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Abstract

A total labeling of a graph G is a bijection from the vertex set and edge
set of G onto the set {1,2,...,|V(G)| + |E(G)|}. Such a labeling ¢ is
vertex-antimagic (edge-antimagic) if all vertex-weights wt¢(v) = £(v) +
> ouerc) §(vu), v € V(G), (all edge-weights wte(vu) = £(v) + &(vu) +
£(u), vu € E(G)) are pairwise distinct. If a labeling is simultaneously
vertex-antimagic and edge-antimagic it is called a totally antimagic total
labeling. A graph that admits a totally antimagic total labeling is called
a totally antimagic total graph. In this paper we will introduce a large
class of totally antimagic total graphs.

1 Introduction

We consider finite undirected graphs without loops and multiple edges. If G is
a graph, then V(G) and E(G) stand for the vertex set and edge set of G, respectively.
The subgraph of a graph G induced by U C V(@) is denoted by G[U]. The set of
vertices of G adjacent to a vertex v € V(@) is denoted by Ng(v). The cardinality of
this set, denoted deg.(v), is called the degree of v. As usual A(G) and 6(G) stand
for the maximum and minimum degree among vertices of G. For integers p, ¢ we
denote by [p, q] the set of all integers z satisfying p < z < q.

A total labeling of a graph G is a bijection ¢ from V(G) U E(G) onto the set
[1,|[V(G)| + |E(G)|]. The associated vertez-weight of a vertex v € V(G) is defined
by

wte(v) =€)+ D &(vu),

uENg(v)

and the associated edge-weight of an edge uv € E(G) is defined by
wte(uv) = £(u) + E(uv) + £(v).

A total labeling is called vertez-antimagic total (edge-antimagic total), for short VAT
(EAT), if all vertex-weights (edge-weights) are pairwise distinct. A total labeling that
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is simultaneously vertex-antimagic total and edge-antimagic total is called totally
antimagic total (TAT). A graph that admits a VAT (EAT, TAT) labeling is called
a VAT (EAT, TAT) graph.

In [5] it is proved that every graph is VAT. Using a similar method one can
check that every graph is EAT. The TAT graphs were defined by Baca et al. in
[1], where there were also presented some examples of TAT graphs. The definition
of totally antimagic total labeling is an antipodal version of the concept of totally
magic labeling defined by Exoo et al. in [2] (see also [6]). The TAT labeling is also
an analogy of well known antimagic (edge) labeling defined by Hartsfield and Ringel
in [4]. We refer the reader to [3] for comprehensive references.

In this paper we will introduce a large class of graphs which admit TAT labelings.

2 TAT graphs

An overlaying of a graph G is a bijection 7 from V(G) onto [1,|V(G)|] such that
for any two vertices u, v € V(QG) satisfying m(v) — w(u) = 1, there is an injective
mapping o : Ng(u) — {v} = Ng(v) —{u} such that

m(o(w)) > w(w) for each w € Ng(u) — {v}.

A graph that admits an overlaying is called an overlaid graph.
Note that any two vertices u, v of a complete graph K, satisfy:

Ng,(u) —{v} = V(K,) = {u,v} = Ng, (v) — {u}.
Thus, every bijection from V(K,) onto [1,n] is an overlaying of K.
Observation 1. The complete graph K, is overlaid.

Similarly, Np, (u) —{v} =0 = Np, (v) — {u} for any two vertices u, v of a totally
disconnected graph D,, (i.e., K,,). Therefore, every bijection from V(D,,) onto [1,n]
is an overlaying of D,,.

Observation 2. The totally disconnected graph D,, is overlaid.

We present a connection between overlaid graphs and TAT graphs. First we
suggest that in [1] there were also defined special types of TAT graphs. A total
labeling ¢ of a graph G is called super, if the vertices are labeled with the smallest
possible numbers, i.e., {{(u) : u € V(G)} = [1,|V(G)]]. Similarly, £ is called to be
sharp ordered if wte(u) < wte(v) holds for every pair of vertices u,v of G such that
£(u) < &(v). A graph that admits a super (sharp ordered) labeling is called a super
(sharp ordered) graph.

Now, we are able to prove the crucial result of the paper.

