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Abstract

In this paper, we consider two sets of pattern-avoiding ascent sequences:
those avoiding both 201 and 210 and those avoiding 0021. In each case we
show that the number of such ascent sequences is given by the binomial
convolution of the Catalan numbers. The result for {201, 210}-avoiders
completes a family of results given by Baxter and the current author in
a previous paper. The result for 0021-avoiders, together with previous
work of Duncan, Steingŕımsson, Mansour and Shattuck, completes the
Wilf classification of single patterns of length 4 for ascent sequences.

1 Introduction

Given an integer string x1 · · · xn, an ascent is position j such that xj < xj+1. Write
asc(x1 · · ·xn) for the number of ascents in x1 · · ·xn. An ascent sequence x1 · · ·xn is
a sequence of non-negative integers such that

1. x1 = 0, and

2. for 1 < i ≤ n, xi ≤ asc(x1 · · ·xi−1) + 1.

For example, 01234, 0120102, and 01013 are all ascent sequences, while 01024 is
not since asc(0102) = 2. Ascent sequences have been an increasingly frequent topic
of study since Bousquet-Mélou, Claesson, Dukes, and Kitaev related them to (2 +
2)-free posets and enumerated the total number of ascent sequences [2], thus also
enumerating (2 + 2)-free posets (equivalently, interval orders). Since then, various
authors have connected ascent sequences to a number of other combinatorial objects
[4, 5, 6, 9]; also see [8, Section 3.2.2] for additional references. The number of ascent
sequences of length n is given by the Fishburn numbers, Online Encyclopedia of
Integer Sequences (OEIS) sequence A022493.
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Given a string of integers x = x1 · · ·xn, the reduction of x, denoted red(x) is
the string obtained by replacing the ith smallest digits of x with i − 1. For ex-
ample, red(273772) = 021220. A pattern is merely a reduced string. We say that
x = x1 · · ·xn contains a pattern p = p1 · · · pk if there exists a subsequence of x
order-isomorphic to p, i.e., there exist indices 1 ≤ i1 < i2 < · · · < ik ≤ n such
that red(xi1xi2 · · ·xik) = p. This is analogous to the classical definition of patterns
for permutations, but here patterns may contain repeated digits, and patterns are
normalized so that their smallest digit is 0 rather than 1. We write A(n) for the set
of ascent sequences of length n and AB(n) for the set of ascent sequences of length
n avoiding all patterns in list B. Also, we let aB(n) = |AB(n)|.

Pattern avoidance in ascent sequences was first studied by Duncan and Ste-
ingŕımsson [7]. They focused on avoiding a single pattern of length at most 4 and
conjectured relationships between sequences avoiding 201, 210, 0123, 0021, or 1012
and other entries in the OEIS [11].

Mansour and Shattuck [10] later computed the number of sequences avoiding
1012 or 0123 and showed that certain statistics on 0012-avoiding ascent sequences
are equidistributed with other statistics on the set of 132-avoiding permutations.
Callan, Mansour, and Shattuck also identified the complete equivalence class of pairs
of length-4 patterns such that aσ,τ (n) is given by the Catalan numbers in [3].

In [1] Baxter and the present author considered the enumeration of ascent se-
quences avoiding a pair of patterns of length 3. In particular there are at least 35
different sequences that can be obtained by avoiding a pair of patterns of length 3 in
the ascent sequences context, 16 of which are already known in the OEIS for other
combinatorial reasons. One of these results is the following.

Theorem 1 ([1], Proposition 16). |A201,210(n)| =
∑n−1

k=0

(
n−1
k

)
Ck for n ≥ 1.

In [1] this result is followed by the comment “We defer the proof itself for a
separate paper, however, as it is signficantly more complicated than the arguments
above.” In Section 2 we give the proof of Theorem 1. The proof begins with a
generating tree which is used to derive a system of functional equations for a family of
multivariate generating functions. The solution to the system is difficult to determine
directly, but we experimentally conjecture the solution and then validate that it is
indeed the unique solution to the system. After plugging in for catalytic variables,
we achieve the desired enumeration.

This theorem merits further interest because of its connection to previous work
in light of the following conjecture of Duncan and Steingŕımsson:

Conjecture 2 ([7], Conjecture 3.5). The patterns 0021 and 1012 are Wilf equivalent,
and |A0021(n)| = |A1012(n)| is given by the binomial transform of Catalan numbers,
which is sequence A007317 in [11].

