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Abstract

Cameron gave an upper bound for the size of any s-distance family of
permutations. We prove a modulo p version of Cameron’s result. In the
proof we use the polynomial subspace method. As an application we
describe here an explicit construction which produces for every integer

m > 1 a graph on at least m(1+o(1)) 2
9

logm
log logm vertices containing neither a

clique of size m nor an independent set of size m.

1 Introduction

First we introduce some notation. Let n be a positive integer and [n] stand for the
set {1, 2, . . . , n}.

Let Sn denote the complete group of permutations. Let π ∈ Sn be any permuta-
tion, then

Fix(π) := {i ∈ [n] : π(i) = i}
denotes the set of fix-points of π.

If F ⊆ Sn is any family of permutations, then define the distance set of F as

L(F) := {n− |Fix(π−1τ)| : π, τ ∈ F , π �= τ}.
It is immediate from the definition that 0 /∈ L(F). We say that F ⊆ Sn is an

s-distance family of permutations, if s = |L(F)|.
Cameron proved in [8] the following remarkable result.

Theorem 1.1 Let F be an s-distance family of permutations of Sn, then

|F| ≤
∑

χ∈Irr(Sn),dim(χ)≤s

χ(1)2, (1)

where Irr(Sn) is the set of irreducible characters of Sn.
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Remark. Cameron showed that for fixed s and large n, the order of magnitude of
the bound

∑
χ∈Irr(Sn),dim(χ)≤s χ(1)

2 is asymptotically

p(s)n2s

(s!)2
, (2)

where p(s) is the number of partition of s.

Remark. An (n, d)-permutation code is a subset C of Sn such that the Hamming
distance between any two distinct elements of C is at least equal to d. These codes
were the main motivation for the investigation of the upper bounds for the size of
s-distance families of permutations. Blake proposed first these codes in 1974 in [7]
as error-correcting codes for powerline communications (see [7]). This application
motivated the study of the largest possible size that a permutation code with fixed
parameters (n, d) can have.

Cameron obtained also in [8] the following upper bound from Ray-Chaudhuri
and Wilson’s Theorem (see [16]). We use this upper bound in our explicit Ramsey
construction.

Theorem 1.2 Let F be an s-distance family of permutations of Sn, then

|F| ≤
(
n2

s

)
. (3)

Our main result is the following modulo p version of Cameron’s Theorem 1.2.

Let F be a permutation family of Sn. and 1 < m < n be an integer. We say that
F is a modulo m s-distance family if there exists an S ⊆ [m− 1] = {1, 2, . . . , m− 1},
|S| = s subset such that for each � ∈ L(F) there exists a t ∈ S with � ≡ t (mod m).
Specially it follows from the definition that if F is a modulo m s-distance family,
then

{km : k ∈ Z} ∩ L(F) = ∅.

Theorem 1.3 Let p be a prime. Let F be a modulo p s-distance family. Then

|F| ≤
s∑

i=0

(
n2

i

)
. (4)

Let s > 0 be a fixed integer and ki > 0 be arbitrary integers for 1 ≤ i ≤ s. The
Ramsey number R(k1, . . . , ks) is the smallest integer n such that in any s-coloring
of the edges of a complete graph on n vertices Kn, there exists an 1 ≤ i ≤ s such
that there is a homogeneous Kki in the ith color (i.e. a complete subgraph on ki
vertices all of whose edges are colored with the ith color). Ramsey showed in [15]
that R(k1, . . . , ks) is finite for any s integers k1, . . . , ks. Erdős in [9] obtained by
probabilistic arguments the following non-constructive lower bound for the diagonal
Ramsey numbers R(n, n):
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Theorem 1.4 If
(
m
n

) · 21−(n2) < 1, then R(n, n) > m. Thus R(n, n) > 	2n/2
 for all
n ≥ 3.

One of the most striking applications of the Frankl-Wilson theorem [10] for prime
moduli was an explicit construction of graphs of size exp((1+o(1))1

4
log2 k/ log log k)

without homogeneous complete subgraph Kk. Grolmusz in [12] gave an alternative
construction of explicit Ramsey graphs of the same logarithmic order of magnitude.
This construction is easily extendable to the case of several colors.