Proposition 1. Let G be an overlaid graph. Then G is a sharp ordered super TAT
graph.
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Proof. Set p = |V(G)|, ¢ = |E(G)|, and suppose that 7 is an overlaying of G. For
every edge e = uv of G we denote by s(e) the sum of labels of its end vertices, i.e.,
s(e) = m(u) + w(v). Now, denote the edges of G by ey, es,..., €, in such a way that
s(e;) < s(ej) holds for every ¢ < j. Consider the mapping £ from V(G) U E(G) to
[1,p + q] defined by

m(x) ifxeV(G),

£<x>={ e vie

p+i ifx=e.

Clearly, € is a super total labeling of G.

Suppose that e; and e; are distinct edges of G. Without loss of generality, let
i <j. As s(e;) < s(ej), we have

wie(e;) = s(e;) +&§(ei) = s(e;) +p+i <sle;) +p+J
= s(e;) +&(e;) = wie(e)).
Therefore, wite(er) < wte(ex) < -+ < wie(ey), ie., € is an EAT labeling.
Now suppose that u and v are two vertices of G such that 7(v) — 7(u) = 1.

Then there is an injective mapping o from Ng(u) — {v} to Ng(v) — {u} such that
m(o(x)) > m(x) for every z € Ng(u) — {v}. This implies

s(ur) = m(u) + w(x) < 7(v) + 7(o(z)) = s(vo(x))

and consequently ¢&(ux) < &(vo(z)). Therefore,

Yoo bur)< Y Ewola) < Y Evy).

zENg(u)—{v} zENg(u)—{v} yENG(v)—{u}

Let £*(u,v) be equal to {(uv) when uv is an edge of G, and 0 otherwise. Then we
have

whe(u) = )+ Y E(u)

2€Ng(u)

—tw+ Y )+ (u,v)

zENg(u)—{v}

<)+ > &) +E(u)

yENG (v)—{u}

=E)+ ) E(vy) = wte(v).

yENG (’U)

Thus, wte(7= 1)) < wteg(7=1(2)) < -+ < wte(w(p)), i.e., € is a sharp ordered VAT
labeling, which completes the proof. O

According to Observations 1 and 2 we immediately have

Corollary 1. The complete graph K, and the totally disconnected graph D, are
sharp ordered super TAT graphs.
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3 Overlaid graphs

In this section we determine some basic properties of overlaid graphs. We also present
some examples of overlaid graphs, i.e., sharp ordered super TAT graphs.

Lemma 1. Let 7 be an overlaying of a graph G with n vertices. Then

deg; (77'(1)) < degg (7 (i + 1))
for every i € [1,n —1].

Proof. Set u=n"1(i) and v =7 !(i+1), fori € [I,n—1]. As w(v) —m(u) = 1, there
is an injective mapping o : Ng(u) — {v} — Ng(v) — {u}. Then |Ng(u) — {v}| <
|Ng(v) — {u}| and consequently |Ng(u)| < |Ng(v)|, i.e., dega(u) < degeq(v). O

Theorem 1. Let G and H be overlaid graphs. If A(G) < §(H) then the disjoint
union G'U H 1is also an overlaid graph.

Proof. Let m (v) be an overlaying of a graph G (H) with p (n) vertices. Consider
the mapping i : V(G U H) — [1, p + n] defined by

) m(w) if w e V(G),
plw) = {p—l— w) it w e V(H).

Evidently, p is a bijection. Now suppose that v and v are two vertices of G U H
satisfying p(v) — p(u) = 1. Distinguish the following cases.

If p(u) < p —1 then v and v are vertices of G. Moreover, 7(v) — 7(u) =
p(v) —p(u) = 1. Thus, there is an injection o from Ng(u) —{v} to Ng(v) —{u} such
that 7(o(w)) > w(w) for each w € Ng(u) — {v}. Clearly, o is an injective mapping
from Ngup(u) —{v} to Ngum(v) —{u} such that p(o(w)) = n(o(w)) > 7(w) = p(w)
for each w € Ngug(u) — {v}.

If (u) = p then u is a vertex of G and v is a vertex of H. Moreover, m(u) = p,
v(v) = 1, and according to Lemma 1, degs(u) = A(G) and degy(v) = 0(H). As
A(G) < 6(H), there is an injective mapping p from Ng(u) = Ngum(u) — {v} to
Ng(v) = Neum(v) — {u}. Since Ng(u) € V(G) and Ng(v) € V(H), u(p(w)) >
p+1>p>p(w), for any w € Ng(u).