They note that settling this conjecture would complete the Wilf classification for
patterns of length 4. Later, Mansour and Shattuck proved half of the conjecture
with the following result:

Theorem 3 ([10], Theorem 3.2). |A1012(n)| =
∑n−1

k=0

(
n−1
k

)
Ck for n ≥ 1 where Ck

denotes the nth Catalan number.
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The proof of this theorem is algebraic in nature making use of recurrences, nested
summations, and the kernel method.

In Section 3 we prove the following

Theorem 4. |A0021(n)| =
∑n−1

k=0

(
n−1
k

)
Ck for n ≥ 1.

Together with Theorem 3, Theorem 4 answers Conjecture 2 in the affirmative, fin-
ishing the Wilf-classification of 4-patterns conjectured by Duncan and Steingŕımsson.
The proof of Theorem 4 mirrors the proof of Theorem 1 using generating trees to
determine a system of multivariate generating functions from whose solution we can
derive the desired enumeration.

2 Avoiding 201 and 210

Theorem 1. |A201,210(n)| =
∑n−1

k=0

(
n−1
k

)
Ck.

There are several components to the proof of this theorem. They are:

1. Derive a generating tree for the members of
⋃
n≥1A201,210(n). It turns out the

nodes in our generating tree are labeled by ordered pairs (p, q) where 0 ≤ p < q.
The rules for the generating tree are given in Section 2.1.

2. Use the generating tree from step 1 to find a recurrence for gn,p,q, where gn,p,q
is the number of (p, q) nodes at level n of the generating tree. The recurrence
is given in Section 2.2.

3. Use the recurrence from step 2 to prove several relations between gn,p,q values
for various choices of n, p, and q. In particular, we set dn,i = gn,i−1,i and
cn,i =

∑i−1
k=0 gn,k,i. The relations between the gn,p,q values will imply several

useful relationships between the dn,i and cn,i values. These relations are the
heart of the proof of Theorem 1 and are given in Section 2.3.

4. Use the relations from step 3 to derive a system of functional equations in
terms of following two bivariate generating functions:

• C(x, y) =
∑

n≥1
∑n

i=1 cn,ix
iyn.

• D(x, y) =
∑

n≥1
∑n

i=1 dn,ix
iyn.

This system of equations is given in Section 2.4.

5. Although there is not a clear direct way to solve the system of functional equa-
tions in step 4, there is a unique solution. Through computer experimentation,
we conjecture the form of each of the generating functions that solve the system
and verify that this set of generating functions is indeed the desired solution.
The solution is given in Section 2.5.

6. Since step 5 provides a closed form for C(x, y) =
∑

n≥1
∑n

i=1 cn,ix
iyn, we have

that C(1, y) =
∑

n≥1
∑n

i=1 cn,iy
n is the generating function for

∑n
i=1 cn,i =∑n

i=1

∑i−1
k=0 gn,k,i = |A201,210(n)|. We then verify that C(1, y) is indeed the

generating function for the binomial convolution of the Catalan numbers.
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Figure 1: Ascent sequences of length at most 4

2.1 The generating tree

Given ascent sequences a ∈ A(n) and a∗ ∈ A(n + 1), we say that a∗ is a child of a
if a∗1a

∗
2 · · · a∗n = a. In Figure 1 we see the members of A(1), A(2), A(3), and A(4)

organized using the child relation.
Similarly, we may look for distinguishing features of {201, 210}-avoiding ascent

sequences that determine the number of {201, 210}-avoiding children that a given
{201, 210}-avoiding ascent sequence will have.

We know that for any ascent sequence a, ai ∈ {0, . . . , asc(a1 · · · ai−1) + 1}. Given
a ∈ A201,210(n), let Sa be the set of possible integers that may be appended to
a to form a member of A201,210(n + 1). For example, S0 = {0, 1}, S00 = {0, 1},
S01 = {0, 1, 2}, and S0120 = {0, 2, 3}.

Now, consider a ∈ A201,210(n) and its child a∗ ∈ A201,210(n+1). Either a∗n+1 > a∗n,
a∗n+1 = a∗n, or a∗n+1 < a∗n. We compare Sa to Sa∗ in each of these three cases.

