AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 64(1) (2016), Pages 154-165

The complexity of counting poset and
permutation patterns

JOSHUA COOPER ANNA KIRKPATRICK

Mathematics Department
Unaversity of South Carolina
1523 Greene St., Columbia, SC 29208
U.S.A.

Abstract

We introduce a notion of pattern occurrence that generalizes both clas-
sical permutation patterns as well as poset containment. Many ques-
tions about pattern statistics and avoidance generalize naturally to this
setting, and we focus on functional complexity problems — particularly
those that arise by constraining the order dimensions of the pattern and
text posets. We show that counting the number of induced, injective
occurrences among dimension-2 posets is #P-hard; enumerating the lin-
ear extensions that occur in realizers of dimension-2 posets can be done
in polynomial time, while for unconstrained dimension it is GI-complete;
counting not necessarily induced, injective occurrences among dimension-
2 posets is #P-hard; counting injective or not necessarily injective occur-
rences of an arbitrary pattern in a dimension-1 text is #P-hard, although
it is in FP if the pattern poset is constrained to have bounded intrinsic
width; and counting injective occurrences of a dimension-1 pattern in
an arbitrary text is #P-hard, while it is in FP for bounded-dimension
texts. This framework naturally leads to a number of open questions,
chief among which are (1) is it #P-hard to count the number of oc-
currences of a dimension-2 pattern in a dimension-1 text, and (2) is it
#P-hard to count the number of permutations avoiding a given pattern?

1 Introduction

A tremendous amount of study has been dedicated to understanding occurrence or
non-occurrence of combinatorial substructures: which substructures are avoidable
and counting objects that avoid them, what substructures random and random-
like objects possess, enumerating substructures in general objects, describing the
subclass of objects that have particular substructure counts, etc. Much interesting
work (particularly in model theory) has concerned the completely general question of
substructure occurrence, but the degree of abstraction involved changes the nature

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 155

of which questions are useful to ask. However, here we investigate a somewhat more
specific perspective that still allows us to address important questions from two
disparate but highly studied areas: permutation patterns and subposet containment.
In order to illustrate this unifying viewpoint, we first describe these two topics.

1. A permutation of n is a bijection from [n] = {1, ..., n} to itself for some positive
integer n. Given a permutation o, called a pattern, and another permutation 7
of n, called the text, we say that o occurs on or matches the index set Z C [n] in
7 if 7|7 is order-isomorphic to o; that is, if Z = {aq, ..., ax} with a; < - -+ < ay,
for any 4, j € [k], 0(i) < o(j) if and only if 7(a;) < 7(a;). Interesting questions
about pattern occurrence include the complexity of counting the number of
occurrences of a pattern, the distribution of pattern counts for random per-
mutations, enumeration of permutations which avoid a given pattern, and the
structure of permutations with specified pattern counts.

2. A poset of size n is a set (the ground set) of cardinality n associated with a par-
tial order of the set, that is, a binary relation which is reflexive, antisymmetric,
and transitive. Given posets P = (S5, <p) and @ = (1, <), we say that @
contains P (as a subposet) on the set U C T if there is an order-preserving
bijection between P and Q|y; that is, if there exists a bijection f : S — U so
that, for x,y € S, x <p y implies f(x) <g f(y). Furthermore, the containment
is said to be induced if the implication is in fact biconditional, and unlabelled
if it is understood only up to order automorphisms of P. Interesting ques-
tions about poset containment include the complexity of counting the number
of subposets of a given type, the size of the largest subposet of a given poset
not containing a fixed subposet, and the nature of linear extensions of a poset
(which correspond in the present language to occurrences of a poset in a chain
— a total order — of equal size).