If u(u) > p+ 1 then u and v are vertices of H. Moreover, v(v) — v(u) = p(v) —
p(u) = 1. Thus, there is an injection ¢’ from Ny (u) — {v} to Ng(v) — {u} such that
v(o'(w)) > v(w) for each w € Ny (u) — {v}. Clearly, ¢’ is an injective mapping from
Neun (u)—{v} to Nouy (v)—{u} such that u(o’(w)) = p+v(o’(w)) > p+rv(w) = p(w)
for each w € Ngug(u) — {v}.

Therefore, i is an overlaying of G U H. O

Corollary 2. The disjoint union of regular overlaid graphs is an overlaid graph.
Especially, the disjoint union of complete graphs is an overlaid graph.
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Proof. Let G = Ule G, where G; is an overlaid regular graph of degree d;. Without
loss of generality we can assume that d; < dy < --- < d. For every m € [1, k], let
=", G;. Hy = G is an overlaid graph. Now suppose that H,, is an overlaid
graph. As A(H,,) = dpm < dpy1 = 6(Gmy1), by Theorem 1, H,,, U G0 = Hppqq is
also an overlaid graph. Therefore, by induction, H, = G is an overlaid graph.
Any complete graph is regular and, by Observation 1, it is overlaid. Therefore,
G = Uf;l K,, is also an overlaid graph. O

Let mG denote the disjoint union of m copies of a graph G. According to Corol-
lary 2, we immediately have

Corollary 3. If G is a regular overlaid graph then mG is an overlaid graph. Espe-
cially, mIK, is an overlaid graph.

Let M be a subset of the vertex set of a graph G. The graph G (M) is obtained
from G by adding a new vertex w and edges {wu : u € M}. Note that G(M>) is
isomorphic to the disjoint union G'U K; when M = (), and it is isomorphic to the

join G & K; when M = V(G).

Lemma 2. Let 7 be an overlaying of a graph G. Let k be a positive integer satisfying
k+ A(G) < |V(GQ)| and let M = {u € V(G) : m(u) € [k, |V(G)|]}. Then G(M>) is

an overlaid graph.
Proof. Set n = |V (G)| and consider the mapping p : V (G(Mw>)) — [1,14 n] defined
by

) w(x)  ifr e V(G),
plw) = {1 +n ifz ¢ V(Q).

Evidently, p is a bijection. Now suppose that v and v are two vertices of G(M)
satisfying p(v) — p(u) = 1. Distinguish the following cases.

If p(u) < k —1 then u and v are vertices of G. Moreover, 7(v) — 7(u) =
p(v) —p(u) = 1. Thus, there is an injection o from Ng(u) —{v} to Ng(v) —{u} such
that m(o(z)) > m(x) for each # € Ng(u) — {v}. Clearly, o is an injective mapping
from Ne(am)(u) —{v} to Ny (v) —{u} such that p(o(x)) = 7(o(x)) > n(z) = p(x)
for each x € Ng(u) — {v}.

If £ < p(u) < n then u and v are vertices of G. Moreover, w(v) — 7(u) =
p(v) — p(u) = 1. Thus, there is an injection o from Ng(u) — {v} to Ng(v) — {u}
such that 7(o(z)) > m(x) for each z € Ng(u) — {v}. Clearly, the mapping o', given
by

o) = {a(:c) if 2 € Ne(u) — {v},

w if v =w,

is an injective mapping from Ng ) (1) —{v} to Ne ) (v) —{u} such that u(o'(z)) =
m(o(x)) > m(x) = p(x) for each x € Ng)(w) —{v,w} and p(o’(w)) = 14+n = p(w).

If 1(u) = n then u is a vertex of G and v = w. Moreover, 7(u) = n and according
to Lemma 1, degg(u) = A(G), so deggup(u) = 1+ A(G). As deggu)(w) =
14+n—Fk>1+A(G) and {u(z) : © € Neousy(w)} = [k, n], there is an injective
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mapping p from N (u) — {w} to Neus)(w) — {u} such that u(p(z)) > p(x), for
any = € Ne(us)(u) — {w}. O

Theorem 2. Let G be an overlaid graph and let n be a positive integer. Then the
join G & K, is an overlaid graph.