• If a∗n+1 > a∗n, then a∗ has one more ascent than a, so Sa∗ = Sa∪{max(Sa)+1}.

• If a∗n+1 = a∗n, then Sa∗ = Sa.

• If a∗n+1 < a∗n, then we may not append any values between a∗n and a∗n+1 (lest
we form a 201 pattern), and we may not append any values smaller than a∗n+1

(lest we form a 201 pattern).
Therefore, Sa∗ = Sa \

(
{i | a∗n+1 < i < a∗n} ∪ {i | 0 ≤ i < a∗n+1}

)
.

Notice that by definition |Sa| is equal to the number of children of a. Further, to
determine the number of children of each child a∗ of a, we need only keep track of
the last digit of a and compare it to the last digit of each child a∗. Therefore, the
pair (an, Sa) is sufficient to determine the pair (a∗n+1, Sa∗) for each child a∗ of a.

Relabeling each ascent sequence a in the first three levels of the tree in Figure 1
with the pair (an, Sa), we obtain the tree in Figure 2.

Now, we make some normalizing conventions. We know that |Sa| gives the number
of children of a, so it is not the particular elements of Sa that matter, but rather the
size of the set. Further, we do need an and Sa to determine Sa∗ for any child a∗ of
a, but again, it is not the particular digits an and a∗n+1 that matter, but rather how
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Figure 2: Ascent sequences a of length at most 3 relabeled with the pair (an, Sa)
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Figure 3: Ascent sequences a of length at most 3 relabeled with the pair (p, q)

many digits of Sa are smaller than, between, or larger than these digits. Therefore,
let the reduction of the pair (an, Sa) be the pair red((an, Sa)) obtained by replacing
the ith smallest digits with i− 1. For example, red((5, {1, 4, 5, 7})) = (2, {0, 1, 2, 3}).
Notice that an ∈ Sa for all ascent sequences a since repeating the last digit of a given
{201, 210}-avoiding ascent sequence still produces an ascent sequence that avoids 201
and 210. This means that if (a′n, S

′
a) = red((an, Sa)), then S ′a is a set of consecutive

integers with minimum 0 and a′n ∈ S ′a. Therefore, we may more concisely represent
red((an, Sa)) by the ordered pair (p, q) where p is the first element of red((an, Sa))
and q is the maximum of the second element of red((an, Sa)). To this end, the
tree from Figure 2 may be relabeled as seen in Figure 3 using reduction. As a
more interesting example later in the generating tree, a = 0101341 ∈ A201,210(7) has
(an, Sa) = (1, {1, 4, 5}), but after reduction, we obtain red((an, Sa)) = (0, {0, 1, 2}),
which we relabel again as (0, 2).

Using this labeling and the rules for computing Sa∗ from Sa given above, we build
a generating tree for A201,210. The root (0, 1) comes from the definitions and labeling
conventions above. Given (p, q), which is shorthand for an = p, Sa = {0, . . . , q}, we
see that if we append a digit i from {p + 1, . . . , q} to a, then Sa∗ = {0, . . . , q + 1},
so we obtain an ascent sequence with label (i, q + 1). If we append another copy of
p, we obtain another ascent sequence with label (p, q). If we append a digit i from
{0, . . . , p− 1}, we obtain an ascent sequence a∗ with Sa∗ = {i, p, p + 1, . . . , q}; since
red((i, {i, p, p+ 1, . . . , q})) = (0, {0, . . . , 1 + q− p}) this node has label (0, 1 + q− p).

In particular, the root and rules for our generating tree are

• root: (0, 1)

• rule: (p, q) → (0, 1 + q − p)p, (p, q), (p + 1, q + 1), (p + 2, q + 1), (p + 3, q +
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1), . . . , (q, q + 1)

where (0, 1 + q − p)p indicates that we have p copies of the node (0, 1 + q − p)p.
Notice that by convention, 0 ≤ p < q for all nodes in this generating tree. Further,

q increases by at most 1 with each generation of the tree, so the largest value of q
in a node at level n is q = n. We wish to find a formula for the number of nodes at
level n of this generating tree.

2.2 The recurrence

Now, let gn,p,q be the number of nodes of type (p, q) at level n in the generating tree
of Section 2.1. Certainly, gn,p,q = 0 if n ≤ 0.