Grolmusz proved the following Theorem in [12].

Theorem 1.5 For r ≥ 2, t ≥ 3, there exists an explicitly constructible r-coloring
of the edges of the complete graph on exp(cr

(log t)r

(log log t)r−1 ) vertices such that no color

contains a complete graph on t vertices. Here cr = c/p2rr ≈ c(r ln r)−2r, where pr is
the rth prime, and c > 0 is an absolute constant.

Alon in [1] obtained a similar explicit construction of Ramsey graphs. He used
this construction disproving a conjecture of Shannon about Shannon capacity.

Barak, Rao, Shaltiel and Widgerson in [6, Theorem 1.4] obtained the largest
explicit Ramsey-graphs known to date.

Theorem 1.6 Let C > 1 be a fixed positive number. Then there exists an explicit
construction of graphs such that the construction produces a graph on at leastm(logm)C

vertices containing neither a clique of size m nor an independent set of size m.

Their construction is quite complicated. As an application of our Theorem 1.3,
we give here a simpler explicit Ramsey construction based on permutation families.

Theorem 1.7 Let p be a prime. For m := max(
(
p4

p

)
,
∑p−1

i=0

(
p4

i

)
) there exists an

explicit construction of graphs such that the construction produces a graph on at least

m(1+o(1)) 2
9

logm
log logm vertices containing neither a clique of size m nor an independent set

of size m.

2 The proof

We assign for each π ∈ Sn an n×n permutation matrix Aπ ∈ Mat(Q, n) over Q with
the following rule:

Aπ[i, j] :=

{
1 if π(i) = j
0 otherwise,

where 1 ≤ i, j ≤ n.

We can consider also this matrix Aπ ∈ Mat(R, n) as a vector v(π) ∈ {0, 1}n2 ⊆
Rn2

. Here v(π)i,j := Aπ[i, j] for each 1 ≤ i, j ≤ n. This means that we defined v(π)
as a concatenation of the rows of the matrix A.
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Clearly
Tr(Aπ) = |Fix(π)|, (5)

by the definition of the matrix Aπ and A is a group homomorphism from Sn to the
matrix group GL(R, n):

Aπ · Aτ = Aπ·τ .

We recall here for the reader’s convenience the following criterion (see [4, Propo-
sition 5.7]).

Proposition 2.1 (Determinant Criterion) Let F denote an arbitrary field. Let fi :
Ω → F be functions for each i = 1, . . . , m and vi ∈ Ω elements such that the m×m
matrix B = (fi(vj))

m
i,j=1 is nonsingular. Then f1, . . . , fm are linearly independent

functions of the space FΩ.

The following simple observation is a key ingredient in our proof (see [4, Propo-
sition 5.16]). Recall that a polynomial is multilinear if it has degree at most one in
each variable.

Proposition 2.2 (Multilinearization) Let F denote an arbitrary field and Ω :=
{0, 1}n ⊆ Fn. If f ∈ F[x1, . . . , xn] is an arbitrary polynomial of degree at most s
then there exists a unique multilinear polynomial g ∈ F[x1, . . . , xn] of degree at most
s such that

f(v) = g(v)

for each v ∈ {0, 1}n.

This is clear since we can use the identity x2
i = xi valid over Ω = {0, 1}n.

The proof of Theorem 1.3:

Let K := Fp[x1,1, . . . , xn,n] denote the polynomial ring in the variables xi,j, 1 ≤
i, j,≤ n over the finite field Fp.

For each π ∈ F consider the polynomial

Pπ(x1,1, . . . xn,n) := n−
n∑

i=1

n∑
j=1

v(π−1)i,j · xj,i ∈ K.