To unify these perspectives, we introduce a notion of pattern occurrence that
generalizes classical permutation pattern matching as well as poset containment. In
the most general formulation, let P and () be posets which we term the pattern and
text posets, respectively. We say that P occurs at a subposet Q' of @ if there exists
an onto function f : P — @ so that f is order-preserving, i.e., v <p w implies
f(v) <g f(w); in this case, f is called an occurrence of P in (). Furthermore, we
say that the occurrence is induced if f is in fact an order isomorphism, i.e., f is an
occurrence so that f(v) <o f(w) implies v <p w, and we say that the occurrence
is injective (bijective) if f is injective (respectively, @)’ = Q). One can also speak of
unlabeled pattern occurrences as equivalence classes of occurrences from a pattern P
to a text () modulo automorphisms of P.

We reformat several classical problems in the language of permutation patterns
using the notion of order dimension (sometimes called Dushnik-Miller dimension
[6]). Given a poset P, a linear extension of P is a bijective occurrence of P in a
chain C (a totally ordered poset). We use an equivalent definition from poset theory
interchangeably with this: a linear extension is a total order <’ on the ground set
of P so that v <p w implies v <" w for any v,w € P. A family R = {f1,..., f.} of

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 156

linear extensions of P is said to be a realizer of P if a relation v < w is in P if and
only if f;(v) <¢ fj(w) for every j € [r]; a realizer R is minimal if and only if it has
the fewest possible number of elements among all realizers of P; the cardinality of a
minimal realizer of P is the dimension dim(P) of P. The width of a poset is the size
of its largest antichain, i.e., subset of vertices between which there are no relations.
An automorphism of a poset is a bijective occurrence of a poset in itself.

One of the main reasons that order dimension gives rise to interesting questions
about poset pattern occurrence is the fact that unlabeled, induced, injective pattern
occurrence corresponds in a precise way to permutation pattern matching when both
pattern and text have dimension 2. In particular, suppose dim(P) = dim(Q) = 2,
and let P have a realizer consisting of ([k], <) and ([k], <}) and @ has a realizer con-
sisting of ([n], <) and ([n], <f). One can think of P as representing the permutation
op of k such that op(i) < op(j) if and only if ¢ <% j and of @ as similarly repre-
senting og of n. Proposition 3.1 provides a rubric connecting permutation pattern
matching to poset patterns occurrence in dimension 2.

We also refer to standard texts in computational complexity theory to precisely
define hardness of decision and functional complexity problems (e.g., [1]). Roughly,
a decision problem is in P if the answer can be obtained in polynomial time (in the
size of the input instance); it is in NP if the answer can be certified in polynomial
time; it is NP-hard if every problem in NP can be reduced to it in polynomial time
(i.e., it is at least as hard as all problems in NP); it is NP-complete if it is NP-hard
and in NP. Similarly, a function problem (a computational problem whose output
is an integer instead of only a single bit) is in FP if the answer can be obtained
in polynomial time (in the size of the input instance); it is in #P if it consists of
computing the number of correct solutions to a problem in NP; it is #P-hard if the
problem of computing the number of correct solutions to any problem in NP can be
reduced to this problem in polynomial time; it is #P-complete if it is #P-hard and
in #P.

2 Results

In the following, we denote by P a pattern poset and by @) a text poset.

Theorem 2.1. If dim(P) = dim(Q) = 2, the problem of computing the number of
unlabeled, induced, injective occurrences of P in Q) is #P-hard.

Given a permutation o of n, there is a poset D(o) associated with o, whose
ground set is [n] and ¢ <p() j if and only if ¢ < j and o(i) < o(j). In other
words, D(o) is the two-dimensional poset with realizer comprised of the ordinary
total order < on [n] and the pullback ¢*(<). We can define an automorphism of
o simply to be an automorphism of D(c). A not-necessarily-induced match of a
permutation pattern ¢ in a permutation text 7 is an occurrence of D(o) in D(7); in
the language of permutations, these are maps between the corresponding index sets
that preserve co-inversions but not necessarily inversions. (For a permutation o € &,,
and i, j € [n], the pair {4, j} is said to be an inversion if (i — j)(o(i) —o(j)) < 0 and
a co-inversion if (i — j)(o(i) —o(j5)) > 0.)