We saw above that gn,p,q = 0 if p ≥ q, if n = 1 and p 6= 0, if n = 1 and q 6= 1,
or if q ≥ n + 1. We also know that g1,0,1 = 1, which counts the root node of the
generating tree.

We still must determine gn,p,q for other values. We consider 2 cases: when p = 0
and when p > 0.

In the case where p = 0, we obtain a (0, q) node in level n for every (0, q) node
at level n− 1, and we obtain i (0, q) nodes at level n for every (i, q − 1 + i) node at
level n. Therefore gn,0,q = gn−1,0,q +

∑n−q
i=1 i · gn−1,i,q−1+i.

Finally, in the case where p > 0, we obtain a (p, q) node at level n for every (p, q)
node at level n− 1, and we obtain a (p, q) node at level n for every (i, q− 1) node at
level n− 1 where 0 ≤ i ≤ p− 1. Therefore gn,p,q = gn−1,p,q +

∑p−1
i=0 gn−1,i,q−1.

To summarize, |A201,210(n)| =
∑n

q=1

∑q−1
p=0 gn,p,q where

gn,p,q =



0 n ≤ 0

0 p ≥ q

0 n = 1 and p 6= 0

0 n = 1 and q 6= 1

1 n = 1 and p = 0 and q = 1

gn−1,0,q +
n−q∑
i=1

i · gn−1,i,q−1+i p = 0

gn−1,p,q +
p−1∑
i=0

gn−1,i,q−1 otherwise.

(1)

2.3 Relations

We have that |A201,210(n)| =
∑n

q=1

∑q−1
p=0 gn,p,q.

We wish to understand the structure of gn,p,q more fully. To this end, let

• cn,i =
∑i−1

k=0 gn,k,i (i.e. cn,i is the number of nodes of type (∗, i) at level n in the
generating tree.)

• dn,i = gn,i−1,i.
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A1 =
[

1
]

c1,1 = 1 d1,1 = 1

A2 =

[
1 0
0 1

]
c2,1 = 1 d2,1 = 1
c2,2 = 1 d2,2 = 1

A3 =

 1 1 0
0 2 0
0 0 1

 c3,1 = 1 d3,1 = 1
c3,2 = 3 d3,2 = 2
c3,3 = 1 d3,3 = 1

A4 =


1 5 0 0
0 3 1 0
0 0 4 0
0 0 0 1


c4,1 = 1 d4,1 = 1
c4,2 = 8 d4,2 = 3
c4,3 = 5 d4,3 = 4
c4,4 = 1 d4,4 = 1

A5 =


1 19 1 0 0
0 4 6 0 0
0 0 12 1 0
0 0 0 6 0
0 0 0 0 1


c5,1 = 1 d5,1 = 1
c5,2 = 23 d5,2 = 4
c5,3 = 19 d5,3 = 12
c5,4 = 7 d5,4 = 6
c5,5 = 1 d5,5 = 1

A6 =


1 69 9 0 0 0
0 5 25 1 0 0
0 0 35 8 0 0
0 0 0 25 1 0
0 0 0 0 8 0
0 0 0 0 0 1


c6,1 = 1 d6,1 = 1
c6,2 = 74 d6,2 = 5
c6,3 = 69 d6,3 = 35
c6,4 = 34 d6,4 = 25
c6,5 = 9 d6,5 = 8
c6,6 = 1 d6,6 = 1

A7 =



1 256 53 1 0 0 0
0 6 94 10 0 0 0
0 0 109 42 1 0 0
0 0 0 94 10 0 0
0 0 0 0 42 1 0
0 0 0 0 0 10 0
0 0 0 0 0 0 1



c7,1 = 1 d7,1 = 1
c7,2 = 262 d7,2 = 6
c7,3 = 256 d7,3 = 109
c7,4 = 147 d7,4 = 94
c7,5 = 53 d7,5 = 42
c7,6 = 11 d7,6 = 10
c7,7 = 1 d7,7 = 1

Table 1: Arrays containing the values of gn,p,q for n ≤ 7

Notice that |A201,210(n)| =
∑n

i=1 cn,i by definition.
For fixed n, let An be the n × n array containing gn,p,q in row p + 1, column q.