Proof. According to Lemma 2, G @ K; is an overlaid graph. As G & K,, = (G @
K1) ® K1, m € [2,n], by induction, G & K, is an overlaid graph. O

According to Corollary 3, the graph mK, is overlaid. Therefore, we immediately
have

Corollary 4. Let m, r and n be positive integers. Then the graph mK, & K, is
overlaid.

Thus, the complete (n + 1)-partite graph K, ;
and the friendship graph mK, ® K; are overlaid.

1 = mK; & K, the star K,

-----

Lemma 3. Let m be an overlaying of a graph G. Let k be a positive integer satisfying
k<1+6(G) and degg (7' (k +1)) > degg (77 1(k)). Then G(Mv) is an overlaid
graph when M = {u € V(G) : n(u) € [1, k]}.

Proof. Set n = |V(G)] and consider the mapping p : V (G(Mp)) — [1,1+ n] defined
by

1+7n(x) ifzeV(G),

u(a) = { () (@)

1 if z ¢ V(G).

Evidently, p is a bijection. Now suppose that u and v are two vertices of G(M)
satisfying p(v) — p(u) = 1. Distinguish the following cases.

If p(u) = 1 then w is the added vertex, ie., v = w. Moreover, m(v) = 1 and
according to Lemma 1, degg(v) = d(G), so deggum(v) = 1+ 0(G) > k. As
degg ey (w) = k and {u(z) : z € Noum)(w)} = [2,1 + k], there is an injective
mapping p from Ny (w) — {v} to Neus)(v) — {w} such that p(p(x)) > p(x), for
any x € Neus)(w) — {v}.

If 1 < p(u) < k then uw and v are vertices of G. Moreover, w(v) — 7w(u) =
p(v) — p(u) = 1. Thus, there is an injection o from Ng(u) — {v} to Ng(v) — {u}
such that 7(o(z)) > m(x) for each z € Ng(u) — {v}. Clearly, the mapping o', given
by

w if v =w,

o'(z) = {a(x) if x € Ng(u) — {v},

is an injective mapping from Nz (u) —{v} to N (v) —{u} such that p(o’(x))
L+ m(o(x)) > 14+ 7(x) = p(x) for each x € Neuwy(uw) — {v, w} and p(o'(w)) =1
p(w).

If w(u) = k+ 1 then u and v are vertices of G. Moreover, 7(v) — w(u) =
p(v) — p(u) = 1. Thus, there is an injection o from Ng(u) — {’U} to Ng(v ) {u}
such that (o (x)) > 7(z) for each z € Ng(u) — {v}. Asu=n"1(k), v =7k +1),
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degq(v) > degy(u), and there is a vertex y € Ng(v) — {u} such that o(x) # y for
each = € Ng(u) — {v}. Clearly, the mapping o', given by

o) = {a(:c) if 2 € Ng(u) — {v},

Y if v = w,

is an injective mapping from Ne(am) (u) —{v} to Ng ) (v) —{u} such that u(o(z))
I14+7(o(z)) > 1+7(x) = p(x) for each x € Ng)(u) —{v,w} and p(o’(w)) = p(y)
1 = p(w).

If (u(?u) > k + 1 then w and v are vertices of G. Moreover, m(v) — m(u) =
p(v) —p(u) = 1. Thus, there is an injection o from Ng(u) —{v} to Ng(v) —{u} such
that m(o(x)) > w(x) for each x € Ng(u)—{v}. Clearly, o is an injective mapping from
Ne sy () —{v} to Neas) (v)—{u} such that p(o(z)) = 1+n(o(x)) > 1+7(z) = p(x)
for each x € Ngy(u) — {v}. O

Vol

Theorem 3. Let G be an overlaid graph on p wvertices. Let n and m be positive
integers satisfyingn > p—1—90(G) andm < p—1—A(G). Then the join GB(K,UK,,)
1s an overlaid graph.