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 157

Proposition 2.2. The problem of counting the number of automorphisms of a dim-
ension-2 poset is in FP; equivalently, the problem of counting the number of auto-
morphisms of a permutation is in FP.

Note the constrast with poset automorphism counting in general. Indeed, poset
automorphism counting is at least as hard as bipartite poset automorphism counting,
which is easy to see is polynomial-time equivalent to bipartite graph automorphism
counting; bipartite graph isomorphism counting is known to be as hard as general
graph isomorphism counting by, for example, [10]. By [11], this is polynomial-time
reducible to the graph isomorphism decision problem, and is therefore so-called GI-
complete, a complexity class widely believed to be strictly between P and NP-hard.

Theorem 2.3. If dim(P) = dim(Q) = 2, the problem of computing the number of
labeled, induced, injective occurrences of P in Q) is #P-hard.

Corollary 2.4. For any pattern P and text (), the problem of computing the number
of (labeled or unlabeled) induced, injective occurrences of P in Q) is #P-hard.

Theorem 2.5. If dim(P) = dim(Q) = 2, the problem of computing the number
of (labeled or unlabeled) not necessarily induced, injective occurrences of P in Q) is
#P-hard.

Corollary 2.6. Deciding whether a given dimension-2 poset has a not necessarily
induced, injective, unlabeled match in another dimension-2 poset is NP-complete.

Theorem 2.7. [f dim(Q) = 1, the problem of counting the number of (injective or
not necessarily injective) occurrences of an arbitrary P in Q is #P-hard.

This essentially a restatement of Brightwell and Winkler’s famous result that
counting the number of linear extensions of a poset is #P-hard. By contrast, some
special cases of this problem are in fact easy. Before proceeding, we define the (Gallai)
modular decomposition® of a poset. Given P = (5, <), define a subset T' C S to be a
module of P if, for all u,v € T and x € S\ T, u < x if and only if v < z and = < w if
and only if z < v. A module T is strong if, for any module U C S, UNT # () implies
U CTorT CU. Thus, the nonempty strong modules of P form a tree order, called
the (Gallai) modular decomposition of P. A strong module or poset is said to be
indecomposable if its only proper submodules are singletons and the empty set. It is
a result of Gallai ([8]) that the maximal proper strong modules of P form a partition
Gal(P) of T, and it is straightforward to see that the quotient poset P/ Gal(P) is
well-defined. The comparability graph G(P) of a poset P has as its vertex set the
ground set of P and has an edge {z,y} for © # y if z <p y or y <p z. Specifically,
Gallai showed the following.

Theorem 2.8 (Gallai [8]). Given a poset P such that |P| > 2, one of the following
holds.

!Unfortunately, there are quite a few names in the literature given to modules in addition to
modules: autonomous sets, intervals, homogeneous sets, partitive sets, and clans, for example.

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 158

1. (Parallel-Type) If G(P) is not connected, then Gal(P) is the family of subposets
induced by the connected components of G(P) and P/ Gal(P) is an antichain.

2. (Series-Type) If the complement G(P) of G(P) is not connected, then Gal(P)
is the family of subposets induced by the connected components of G(P) and
P/Gal(P) is a chain.

3. (Indecomposable) Otherwise, |Gal(P)| > 4 and P/Gal(P) is indecomposable.

Define the intrinsic width iw(P) of a poset as the maximum width of the posets
P|r/ Gal(P|r) over all nodes T of the tree order given by the Gallai modular decom-
position of P. (So, for example, series-parallel posets are characterized by having
intrinsic width 1.) The following strengthens a result of Steiner ([14]), who provides
a similar, albeit incomplete, proof of a slightly weaker result.

Theorem 2.9. If the intrinsic width of a poset is bounded, its number of linear
extensions (i.e., bijective occurrences as a pattern in a dimension-1 text poset) can
be computed in polynomial time. In particular, given a chain Q, if iw(P) < k, there
is an algorithm that computes in O(n™>**++1) time the number of occurrences of P

in Q.