In this arrangement, dn,i is the ith entry on the main diagonal of An and cn,i is the
sum of the entries in the ith column. Arrays Aj (1 ≤ j ≤ 7) and corresponding
values of cn,i and dn,i are given in Table 1. Organizing the numbers gn,p,q in this two
dimensional format reveals some interesting patterns.

Lemma 5. The following relations hold for gn,p,q, dn,i, and cn,i:

5.a dn,i = dn−1,i + cn−1,i−1 for 2 ≤ i ≤ n.

5.b gn,i,n = 0 for n ≥ 1 and i 6= n− 1. (The rightmost column consists of 0s except
for the bottom entry.)
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5.c gn,0,1 = dn,1 = cn,1 = dn,n = cn,n = 1 for n ≥ 1. (The top left entry and the
bottom right entry of An are both 1, but the rest of the first column and the rest
of the last column are all 0s.)

5.d gn,p,q = gn,p+2,q+1 for 3 ≤ p + 2 < q + 1 ≤ n. (This implies p ≥ 1 and q ≥ 3).
(We have a recursive way to compute non-diagonal entries other than in the
first row of An.)

5.e gn,0,q = gn,0,q+1 + gn,1,q+1 + gn,2,q+1 for 2 ≤ q ≤ n − 1. (We have a recursive
way to compute the entries of the first row of An from other entries.)

5.f
∑k

i=0 gn,i,q =
∑k+2

i=0 gn,i,q+1 for k ≤ q − 2. (This gives a condition on partial
sums of adjacent columns in An.)

5.g cn,i = cn,i−1 − dn,i−1 for 3 ≤ i ≤ n.

In particular, part 5.a follows directly from Equation 1. Parts 5.b and 5.c are
used in the proof of parts 5.d and 5.e. Parts 5.d and 5.e are used to prove part 5.f,
which is used for part 5.g. Notice that given array An−1, parts 5.a and 5.c completely
determine the diagonal entries of An, and then parts 5.c and 5.g completely determine
the column sums from the diagonals (working from right to left). Thus, only parts
5.a, 5.c, and 5.g are used to derive functional equations in Section 2.4. While it is
easy to verify that Lemma 5 holds for the arrays given in Table 1, the proof for the
general case is long and technical. The interested reader can find details of the proof
in Appendix A.

2.4 Functional equations

From the previous section we know:

• cn,i = cn,i−1 − dn,i−1 for 3 ≤ i ≤ n,

• dn,i = dn−1,i + cn−1,i−1 for 2 ≤ i ≤ n.

Now, define the following three generating functions:

• C(x, y) =
∑

n≥1
∑n

i=1 cn,ix
iyn,

• D(x, y) =
∑

n≥1
∑n

i=1 dn,ix
iyn,

• C2(y) =
∑

n≥2 cn,2y
n.

cn,i = cn,i−1 − dn,i−1 for 3 ≤ i ≤ n implies that

(1− x)C(x, y) + xD(x, y) =
xy

1− y
+ x2C2(y). (2)

dn,i = dn−1,i + cn−1,i−1 for 2 ≤ i ≤ n implies that

(1− y)D(x, y)− xyC(x, y) = xy. (3)
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We also know that cn,n = 1 for n ≥ 1, which implies that

C

(
1

y
, yz

)∣∣∣∣∣
y=0

=

(∑
n≥1

n∑
i=1

cn,i

(
1

y

)i
(yz)n

)∣∣∣∣∣
y=0

=

(∑
n≥1

n∑
i=1

cn,iy
n−izn

)∣∣∣∣∣
y=0

=
∑
n≥1

n∑
i=1

cn,i0
n−izn

=
∑
n≥1

cn,nz
n

=
z

1− z
.

(4)

2.5 Generating functions

Now, we wish to solve the following system of equations.

• (1− x)C(x, y) + xD(x, y) = xy
1−y + x2C2(y),

• (1− y)D(x, y)− xyC(x, y) = xy,

• C
(

1
y
, yz
)∣∣∣∣∣

y=0

=
z

1− z
.

Note that it was necessary to introduce C2(y) separately since the recurrence for
cn,i only applies for i ≥ 3. The first two equations are linear in C(x, y) and D(x, y),
while the third equation puts a condition on the coefficient of xnyn in C(x, y).