Proof. m is a positive integer and so A(G) < p—1. According to Theorem 2, G® K,
is an overlaid graph. Therefore, there is an overlaying m of G@® K,,. As deggge . (v) =
n + degg(v) for v € V(G) and deggg, (v) =n — 1+ p for v € V(K,), according to
Lemma 1, {w(v): v € V(G)} =[1,p] and {7(v) : v € V(K,)} = [p+ 1,p+ n]. Since

1+0(GaK,)=1+n+0(G)>p

and

degeer, (171 (p) = n+ A(G)
<n—1+p= degG@Kn (77_1(17 + 1))7

by Lemma 3, (G & K,,)(V(G)>) = G & (K, U K)) is an overlaid graph.
As G (K, UK,) = (G® (K, UK;1))((V(G) UV (K1) ), t € [2,m], by
induction, G @ (K, U K,;,) is an overlaid graph. O

By Corollary 3, the graph sK, is overlaid. Thus, we immediately have

Corollary 5. Let s, r, n and m be positive integers satisfying n > (s — 1)r > m.
Then the join sK, ® (K, U K,,) is an overlaid graph.

Let G and H be disjoint graphs. Let h be a mapping from V(H) to V(G). By
G U, H we denote the graph G U H together with all edges joining each vertex
u € V(H) and h(u) € V(G). Note that if G is a graph on n vertices and h :
V(nH) — V(G) is a mapping such that the image of any vertex of ith copy of H is
the ith vertex of G, then G U, nH is well-known corona of G' with H, denoted by
GoH.

Lemma 4. Let w and v be overlayings of graphs G and H, respectively. Let h be
a mapping from V(H) to V(G) satisfying:
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) v(u) <v(v) = m(h(u) < 7(h(v));
(a2) (Vu,v € V(G % m(u) < 7(v) = degg(u) + [{w : h(w) = u}| < degg(v) +

(a3) (32 € No(r7'(1))) m(h(v~"(IV(H)])) < 7(2).
If A(H) <(G) then GUL H is an overlaid graph.

Proof. Set p = |V(G)| and n = |V (H)|. Consider the mapping u from V(G U, H)
to [1,n + p] defined by

) v(w) if weV(H),
plw) = {n +7(w) if weV(Q).

Evidently, u is a bijection. Now suppose that v and v are two vertices of G U, H
satisfying p(v) — p(u) = 1. Distinguish the following cases.

If p(u) < n then w and v are vertices of H. Moreover, v(v) — v(u) = p(v) —
p(u) = 1. Thus, there is an injection o from Ny (u) —{v} to Ngy(v) — {u} such that
v(o(x)) > v(x) for each z € Ny(u) — {v}. Clearly, the mapping o', given by

o) = {a(:c) if 2 € Ny(u) — {v},
h(v) if z = h(u),

is an injective mapping from Ny, g(u) —{v} to Ngu, n(v) —{u} such that p(o’(z))
v(o(z)) > v(x) = p(z) for each x € Neu, g(u)—{v, h(uw)}, and by (al), p(o’(h(w)))
p(h(v)) = n+mw(h(v)) = n+a(h(u) = p(h(u)).

If u(u) = n then u is a vertex of H and v is a vertex of G. Moreover, v(u) =
m(v) = 1, and according to Lemma 1, degy(u) = A(H) and deg,(v) = (G )
As A(H) < §(G), there is an injective mapping p from Ny(u) to Ng(v) — {z}.
Since Ny(u) C V(H) and Ng(v) € V(G), ulp(w)) > n+1 >n > p(w), for any
w € Ny (u). Therefore, the mapping p/, given by

p@ﬂz{mm if € Nou,sr(u) — {h(w)},

z if © = h(u),

(or p) = p, when h(u) = v) is an injective mapping from Ngy,n(u) — {v} to
Neu,u(v) — {u} such that u(p'(z)) = u(p(x)) > p(z) for each x € Ngy,m(u) —
{v h(u)}, and by (a3), (s (h(w)) = p(2) = 1+ 7(2) = n+ 7(h(w)) = p(h(u))

If p(u) > n then v and v are vertices of G. Moreover, 7(v) — 7(u) = p(v) —
p(u) = 1. Thus, there is an injection o from Ng(u) — {v} to Ng(v) — {u} such that
m(o(x)) > n(x) for each x € Ng(u) — {v}. By (a2), there is an injective mapping o
from {w : h(w) = u} to {w : h(w) = v} UNg(v) — ({u} U{o(z) : 2 € Na(u) — {v}}).
According to (al), p(e(x)) > p(x) for every x € {w : h(w) = u}. Since Ngy, n(u) =
Ng(u) U{w : h(w) = u}, the mapping o', given by

o(e) = {a(x) if 2 € Ne(u) — {0},
o(x) ifze{w:hlw)=u},
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is an injective mapping from Ny, g(u) —{v} to Ngu, n(v) —{u} such that p(o’(z))
plo(x)) =n+r(o(x)) > n+ m(x) = p(z) for each z € Ng(u) — {v} and p(o’(x))
p(o(z)) > p(x) for each z € {w : h(w) = u}.