Theorem 2.10. If dim(P) = 1, then counting the number of injective occurrences
of P in an arbitrary poset Q) is #P-hard.

3 Proofs

Proposition 3.1. The matches of op in og are in bijection with the unlabeled,
induced, injective occurrences of P in Q).

Proof. Note that the matches of op in ¢ correspond exactly with certain subsets of
[n] of size k, namely, those Z € ([Z}) so that og|z is order-isomorphic to op. Suppose
Z={r1 <---<r}, and define f : [k] = [n] by f(i) = r;. We claim that f provides
an isomorphism between P and)|z, and thus is an induced, injective occurrence
of P in @ on the set f(Z). Note that, for i,j € [k], if i <p j, then ¢ < j and
op(i) < op(j), whence r; < r; and og(r;) < o¢(r;j), so ri = f(i) <¢ f(j) = ry;
furthermore, this argument is reversible, so ¢ <p j if and only if f(i) <g f(j).

We now show that this map from matches of op in og to occurrences of P in ()
is unique up to automorphisms of P. Suppose that g and h are induced, injective
occurrences of P in @ with g([k]) = h([k]), so i <p j if and only if g(i) <¢ ¢(j) if
and only if h(i) <g h(j). Define 7 = h™' o g. We claim that 7 is an automorphism
of P. Indeed, suppose i,j € [k]; we wish to show that 7(i) <p 7(j) if and only
if i <p 7. Indeed, 7(i) <p 7(j) if and only if h='(g(i)) <p h™*(g(j)) if and only
if h(h(g(2))) <o h(h~(g(4))) if and only if g(i) <g ¢(j) if and only if i <p j.
Therefore, matches from op to o correspond bijectively to equivalence classes under
automorphisms of P of induced, injective occurrences of P in @), i.e., unlabeled,
induced, injective occurrences of P in Q). O

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 159

It is easy to see that the not necessarily induced matches of op in o are also
in bijection with the not necessarily induced, unlabeled, injective occurrences of P

in Q.

Proof of Theorem 2.1. Note that, by Proposition 3.1, the problem of computing the
number of unlabeled, induced, injective occurrences of P in () is polynomial-time
reducible to the problem of counting matches of op in og. Since the pattern and
text here are arbitrary, by [3], this is a #P-hard computational problem. O

The next proof closely resembles in some aspects the argument for Theorem 5

of [7].

Proof of Proposition 2.2. Let My, ..., My be the indecomposable strong modules of
P. By Theorem 4.2 of [4], each P[M;] has at most two automorphisms. In particular,
if (<}, <?) is a realizer of P[M;] (unique up to ordering by [8]), and 7 is the permu-
tation so that a <} b if and only if 7;(a) <2 7;(b), then P[M;] has either no nontrivial
automorphisms, or else 7; is its only one. Note that it is certainly polynomial-time
to check if 7; is indeed an automorphism; let ¢ < k& < |P| be the number of such i,
so that computing 2! is in FP. It is now straightforward to describe all automor-
phisms of P. Since automorphisms preserve (strong) modules, all automorphisms
of P arise as automorphisms of the indecomposable strong modules composed with
automorphisms of the tree corresponding to the Gallai decomposition. Furthermore,
series-type nodes have only trivial automorphisms, while parallel-type nodes can be
arbitrarily reordered, so the number of automorphisms has size

2" T | Gal(P)|!