It turns out that there are infinitely many solutions to the first two equations,
but the fact that cn,n = 1 for n ≥ 1 determines the unique solution. To be sure:

Multiply the first equation by (1− y) and the second equation by x to obtain

• (1− x)(1− y)C(x, y) + x(1− y)D(x, y) = xy + x2(1− y)C2(y),

• x(1− y)D(x, y)− x2yC(x, y) = x2y.

After subtracting the second equation from the first, we have:(
(1− x)(1− y) + x2y

)
C(x, y) = xy − x2y + x2(1− y)C2(y), (5)

or, equivalently,

C(x, y) =
xy − x2y + x2(1− y)C2(y)

(1− x)(1− y) + x2y
. (6)

If we replace C2(y) with the formal power series
∑

n≥2 cn,2y
n, then, after expand-

ing, we see that the coefficient of xy in C(x, y) is 1, and the coefficient of xiyi in
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C(x, y) is a linear expression in terms of c2,2, . . . , ci,2. Lemma 5 shows that cn,n = 1
for all n ≥ 1, so the coefficient of xiyi in C(x, y) is 1. This implies a unique solution
for the values of c2,2, . . . , ci,2.

This additional fact implies that there is a unique set of three functions that
satisfy the system of equations where cn,n = 1 for all n, but there is not a straight-
forward way to solve for the functions directly. However, using the gfun package
in Maple, we can predict the form of C2(y). If we know C2(y), we can plug it into
the first equation and then use the first two equations to find conjectured forms for
C(x, y) and D(x, y).

It turns out that C(x, y), D(x, y), and C2(y) are as follows:

C(x, y) =

(
x
√

5y2 − 6y + 1− xy + x + 2y − 2
)
xy

2(x2y + xy − x− y + 1)(y − 1)
, (7)

D(x, y) =

−
(
x2y
√

5y2 − 6y + 1 + x2y2 − x2y + 4xy2 − 6xy − 2y2 + 2x + 4y − 2
)
xy

2(x2y2 − x2y + xy2 − 2xy − y2 + x + 2y − 1)(y − 1)
,

(8)

C2(y) =
−y
(
−1 + y +

√
5y2 − 6y + 1

)
2(y − 1)2

. (9)

It is straightforward to plug these three equations into the original system of two
equations and verify that they are a solution. It can also be checked that for the
expression C(x, y) given in Equation 7 we have C( 1

y
, yz)

∣∣
y=0

= z
1−z , which implies

cn,n = 1 for all n ≥ 1.

2.6 The punchline

We have determined a closed form for C(x, y) =
∑

n≥1
∑n

i=1 cn,ix
iyn, so we have

that C(1, y) =
∑

n≥1
∑n

i=1 cn,iy
n is the generating function for

∑n
i=1 cn,i =∑n

i=1

∑i−1
k=0 gn,k,i = |A201,210(n)|.

C(1, y) =
−1 + y +

√
5y2 − 6y + 1

2(y − 1)
(10)

This is, as per OEIS entry A007317, the generating function for the binomial convo-
lution of the Catalan numbers.

We have now seen that {201, 210}-avoiding ascent sequences are enumerated by
the binomial convolution of the Catalan numbers. To be sure, our proof show in-
herent structure in the set A201,210(n), but it requires an experimental prediction
that is later validated. It remains open to find a statistic st : An → N such that
|{a ∈ A201,210(n) | st(a) = k}| =

(
n−1
k

)
Ck.
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3 Avoiding 0021

Our experiment-based methodology in Section 2 is sufficiently general that we next
adapt it to enumerate 0021-avoiding ascent sequences. The enumeration of such se-
quences was also conjectured to be the binomial convolution of the Catalan numbers
in [7], but a proof has remained open until now. Combining this work with previ-
ous results of Duncan and Steingŕımsson [7], and Mansour and Shattuck [10], we
complete the Wilf-classification of 4-patterns in the context of ascent sequences.

Theorem 4. |A0021(n)| =
∑n−1

k=0

(
n−1
k

)
Ck.

Again there are several components to the proof of this theorem. The enumeration
argument mirrors our approach to Theorem 1. While the generating tree is more
complicated, less work is required to convert the generating tree rules into a system
of functional equations. The outline of the proof is given below.

1. Derive a generating tree for the members of
⋃
n≥1A0021(n). It turns out

the nodes in our generating tree are labeled by ordered triples (p, q, r) where
p, q, r ≥ 0 and p ∈ {q − 2, q − 1, q}. This generating tree is shown in Section
3.1.