Let k be a positive integer and let Gy, for ¢ € [0, k], be a graph. Let ng = 1
and n;11 = n; - |V(G)|, for ¢ € [0,k — 1]. Denote by ®(Gy, Gy, ...,G) the graph
satisfying:

O

(b1) UZ o "G, is its spanning subgraph;
(b2) its subgraph induced by V(n;G; Un;11Git1) is n;G; © Gigq, 1 € [0,k — 1];
(b3) any its edge belongs to some induced subgraph considered in (b2).

Theorem 4. Let k be a positive integer and let G; be an overlaid graph for each
i €[0,k]. Suppose that the following conditions are satisfied:

cl) A(Gy) = [V(Go)| = 1;

c2) G, is a d;-reqular graph for each i € [1, kl;

(c1)
(c2)
(¢3) dy = 6(Go) > dy when |V(Go)| > 1;
(c4) d; > diy for eachi € [1,k —1];
(c5)

ch) d;i + |V(Git1)| < dioy + |V(Gy)| for each i € [1,k —1].
Then ©(Go, Gy, ...,Gy) is an overlaid graph.

Proof. Let ng =1 and n;1 = n;-|V(G;)|, for i € [0,k —1]. For j € [1, k|, the regular
graph G is overlaid and, by Corollary 3, n;G; is also an overlaid graph. Therefore,
there is an overlaying v; of n;G;. Moreover, according to proof of Theorem 1, we
can assume that the values of vertices of rth copy of G; belong to [(r — 1)|V(G;)| +
Lr|V(G;)]], r € [1,n;]. This means that v '(t) is a vertex of [t/|V(G;)|]th copy of
G, for each t € [1,n;|V(G;)]].

If Gy = K then ®(Gy, Gy) is isomorphic to G; @ K;. Therefore, by Theorem 2,
the graph ®(Go, G1) is overlaid.

Similarly, if |V(Gg)| > 1 then Gy is overlaid and there is an overlaying my of Go.
Let hy be a mapping from n;G; to Gy given by

ha (v (1) = mo ' ([t/IV(GIT), ¢ € [Lm|V(G)].

Suppose that v and v are vertices of nyG such that vy (u) < vi(v). Let vy(u) =,
v1(v) = s. Then r < s and

7o (ha(u)) = 7o (ha(vy ' (r))) = mo(mg ' ([r/|V(G1)IT))
= [r/IV(G1)[] < (S/\V( ol
= mo (5 ' ([s/|V(G)[1)) = 7o (ha(v1'(s))) = 7o (ha(v)).
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Suppose that u and v are vertices of Gy such that my(u) < m(v). Then, by
Lemma 1, degg, (u) < degg, (v) and

degg, (1) + [{w : hy(w) = u}| = degg, (u) + [V(G1)|
< degg, (v) + [V(Gh)| = degg, (v) + [{w : ha(w) = v}].

Set z = 7, 1(|V(Go)|). According to Lemma 1 and (c1), we have
degg, (2) = A(Go) = [V(Go)| — 1.

Thus, z € Ng, (75" (1)) and mo(he (v7 ' (|V (n1G1)|))) < mo(2).

Moreover, by (¢3), A(n1Gy) = di < §(Gy). Therefore, the assumptions of
Lemma 4 hold, and so the graph GoUy, n1 G is overlaid. As GyUy, n1 Gy is isomorphic
to ®(Go, G1), the graph ©(Go, G1) is overlaid.

Note that in both cases (see proofs of Lemmas 2 and 4) there is an overlaying
71 of ®(Go, G1) such that 7, () is a vertex of [t/|V(G1)[]th copy of Gy, for t €
[1,71|V(G1)]], and 7, 1(¢) is a vertex of Gy, for t > ni|V(G})).