Let τ, π ∈ Sn be two fixed permutations. Then v(τ) = (v1,1, . . .vn,n) ∈ {0, 1}n2

and clearly

Pπ(v1,1, . . .vn,n) = n−
n∑

i=1

n∑
j=1

v(π−1)i,j · vj,i =

= n− Tr(Aπ−1Aτ ) = n− Tr(Aπ−1·τ ) = n− |Fix(π−1 · τ)|.
Since F is a modulo p s-distance family, there exists an S ⊆ [m − 1], |S| = s

subset such that for each � ∈ L(F) there exists a t ∈ S with � ≡ t (mod m).
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Define
Qπ(x1,1, . . . xn,n) :=

∏
s∈S

(Pπ(x1,1, . . . xn,n)− s) ∈ K.

Let Rπ denote the unique multilinearization of Qπ. Clearly deg(Rπ) ≤ deg(Qπ) ≤
s, because |S| = s.

Now we prove that the set of polynomials {Rπ : π ∈ F} are linearly independent
over Fp.

1. Let π �= τ ∈ F be two different permutations. Let v(τ) = (v1,1, . . .vn,n) ∈
{0, 1}n2

. Then

Rπ(vτ ) = Qπ(vτ ) =
∏
s∈S

(Pπ(v1,1, . . .vn,n)− s) =

=
∏
s∈S

(n− |Fix(π−1 · τ)| − s).

But F is a modulo p s-distance family, hence for each � ∈ L(F) there exists a t ∈ S
with � ≡ t (mod p)). Clearly n−|Fix(π−1 · τ)| ∈ L(F) by definition of L(F), hence

∏
s∈S

(n− |Fix(π−1 · τ)| − s) ≡ 0 (mod p)

Consequently
Rπ(vτ ) ≡ 0 (mod p).

2. On the other hand,

Rπ(vπ) =
∏
s∈S

(−s),

and since S ⊆ [p− 1], hence

Rπ(vπ) �≡ 0 (mod p).

From Proposition 2.1 follows immediately that the set of polynomials {Rπ : π ∈
F} are linearly independent over Fp. But {Rπ : π ∈ F} are multilinear polynomials

and deg(Rπ) ≤ s, hence |F| ≤ ∑s
i=0

(
n2

i

)
.

3 The construction

In the following we prove Theorem 1.7.

Let p denote a fixed prime number. Let n := p2 and t := n!.

We define a 2-colored complete graph with vertex set Sn. Let Kt denote the
complete graph with vertex set Sn. Let π, τ be two fixed, distinct permutations. We
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color an edge {π, τ} ∈ E(Kt) by blue iff n − |Fix(π−1 · τ)| ≡ 0 (mod p), and red
otherwise.

Suppose that Kt contains a homogeneous red complete subgraph C on r vertices.
Then the permutations, corresponding to the vertices of C, give a family F of r
permutations, such that n − |Fix(π−1 · τ)| �≡ 0 (mod p) for all π, τ ∈ F , π �= τ .
Hence F is a modulo p (p − 1)-distance family with S = [p − 1]. Consequently, by
Theorem 1.3,

r ≤
p−1∑
i=0

(
n2

i

)
. (6)

But
∑p−1

i=0

(
n2

i

)
is asymptotically n

3
√

n
2 by the choice of n and p.

Now suppose thatKt contains a homogeneous blue complete subgraphD on k ver-
tices. Then the permutations, corresponding to the vertices of D, give a permutation
family G of k permutations, such that n−|Fix(π−1 ·τ)| ≡ 0 (mod p) for all π, τ ∈ G,
π �= τ . Hence G is a p-distance permutation family, where L(G) := {kp : 1 ≤ k ≤ p}.

Consequently Theorem 1.2 yields to the bound

k ≤
(
n2

p

)
. (7)

But
(
n2

p

)
is asymptotically n

3
√

n
2 by the choice of n and p.

But t = n!, hence Theorem 1.7 follows from an easy computation using the
bounds (6) and (7).
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G. HEGEDÜS /AUSTRALAS. J. COMBIN. 64 (2) (2016), 347–353 353

[7] I. F. Blake, Permutation codes for discrete channels, IEEE Trans. Inf. Theory
20(1) (1974), 138–140.

[8] P. J. Cameron, Metric and geometric properties of sets of permutations, in Alge-
braic, Extremal and Metric Combinatorics, London Math. Soc. Lec. Notes 131,
Cambridge University Press, 1988, pp. 39–53.
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