2. Use the generating tree from step 1 to find a recurrence for gn,p,q,r, where
gn,p,q,r is the number of (p, q, r) nodes at level n of the generating tree. Since
p ∈ {q − 2, q − 1, q}, we will consider gn,q−2,q,r, gn,q−1,q,r and gn,q,q,r values
separately. This analysis is given in Section 3.2.

3. Use the recurrence from step 3 to derive a system of two functional equations
in terms of two following trivariate generating functions:

• C(x, y, z) =
∑

n≥1
∑

q≥1
∑

r≥2 gn,q,q,rx
qyrzn,

• D(x, y, z) =
∑

n≥1
∑

q≥1
∑

r≥1 gn,q−1,q,rx
qyrzn.

4. Although there is not a clear direct way to solve the system of functional equa-
tions in step 3, since there are two equations and two unknown functions, there
must be a unique solution. Through computer experimentation, we conjecture
the form of each of the generating functions that solve the system and ver-
ify that this set of generating functions is indeed the desired solution. The
functional equations from step 3 and their solution are given in Section 3.3.

5. Since step 4 provides closed forms for

C(x, y, z) =
∑
n≥1

∑
q≥1

∑
r≥2

gn,q,q,rx
qyrzn

and
D(x, y, z) =

∑
n≥1

∑
q≥1

∑
r≥1

gn,q−1,q,rx
qyrzn,
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and there is exactly one node of type (q − 2, q, r) on each level, we have that
C(1, 1, z) + D(1, 1, z) + z

1−z is the generating function for |A0021(n)|. We then
verify that C(1, 1, z)+D(1, 1, z)+ z

1−z is indeed the generating function for the
binomial convolution of the Catalan numbers.

3.1 The generating tree

As in Section 2, we first organize the members of
⋃
n≥1A(n) using the child relation.

The resulting tree was given in Figure 1. Next, we apply the child relation to the
members of

⋃
n≥1A0021(n) and look for distinguishing features of {0021}-avoiding

ascent sequences that determine the number of children a given ascent sequence will
have.

We still know that for any ascent sequence a, ai ∈ {0, . . . , asc(a1 · · · ai−1) + 1}.
Given a ∈ A0021(n), let Sa be the set of possible integers that may be appended
to a to form a member of A0021(n + 1). For example, S0 = {0, 1}, S00 = {0, 1},
S01 = {0, 1, 2}, and S01013 = {0, 3, 4}.

Notice that members of Sa are affected by repeated digits appearing in a. In
particular, if ai = aj = x where i < j then all digits after position j and larger than
x must appear in decreasing order. Also, if ai = aj = x and ak = y > x where
i < j < k, then no digits from {x + 1, . . . , y − 1} may be appended in the rest of
the ascent sequence. Therefore, we break Sa into Sua and Sia. Sia = {x ∈ Sa | x >
(smallest repeated digit in a)}, and Sua = Sa \ Sia. Here, the superscripts u and i
stand for “unrestricted” vs. “increasing” respectively since all digits larger than and
after a repeated digit must appear in increasing order. For example, if a = 0121235,
then Sa = {0, 1, 5, 6}. Since the smallest repeated digit in a is 1, we have Sua = {0, 1}
and Sia = {5, 6}. Alternatively, if a = 01234 then Sa = {0, 1, 2, 3, 4, 5}, and since
there is no smallest repeated digit, Sua = {0, 1, 2, 3, 4, 5} while Sia = ∅.

Now, consider a ∈ A0021(n) and its child a∗ ∈ A0021(n + 1). We compare Sua and
Sia to Sua∗ and Sia∗ in each of several cases.

• If a∗n+1 ≤ an, then we have not created a new ascent so Sua ∪ Sia = Sua∗ ∪ Sia∗ ,
but we may have created a new smallest repeated digit. If a∗n+1 ∈ {max(Sua )}∪
Sia, then we have not created a new smallest repeated digit. If a∗n+1 ∈ Sua \
{max(Sua )}, then we have created a new smallest repeated digit. We modify
Sua and Sia as follows:

– If a∗n+1 ≤ an and a∗n+1 ∈ {max(Sua )} ∪ Sia, then Sua∗ = Sua and Sia∗ = Sia.