Now suppose that there is an overlaying 7, of O, = ©(Go, G1,...,G,), p € [1, k—
1], such that 7, ' (t) is a vertex of [t/|V(G})[]th copy of G, for t € [1,n,|V(G))]],
and 7' (t) is a vertex of ®(Gy,...,Gp_1), for t > n,|V(G,)|. Define the mapping
hpt1 2 npp1Gpra — Op by

hpi1 (V1 (1) = 7, ([ IV (Gpaa)l]), t € [Lnpa [V (G-

In the same manner as above we can show that if v,1;(u) < v,41(v), uw,v €

Np+1Gprr, then 7, (hy 1 (w) < (hpia (v).
If u € V(n,Gp) then degg (u) + {w : hppi(w) = up| = 1+d, + [V(Gpia)|. If
v E V(@(GQ, ceey Gp—l)) then

dego, (v) + {w : hypa(w) = v} = dego, (v) = 1+ dpy + [V(Gyp)].
Therefore, according to (cb),

dego, (1) + [{w : hpsa(w) = up| < dego, (v) + {w : hppr(w) = v},

for u,v € V(0O,) such that m,(u) < m,(v).
Let z = hy(v,'(1)). Then z € O(Go,...,Gp1) and m,y(2) > n,|V(G,)|. As
v, ' (1) = 7, (1), 2 belongs to No, (7, (1)) and

(1 (V1 (IV (1 Gpn)]) = mp(m,  (141))

= np1 = np|V(Gy)| < mp(2).

By (c4), A(np+1Gpt1) = dpy1 < 1 +d, = §(0,). Therefore, the assumptions of
Lemma 4 hold, and so the graph O,Uy, 1,4 1Gpy1 is overlaid. As OpUp, 1y 11G oyt is
isomorphic to ®(Gy, G, . . ., Gp+1), the graph ©(Go, Gy, ..., Gpi1) is overlaid. More-
over, by proof of Lemma 4, there is an overlaying m,1 of ©(Go, Gy, ..., Gpi1) such
that w1 (¢) is a vertex of [¢/|V(Gp41)|]th copy of Gpiy, for t € [1,ny41|V(Gpia)|],
and 7 (t) is a vertex of O,, for t > 1, 1|V (Gpy1)|.

p+1
Therefore, by induction, ®(Gg, Gy, ..., Gg) is an overlaid graph. O
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A tree in which every vertex that is not a leaf has the degree d is called d-regular
tree. If Gy is a tree and G, ..., Gj are totally disconnected graphs then the graph
®&(Go, Gy, ..., Gg) is a tree. Thus, by Theorem 4, we immediately have

Corollary 6. Let r be a positive integer. Then the (r+ 1)-reqular trees (K1, Dyy1,
D,,...,D,) and ©(Ky, D,,...,D,) are overlaid graphs.

Let P, denote a path on n vertices. Clearly, P, = K, P» = Ky and P3 = Ky,
are overlaid. The path on n > 4 vertices is a 2-regular tree (K, Dy, ..., D) when
n is even, and O(K7y, Dy, Dy, ..., Dy) when n is odd. Thus, we get

Corollary 7. The path P, is an overlaid graph for each n > 1.
Corollary 8. The cycle C,, is an overlaid graph for each n > 3.

Proof. By Observation 1, the cycle C'5 = K3 is an overlaid graph.

The path P,, m > 3, is overlaid. Thus, there is an overlaying 7 of P,,. By
Lemma 1, 77*(1) and 7~1(2) are vertices of degree 1, and 7 !(3) is a vertex of
degree 2. Therefore, by Lemma 3, P,,(Mp>) is an overlaid graph when M = {u €
V(P,,) : m(u) € [1,2]}. Clearly, the graph P,,(M) is isomorphic to Cy, 1. O

Combining Theorem 2 and Corollary 7 (Corollary 8) we get
Corollary 9. The fan P, ® K, and the wheel C,, & K; are overlaid graphs.

Theorem 5. For any graph G there is an overlaid graph which contains an induced
subgraph isomorphic to G.

Proof. 1f G is totally disconnected then, by Observation 2, it is overlaid.

If G = G'"UD,, and there is an overlaid graph H’ containing an induced subgraph
isomorphic to G’ then, by Theorem 1, the disjoint union H' U D,, is also an overlaid
graph. Clearly, H' U D,, contains an induced subgraphs isomorphic to GG. Therefore,
next we can assume that §(G) > 1.

