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Abstract

The chromatic number χ (E2) of the plane is known to be some integer
between 4 and 7, inclusive. We prove a limiting result that says, roughly,
that one cannot increase the lower bound on χ (E2) by pasting Moser
spindles together—even countably many—by taking translations by Z-
linear combinations of a certain set of vectors.

1 Introduction and motivation

Let n be a positive integer, and let [n] = {1, 2, . . . , n}. Let En denote the graph whose
vertex set is Rn, where two vertices are adjacent if and only if they are distance 1
apart using the standard Euclidean metric. For a positive integer k, a k-coloring of
a graph G is a function f : V (G)→ [k]. A k-coloring is proper if whenever x and y
are adjacent in G, f(x) 6= f(y). The chromatic number of a graph G (which we shall
denote by χ (G)) is the smallest positive integer k such that there exists a proper
k-coloring of G.

It is known that
4 ≤ χ

(
E2

)
≤ 7. (1)

These bounds can be found summarized in the text by Soifer [10]. The lower bound
uses the famous 7-vertex unit distance graph known as the Moser Spindle, which
we will discuss below. The correct value of χ (E2) may depend on the axioms of set
theory, as shown by Shelah and Soifer in [9]. In particular, they give a graph G such
that
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(i) in ZFC, χ(G) = 2;

(ii) in ZF + countable choice + LM, χ(G) ≥ ℵ1.

ZF denotes the axioms of Zermelo-Fraenkel set theory, ZFC denotes the axioms of
Zermelo-Frankel set theory together with the axiom of choice, and LM denotes the
axiom that says that all subsets of the plane are Lebesgue measurable.

Also, χ (E3) has been widely studied. A lower bound for χ (E3) was achieved by
Răıskĭı in [8], when he showed that χ (En) ≥ n + 2, so χ (E3) ≥ 5. Currently, the
best lower bound for χ (E3) is due to Nechushtan in [6], who showed that χ (E3) ≥ 6.
An upper bound of χ (E3) ≤ 18 was achieved by Coulson in [1]; he later improved
this result to χ (E3) ≤ 15 in [2]. In summary, the best bounds for χ (E3) stand at

6 ≤ χ
(
E3

)
≤ 15.

2 The vector graph and main results

We introduce the vector graph VU , a subgraph of E2, that depends on a set of unit
vectors U from R2. Given a set U of unit vectors, we define

spanU = {a1u1 + · · ·+ anun : n ∈ N, ai ∈ Z, ui ∈ U} .

The vertices of VU are the vectors in spanU interpreted as ordered pairs of real
numbers. Adjacency in VU is given by u ∼ v if and only if u− v ∈ U or v − u ∈ U .
For example, if we take U = {(1, 0), (0, 1)}, then VU is the (Euclidean) unit distance
graph whose vertex set is Z2.

For a vector v from R2, let rθ (v) denote the counterclockwise rotation of the

vector v by θ radians. Set α = arccos

(
1

2
√

3

)
− π

6
and β = α +

π

3
. Let u be any

unit vector from R2 and define a set of vectors M as

M = {u, rα(u), r−α(u), rβ(u), r−β(u), rα(u)− rβ(u), r−α(u)− r−β(u)} . (2)

The reason for choosing these particular angles α and β is so that VM contains a
copy of the Moser spindle. See Figure 1 for a depiction of a subgraph of VM and
Figure 2 for seven copies of the spindle pasted together, which begins to illustrate
the complexity of VM.
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Figure 1: A subgraph of VM indicating the angles α and β and a unit vector u.

Figure 2: A subgraph of VM.

Lemma 1. For all v1 ∈ VM and for all vertices w in the Moser Spindle, there exist
v2, . . . , v7 ∈ VM such that the subgraph of VM induced by {v1, . . . , v7} is isomorphic
to the Spindle via an isomorphism that carries v1 onto w.

Proof. Let v1 be a vector in VM. We are done if we can show that there are three
Moser Spindles in VM such that v1 occurs as the bottom left vertex in one spindle,
the left most vertex in a second spindle, and the top most vertex in a third spindle
(see Figure 3). To see that there are three such spindles, add v1 to all coordinates of
the spindle in Figure 3. This gives a copy of the Moser spindle with v1 as the bottom
left vertex. Similarly, adding v1 − rβ(u) and v1 − (rα(u) + rβ(u)) gives spindles with
v1 as the left most vertex and the top most vertex, respectively.
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Figure 3: A subgraph of VM with vertices labelled with vectors

Since the chromatic number of the Moser spindle is 4, we have χ (VM) ≥ 4. One
might think that the vector graph VM might not be 4-colorable, in the same way
that the Spindle, which is made up of triangles pasted together, is not 3-colorable.
In fact, in Theorem 1, we show that VM is 4-colorable.

Theorem 1. For any unit vector u in R2, if VM is the vector graph given by (2),
then χ (VM) = 4.

Proof of Theorem 1. Let u be any unit vector in R2, and letM be the set described
in (2). Since the chromatic number of the Moser Spindle is 4, we need only to show
that χ (VM) ≤ 4.

For ease in notation, and when there is no confusion, we let α = rα(u), α =
r−α(u), β = rβ(u), and β = r−β(u). Hence, we may write

M =
{
u, α, α, β, β, α− β, α− β

}
.

Notice that the set of vectors
{
α, α, β, β

}
is linearly independent over Z. As such, for

all v ∈ VM there is a unique Z-linear combination such that v = aα+ bα+ cβ + dβ.
Define f : VM → Z4 by

f(v) = a+ 3b+ 2c+ d (mod 4).

We show now f is a proper 4-coloring. Let x and y be vertices from VM with
x ∼ y. Suppose f(x) = f(y). Hence f(x − y) = 0, as f is linear. Since x ∼ y,
x− y ∈ U , so we need only check that no vector in M gets mapped to 0.

Since u = α + β + α + β, f(u) = 1 + 2 + 3 + 1 ≡ 3 (mod 4). We also have
f(α− β) ≡ 1− 2 ≡ 3 (mod 4) and f

(
α− β

)
≡ 3− 1 ≡ 2 (mod 4), so f is a proper

4-coloring of VM and the proof is complete.
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3 Future work/discussion

It could be that proper 4-colorings of the plane (if they exist) occupy a place anal-
ogous to that of non-principal ultrafilters1; we could never write one down. For in-
stance, one could imagine a proof that all finite unit-distance graphs are 4-colorable;
this would imply (by Erdős-DeBruijn [3]) that a 4-coloring of the plane exists, but
it certainly would not give us the means to write one down.

It could be that the presence or absence of the axiom of choice plays a central
role. Shelah and Soifer [9], relying on a result of Falconer [4], prove that if all finite
unit distance graphs are 4-colorable, then even though χ(E2) = 4 in ZFC, in ZF +
dependent choice + LM we have that χ(E2) ≥ 5.
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