PyCP

where the P, vary over all parallel-type strong modules of the Gallai decomposition.
By [2], it is possible to compute the entire Gallai decomposition in polynomial time;
since

log J] 1Gal(P)|l < > |Gal(Ry)* < (> |Gal(Ry)|)* < 4|PP,

PyCP PyCP PyCP

this shows that computing the number of automorphisms of a dimension-2 poset is
in FP. (The total number of vertices of a rooted tree none of which have exactly
one child is at most twice the number of leaves.) O

Proof of Theorem 2.3. By Proposition 2.2 the problem of computing the number
of labeled, induced, injective occurrences of one dimension-2 poset in another is
polynomial-time reducible to the problem of computing the number of unlabeled, in-
duced, injective occurrences of one dimension-2 poset in another. This latter problem
is #P-hard by Theorem 2.1. O

Proof of Corollary 2.4. This follows immediately from Theorems 2.1 and 2.3, since
the problem without dimension constraints is more general. O

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 160

The next proof involves a modification of the argument of [3], and in fact can be
used to provide another proof of the #P-hardness of permutation pattern matching
because all of the matches involved are in fact induced.

Proof of Theorem 2.5. Since not necessarily induced, unlabeled, injective occurr-
ences of a dimension-2 poset P in a dimension-2 poset () are equivalent by Proposition
3.1 to not necessarily induced matches of op in o, we show that the latter problem
is #P-hard. Suppose ¥ is an instance of 3-SAT over n variables {z1,...,x,}, i.e.,

X=CiN---NCy

where C; = (v} V v} V v}), each v} being a literal of the form z,q) or —Zag),
a(i,j) € [n]. We assume that no variable occurs both positively and negatively
in the same clause. Define a pattern 7 and text 7 permutation as follows. More
correctly, for convenience of notation, we define two sequences of distinct reals which
can be interpreted as permutations. We treat sequences and words interchangeably,
writing concatenation as (-)-product. Then

r=a% ..q%. 7. .. pC
and
=78 7.0 ¢
Define
m=02n+2i—1)-i-2n—i+1)-(2n+ 2i),
and

TP = (An+4i— 1) (20 — 1) - (4n — 2 +2) - (4n + 4)
S(An+4i—3) - (20) - (4n — 20+ 1) - (4n + 4i — 2).

We need a few more definitions before describing the 7¢ and 77, 1 < i < m. In
particular, we describe 7 inductively, that is, once 7 through 7%, have been
described. Let w;; for each j € [3] be any real number strictly between a(i, j) and

2n —a(i,7) + 1 so that u,; is strictly larger than w;; for each 1 < ¢ < i. Define

Now, we describe 7€ inductively. Let 7} for each j € [n] be the open interval
(27 — 1,4n — 25 + 2); let F; be the open interval (2j,4n — 2j + 1). Now, for each
j € [n], let T;; = T; if x; occurs positively in C; and T;; = Fj if z; occurs negatively
in Cj; similarly, let Fj; = Fj or F}; = T} if x; occurs positively or negatively in Cj,
respectively. (We do not define T;; or Fj; if ; does not occur in C;.) For each z;

that appears in Cj, choose t;;, € Tj; for each k € [4] so that
Lij1 < tijo < tijz <tija

and t;;1 > tyjs for each 1 < 4" < 4. Next, for each z; that appears in Cj, choose
fije € T;; for each k € [3] so that

fii1 < fije < fijs

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 161

and f;;1 > fijs for each 1 <7 < 4. Finally,

7¢ =(8n + 14i — 1) - qo(i) - (8n + 144)
(8n+ 147 — 3) - ¢1(3) - (8n + 14i — 2)
(8n + 147 — 5) - qo(7) - (8n + 14i — 4)-
(8n+ 147 —7) - g5(7) - (8n + 14i — 6)-
(8n+ 147 — 9) - q4(7) - (8n + 14i — 8)-
(8n + 14i — 11) - g5(4) - (8n + 147 — 10)-
(8n + 14i — 13) - go(i) - (Sn + 14i — 12),

where

¢i(0) =tia(i, 1)1 - tiai,2)1 * tia(i,)15
¢(1) =tiagi,1)2 - tia(i,2)2 * fia(i,3)1
(2) =tia@i,1)3 - fiati2)1 - tia(i,3)2,
i(3) =tia(i,1)4 * fla(z 2)2 fia(i,3)27
%(4) :fia(i,l)l “lia(i,2)3 " Lia(i,3)3,
(5))
(6)

fza(z 1)2 za(z 2)4 ° fia(i,3)37

Jia(i,1)3 * fia(i,2)3 * tia(i,3)4-
We claim that satisfying assignments of 3 are in bijection with matches of 7 in 7.