Set p = |V(G)], ¢ = |E(G)| and k = p + 2¢g + 1. Denote the vertices of G by
U1,02,...,0U, in such a way that degq(v;) < degq(v;) holds for every i < j. For
i€[l,p], let s; = Zizl degq(v:). Now consider the graph H satisfying:

() V() = {ur i € (1K}
(ii) the subgraph of H induced by {v; : i € [1,p]} is G;
(iii) the subgraph of H induced by {v; :i € [p+ 2, k]} is Ky
(iv) BE(H)=U_ {viqivj 1 j €k +1—s;,k]}UE(G) U E(Ky,).

Define the bijection 7w : V(H) — [1,k] by m(v;) = ¢ and distinguish the following
cases.

Let ¢ = 1. Then Ngy(v1) = Ng(vi) and Ny (v2) = Ng(ve) U{v; 1 j € [k+1—
dege(v1), k]}. As |[Ng(v1)| = degg(vi) = |[k + 1 — degy(v1), k]|, there is an injective
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mapping o from Ng(vy) —{ve} to {v; : j € [k+1—degs(v1), k]}. Clearly, n(o(z)) >
p > w(x) for every x € Ny (v1) — {va}.

Let ¢ € [2,p —1]. Then Ny(v;) = Ng(v;)) U{v; : 7 € [k +1— s;_1,k]} and
Nu(vig1) = No(vipn) Ufvs 2 j € [k +1 = s, k]}. As [No(v)| = degg(vi) = [k +
1 — s,k — s,_1]|, there is an injective mapping p from Ng(v;) — {vis1} to {v; : j €
[k +1—s;,k—s;_1]}. Clearly, the mapping o, given by

() = {p<x> if v € No(vi) = {vis},

x ifre{v,:jelk+1—s_1,k},

is an injective mapping from Ny (v;) — {vit1} to Ny (vip1) — {v;} such that 7(o(x)) =
m(p(x)) > p > ©(z) for each z € Ng(v;) — {vit1} and w(o(2z)) = 7(z) for z € {v; :
j -~ [k? +1 - Si—1, k’]}

Let i = p. Then Ng(v,) = Ng(vp) U{v; 1 j € [k+1—s,_1,k]} and Ny(vpq) =
{vj:jek+1—s,kl}. As |Ng(vpy)| = |k +1— sy, k — 5,_1]|, there is an injection
p from Ng(v,) to {v; : j € [k +1— sy, k — s,-1]}. Clearly, the mapping o, given by

o(x) = p(z) if x € Ng(vp,),
x if v e{v;:jelk+1—s,_1,k|},

is an injective mapping from Ny (v,) —{vp+1} to Ng(vy41) —{v,} such that 7(o(x)) =
m(p(x)) > p > mw(x) for each © € Ng(v,) and 7(o(x)) = n(z) for x € {v; : j €
[k+1—sp_1,k]}

Let: € [p—f-l, k’—l] Then {Uj j € [p+1, k?]} Q NH(UZ)U{UZ} Q NH(UZ‘+1)U{UZ‘+1}.
Therefore, the injection o from Ny (v;)—{viy1} to Ny (viy1)—{v:}, given by o(z) = =,
satisfies w(o(x)) = 7(x).

Thus, 7 is an overlaying of H and G is an induced subgraph of the overlaid graph
H. O

Combining Theorem 5 and Proposition 1 we get

Corollary 10. For any graph G there is a sharp ordered super TAT graph which
contains an induced subgraph isomorphic to G.

4 Conclusion

In the paper we present overlaid graphs. By Proposition 1, these graphs are sharp
ordered super TAT. So, we present a large class of sharp ordered super TAT graphs.
Moreover, two conjectures are stated in [1] (namely, 1: every graph G®K; is TAT and
2: every complete graph is TAT). Corollary 1 confirms Conjecture 2. Conjecture 1 is
still open, however Corollary 10 is a weak version of this conjecture.

Hartsfield and Ringel [4] conjectured that every connected graph except P, admits
a vertex-antimagic edge labeling. We believe that the following analogy of this
conjecture is true.

Conjecture. Fvery graph is TAT.
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