
i≥k

ti

1−ti

)
∏
j≥k

(1− tj)
.

The sequences of these sums for n = 1, 2, 3, . . . is given in [8] as A092321, where an
alternative generating function is provided:∑

n≥1

(
n

tn

1− tn

n∏
k=1

1

1− tk

)
=

∑
n≥1

ntn

(1− tn)
n∏

k=1

(1− tk)
.

4.2 Sum of the two largest part sizes with multiplicities

In the partition 666533211111 the sum of the two largest part sizes with multiplicities
is 6 + 6+ 6+ 5 = 23. Let x1 = x2 = q in (4.2) and let xi = 1 if i > 2 as before. This
yields

D̂(t, u|q, q, 1, . . . )− D̂(t, qtu|q, q, 1, . . . ) = qtu

1− qtu

∑
k≥1

uqk+1tk+1∏
j≥k

(1− uqk+1tj+1)
.

Now define
D̂2(t, u, q) := D̂(t, u|q, q, 1, . . . )

and after iterating on u, we get

D̂2(t, u, q) =
∑
i≥1

qiuti

1− qiuti

∑
k≥1

uqktk∏
j≥1

(1− uqktj+k−1)

=
∑
k≥1

uqk+itk+i∏
j≥k

(1− uqk+itj+i)
.

After differentiating with respect to q and then setting q = u = 1 this yields
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Proposition 4.2 The generating function of the total sum of the two largest part
sizes with multiplicities over all partitions of n is

∂

∂q
D̂2(t, 1, q)|q=1 =

∑
i≥1

∑
k≥1

(1− ti)(k + 2i)tk+2i + itk+3i + (1− ti)(k + i)
∑
l≥k

tk+l+3i

(1−tl+i)

(1− ti)2
∏
j≥k

(1− tj+i)
.

(4.5)

5 Sum of the first (largest) m parts

Here we sum the largest m parts whether or not they are distinct. For the previous
partition 666533211111 the sum for m = 2 is 6 + 6 = 12.

In this case we have another version of the generating function D where it is
important that we note that xi marks the size of the i-th part from the left in a
weakly decreasing partition of n. That is, in this case it is possible to have equality
of the exponents xi and xj even if i �= j. The definitions of the other variables remain
the same.

D̄a1(t|x1, x2, . . . ) = (x1t)
a1 + (x1t)

a1

a1∑
j=1

D̄j(t|x2, x3, . . . ). (5.1)

Define

D̄(t, u) := D̄(t, u|x1, x2, . . . ) :=
∑
a1≥1

D̄a1(t|x1, x2, . . . )u
a1 .

Now we multiply Equation (5.1) by ua1 and sum on a1 to get

∑
a1≥1

D̄a1(t|x1, x2, . . . )u
a1 =

∑
a1≥1

(x1t)
a1ua1 +

∑
a1≥1

(x1t)
a1

a1∑
j=1

D̄j(t|x2, x3, . . . )u
a1

=
1

1− x1ut

(
x1ut+

∑
j≥1

D̄j(t|x2, x3, . . . )(x1ut)
j

)
,

which translates to

D̄(t, u|x1, x2, . . . ) =
1

1− x1ut

(
x1ut+ D̄(t, x1ut|x2, x3, . . . )

)
.

Recall that m is fixed. Set x1, x2, . . . , xm = q and xm+1, xm+2, · · · = 1 and define
D̄m(t, u, q) := D̄(t, u|x1, x1, . . . ) in this case. Then we have the recurrence

D̄m(t, u, q) =
1

1− qut

(
qut+ D̄m−1(t, qut, q)

)
.
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5.1 The first part

In the special case where m = 1 we have the same generating function for the largest
part from Section 3, namely

D̄1(t, u, q) = D̃1(t, u, q) =
∑
i≥1

uqti∏
j≥i

(1− uqtj)
,

(see Equation (3.4)).

5.2 Sum of the first two parts

If m = 2 we have

D̄2(t, u, q) =
1

1− qut

(
qut+ D̄1(t, qut, q)

)

=
1

1− qut

⎛
⎜⎝qut+

∑
i≥1

uq2ti+1∏
j≥i

(1− uq2tj+1)

⎞
⎟⎠ . (5.2)

The next step is to let u = 1 and then differentiate with respect to q to obtain

∂

∂q
D̄2(t, 1, q)

=
t

(1− qt)2
+
∑
i≥1

(1− qt)2qti+1 − q2ti+1

[
(−t) + (1− qt)

∑
k≥i

1
1−q2tk+1 (−2qtk+1)

]

(1− qt)2
∏
j≥i

(1− q2tj+1)
.

Letting q = 1, we have

Proposition 5.1 The generating function for the sum of the first two parts over all
partitions of n is

∂

∂q
D̄2(t, 1, q)

∣∣∣
q=1

=
t

(1− t)2
+
∑
i≥1

ti+2 + 2ti+1(1− t)
(
1 +

∑
k≥i

tk+1

1−tk+1

)
(1− t)2

∏
j≥i

(1− tj+1)
.

In this case we count the case when there is only one part size.

5.3 Sum of the first three parts

For m = 3 we have:

D̄3(t, u, q) =
1

1− qut

(
qut+ D̄2(t, qut, q)

)
=

qut

1− qut
+

q2ut2

(1− qut)(1− uq2t2)
+

1

(1− qut)(1− uq2t2)

∑
i≥1

uq3ti+2∏
j≥i

(1− uq3tj+2)
.
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Now let u = 1 and differentiate with respect to q

∂

∂q
D̄3(t, 1, q)

=
(1− qt)t− qt(−t)

(1− qt)2
+

(1− qt− q2t2 + q3t3)2qt2 − q2t2(−t− 2qt2 + 3q2t3)

(1− qt− q2t2 + q3t3)2

− (1− qt)(−2qt2) + (1− q2t2)(−t)

(1− qt)2(1− q2t2)2

∑
i≥1

q3ti+2∏
j≥i

(1− q3tj+2)

+
1

(1− qt)(1− q2t2)

∑
i≥1

∏
j≥i

(1− q3tj+2)3q2ti+2 − q3ti+2
∑
k≥i

∏

j≥i
(1−q3tj+2)

1−q3tk+2 (−3q2tk+2)

( ∏
j≥i

(1− q3tj+2)
)2 .

After substituting q = 1 we obtain

Proposition 5.2 The generating function for the sum of the first three parts over
all partitions of n is

∂

∂q
D̄3(t, 1, q)

∣∣∣
q=1

=

t(1 + 3t)

(1− t)3(1 + t)2

(
1+
∑
i≥1

ti+2∏
j≥i

(1− tj+2)

)
+

1

(1− t)2(1 + t)

∑
i≥1

3ti+2
(
1 +

∑
k≥i

tk+2

1−tk+2

)
∏
j≥i

(1− tj+2)
.

Here we include the cases where there are only one or two part sizes.

6 Conclusion

In this paper we have exploited a method that specifies the generating function of
partitions from the largest part down (rather than from the smallest up). This
allows certain previously unstudied statistics to be investigated. Also, it adds to the
repertoire of tools used in the study of integer partitions and the paper consists of
several different examples involving variants on the method.
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