Claim 1. Consider any not necessarily induced match of 7 into 7. We claim that
77 matches into 77 for each i € [n] and 7ch matches into T]-C for each j € [m].
Note that the following is an increasing subsequence of 7 of length 2n + 2m:

m=02n+1)-2n+2)---(4n+2m—1) - (4n + 2m).

Let z, for each k € [2n 4 2m], be the index so that 7(z;) = mo(k). Suppose
that {7(z},) 74", with z},; > 2, for each k € [2n + 2m — 1], is an increasing
subsequence 7 of T that can occur as the image of 7y in some match of 7 into
7. Then, for each k € [2n + 2m — 1], we must have

/ /
21— 2 = Zkal — 2k
It is straightforward to see that every such 7y has the form
. T T C C
To(T1y ooy T Sty e ey S) = WY - =Wy - WY+ + - W,

where w7 is a subsequence of 77 of the form (4n+4i — 1 —2r;) - (4n + 4i — 2r;)
for some r; € {0,1} and w¢ is a subsequence of 7 of the form (8n + 14i — 1 —
2s;) - (8n — 14i — 2s;) for some s; € {0,1,2,3,4,5,6}.

Claim 2. Consider any not necessarily induced match of 7 into 7; we claim it has
a very particular structure, described as follows. By Claim 1, my matches

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 162

precisely some 7. First, i-(2n—i+1) must match to (2i—1+r;)-(4n+2i4+2—r;).
Then, u;; - us - u;3 must match to ¢;(s;). These positions are forced because
there are precisely two (respectively, three) elements of the sequence between
the elements 2n + 2¢ — 1 and 2n + 2i for each i € [n] in 7y and between the
elements of w? in 1 (respectively, 4n + 2¢ — 1 and 4n + 2i for each i € [m] in
7o and between the elements of w® in 75). Furthermore, it is straightforward
to see that any such map from 7 to 7 is indeed an (induced!) match, and in
fact, the s;’s are determined by the r;’s.

Claim 3. We claim that matches of 7 into 7, as described above, are in bijection
with satisfying assignments. Given a match of 7 into 7, the corresponding
assignment sets x; equal to true if r; = 0 and false if r; = 1; the clause Cj is
satisfied by the assignment because v;; receives the value T if the j-th binary
digit of s; is 0 and L otherwise, and s; € {0,1,2,3,4,5,6}. Finally, it is clear
that every satisfying assignment arises from such a match by choosing the r;’s

to reflect the appropriate variable settings. .

Because the matches used in the previous proof may be considered not necessarily
induced, and they correspond exactly to satisfying assignments of the 3-CNF formula
involved, Corollary 2.6 follows immediately.

Proof of Theorem 2.7. Note that the number of injective occurrences of P in () is just
the number of linear extensions of P times (;g}), the latter quantity being computable
in polynomial time, and the former being #P-hard by the result [5] of Brightwell and

Winkler. The number of not necessarily injective occurrences of P in () is the number

of linear extensions of P times (‘Q‘ﬂf{ ‘71), the latter quantity being computable in
polynomial time, and the former being #P-hard by the result [5] of Brightwell and
Winkler. O

Before proceeding, note that a down-set of a poset P is simply a set D of elements
of Psothat x € D,y € P, and y <p x implies y € D; we write x <p y if y covers z
in P, i.e., x <py and there is no z € P so that x <p z and z <p .

Proof of Theorem 2.9. First, suppose P has width & (a constant) and ground set [n].
Then, by Dilworth’s Theorem, there is a chain decomposition C = {C4,...,Ck}; as
mentioned in [9], there are well-known O(n?) algorithms for computing the Dilworth
decomposition. Now, we construct the lattice L of down-sets of P from C, keeping
track of | DNC;| for each ¢ and the children D'<, D of D as we construct the down-sets
D. Starting from the empty set (which is the minimal element of L), we iteratively
build up all down-sets by considering the least unused element of each C; one at a
time. That is, given some down-set D, we test if D U{z;} is also a down-set for each
x;, the least element of C; which does not appear in D, by checking if x; satisfies
y; 4 x; for each j € [k], where y; is the element (if it exists) of height |D N C;| + 1
in Cj; this requires at most k% comparisons per down-set D. It is straightforward
to update the |D N C}| and child lists appropriately for each new down-set. Since

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 163

down-sets are uniquely determined by the quantities |D N C;|, ¢ € [k], there are at
most n* such D. Therefore, the algorithm so far has cost O(n™**®*)) time.

Next, we use L to compute the number of linear extensions of P. Let f(D), for a
down-set D of P, denote the number of linear extensions of D; it is easy to see that

FD) =3 f(0),

D/<LD

a calculation that requires summing at most a constant (k) number of integers at
each step. Again, the number of down-sets is at most n*, so we obtain f(P), the
desired quantity, in time O(n™aGk)),

Now, suppose iw(P) < k. By [12], it is possible to compute the Gallai decom-
position of a poset in O(n?) time. Denote by I(P) the set of indecomposable-type
nodes T of the Gallai modular decomposition tree of P, and by I;(P) the set of such
nodes at depth d of the tree, with the convention that [n] is at depth d = 1. For
T € I;(P), write

Pr=PlrulJLs
S

where S ranges over S € I;,1(P) so that S C T', and Lg denotes any linear extension
of P|s. (That is, each maximal proper strong submodule S of P|r has been replaced
by a chain of length |S|.) It is straightforward to see that the width of Pr is at
most k.

Noting that the cardinality of Pr is |T'|, the nodes of I(P) at a given depth are
pairwise disjoint, and I;(P) is empty for d > n, the time to compute the number of
linear extensions of all of them is, by the above argument, at most

max(3,k)
o 3 imon) <o 5 i
Tel(P) d>1 \Tel,(P)
<0 <Z nmax(B,k)) _ O(nmax(4,k+1))'
d>1

Once the number of linear extensions of each of the Pp, T' € I(P), has been computed,
we combine these numbers into the number of linear extensions of P by recursing
on the nodes of the Gallai decomposition. Indeed, if a node is series-type, then the
number of linear extensions of the corresponding module is simply the product of the
number of linear extensions of its children; if a node is parallel-type with children of
cardinalities mq, ..., m,, then the number of linear extensions of the corresponding
module is the product of the number of linear extensions of its children and the

quantity
my —+ -+ My
mi,...,my)

If the node is indecomposable-type, the number of linear extensions of P|r is the
number of linear extensions of Pr times the number of linear extensions of all P|g,

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 164

where S is a child node of T'. It is easy to check that the numerical computations
involved require at most O(n™**k+1)) time, so one can compute the total number
of linear extensions of P in this amount of time. O

Proof of Theorem 2.10. This also follows from the main result of [5]. If we let R be
any poset, P a chain of length |R|, and @ the lattice of down-sets of R, then the

number of injective occurrences of P in () is precisely the number of linear extensions
of R, which is #P-hard to compute. O

Note that counting the number of injective occurrences of a chain in an arbi-
trary text poset of bounded dimension is in FP, because the standard dynamic
programming algorithm for counting increasing subsequences of permutation readily
generalizes to arbitrary dimension and executes in polynomial time.

4 Conclusion and Problems

There remains a plethora of open questions about poset pattern occurrence. First,
if dim(P) = 2 and @ is a chain, is the problem of counting the number of (not
necessarily induced, injective) occurrences of P in () #P-hard? In the language of
permutations, this is the computational problem of counting, for a given permuta-
tion o, how many permutations of the same size have all of the inversions of o (and
possibly others as well). The problem is also equivalent to asking whether counting
linear extensions of dimension-2 posets is hard, a question left open by [5] because
the posets whose number of linear extensions the authors compute grow in dimension
without bound. Indeed, their gadget Q;(p) contains as an induced subposet a bipar-
tite poset whose upper set is the family of clauses that occur in the 3-SAT instance [
and whose lower set is the family of variables occurring in I, with an edge between a
clause and variable precisely when the clause contains a literal which is the positive
or negative of the variable. If we choose the clauses to be all possible disjunctions of
two variables out of n (repeating the second to ensure three literals), the resulting
subposet is exactly the subposet of the Boolean poset between the doubletons and
singletons; Spencer showed ([13]), via a result of Dushnik, that this Boolean layer
poset has dimension (loglogn), and therefore in particular tends to infinity.

What are the complexity of poset pattern recognition problems for other parame-
ter settings than those considered here? What problems/results from the substantial
literature on permutation pattern avoidance generalize in an interesting way to not
necessarily induced occurrences? Is it #P-hard to compute the number of unlabeled
dimension-k posets of cardinality n avoiding (i.e., not containing any occurrence of)
given patterns, especially, in the case when k = 27 Perhaps more important is the
closely related question: is it #P-hard to compute the number of permutations of n
which avoid a given pattern? Given the apparent difficulty of computing the number
of pattern-avoiding permutations for various special patterns (1324 being a promi-
nent example), it is natural to suspect that this problem is computationally hard in
general.

J. COOPER AND A. KIRKPATRICK / AUSTRALAS. J. COMBIN. 64 (1) (2016), 154-165 165

References

1]

2]

S. Arora and B. Barak, Computational complexity: A modern approach, Cam-
bridge University Press, Cambridge, 2009.

H. Buer and R.H. Mohring, A fast algorithm for the decomposition of graphs
and posets, Math. Oper. Res. 8 (1983), no.2, 170-184.

P. Bose, J. Bussxi and A. Lubiw, Pattern matching for permutations, Inf. Proc.
Let. 65 (1998), 277-283.

B.1. Bayoumi, M. H. El-Zahar and S. M. Khamis, Counting two-dimensional
posets, Discrete Math. 131 (1994), no. 1-3, 29-37.

G. Brightwell and P. Winkler, Counting linear extensions, Order 8 (1991), no. 3,
225-242.

B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941),
600-610.

P. Tlle and J.-X. Rampon, A counting of the minimal realizations of the posets
of dimension two, Ars Combin. 78 (2006), 157-165.

T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hungar. 18
(1967), 25-66.

H. Kierstead, Effective versions of the chain decomposition theorem: The Dil-
worth theorems, 36-38, Contemp. Mathematicians, Birkhduser Boston, Boston,
MA, 1990.

N. M. Korneenko, R.I. Tyshkevich and V.N. Zemlyachenko, The graph isomor-
phism problem: The theory of the complexity of computations, I, Zap. Nauchn.
Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 118 (1982), 83-158, 215.

R. Mathon, A note on the graph isomorphism counting problem, Inform. Pro-
cess. Lett. 8 (1979), no. 3, 131-132.

R.M. McConnell and J.P. Spinrad, Linear-time modular decomposition and
efficient transitive orientation of comparability graphs, Proc. Fifth Annual ACM-
SIAM Symposium on Discrete Algorithms (1994), 536-545.

J. Spencer, Minimal scrambling sets of simple orders, Acta Math. Acad. Sci.
Hungar. 22 (1971/72), 349-353.

G. Steiner, Polynomial algorithms to count linear extensions in certain posetsr,
Congr. Numer. 75 (1990), 71-90.

(Received 15 Sep 2014; revised 11 May 2015)