For example, if a∗ = 01212351 or a∗ = 01212355, then Sua∗ = {0, 1} and
Sia∗ = {5, 6}.

– If a∗n+1 ≤ an and a∗n+1 ∈ Sua \ {max(Sua )}, then all digits larger than a∗n+1

must be moved to Sia∗ , so Sua∗ = {j ∈ Sua | j ≤ a∗n+1} and Sia∗ = Sia ∪ {j ∈
Sua | j > a∗n+1}.
For example, if a∗ = 01212350, then Sua∗ = {0} and Sia∗ = {1, 5, 6}.

• If a∗n+1 > an, then we have created a new ascent, so max(Sua∗ ∪ Sia∗) = 1 +
max(Sua ∪ Sia).
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(0,{0,1},{})

(0,{0},{1})

(0,{0},{1}) (1,{0},{1,2})

(1,{0,1,2},{})

(0,{0},{1,2}) (1,{0,1},{2}) (2,{0,1,2,3},{})

Figure 4: Ascent sequences a of length at most 3 relabeled with the triple (an, S
u
a , S

i
a)

– If a∗n+1 ∈ Sua , then a must be the strictly increasing sequence of length n,
so Sia∗ = Sia = ∅, while Sua∗ = Sua ∪ {a∗n+1 + 1}.
For example, if a∗ = 012345, then Sa∗ = Sua∗ = {0, 1, 2, 3, 4, 5, 6} and
Sia∗ = ∅.

– If a∗n+1 ∈ Sia then Sua∗ = Sua and Sia∗ = Sia ∪ {max(Sia) + 1} \ {j ∈ Sia | j <
a∗n+1}.
For example, if a∗ = 01212356, then Sua∗ = {0, 1} and Sia∗ = {6, 7}.

Notice that by definition |Sua ∪ Sia| is equal to the number of children of a. Further,
to determine the number of children of each child a∗ of a, we need only keep track
of the last digit of a and compare it to the last digit of each child a∗. Therefore, the
triple (an, S

u
a , S

i
a) is sufficient to determine the triple (a∗n+1, S

u
a∗ , S

i
a∗) for each child

a∗ of a.
Relabeling each ascent sequence a in the first three levels of the tree in Figure 1

with the triple (an, S
u
a , S

i
a), we obtain the tree in Figure 4.

Now, we make some normalizing conventions. We know that |Sa| = |Sua ∪ Sia|
gives the number of children of a, so it is not the particular elements of Sa that
matter, but rather the size of the set. Further, we do need an and Sa to determine
Sa∗ for any child a∗ of a, but again, it is not the particular digits an and a∗n+1

that matter, but rather how many digits of Sa are smaller than, between, or larger
than these digits. Therefore, let the reduction of the triple (an, S

u
a , S

i
a) be the triple

red((an, S
u
a , S

i
a)) obtained by replacing the ith smallest digits with i−1. For example,

red((2, {0}, {2, 3})) = (1, {0}, {1, 2}).
Notice that an ∈ Sa for all ascent sequences a since repeating the last digit of a

given {0021}-avoiding ascent sequence still produces an ascent sequence that avoids
0021. This means that if (a′n, S

u′
a , S

i′
a ) = red((an, S

u
a , S

i
a)) then Su

′
a ∪ Si

′
a is a set of

consecutive integers with minimum 0 and a′n ∈ Su
′

a ∪ Si
′
a . Therefore, we may more

concisely represent red((an, S
u
a , S

i
a)) by the ordered triple (p, q, r) where p is the first

element of red((an, S
u
a , S

i
a)) and q = |Sua | and r = |Sia|. To this end, the tree from

Figure 4 may be relabeled as seen in Figure 5. As a more interesting example,
0102 ∈ A0021(4) would initially be relabeled as (2, {0}, {2, 3}), but after reduction,
we obtain (1, {0}, {1, 2}), which we relabel again as (1, 1, 2).

Notice that for a node of type (p, q, r), we have p ∈ {q − 2, q − 1, q}. That is, an
is always one of the largest two values in Sua or is it the smallest value in Sia after
reduction.
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(0,2,0)

(0,1,1)

(0,1,1) (1,1,2)

(1,3,0)

(0,1,2) (1,2,1) (2,4,0)

Figure 5: Ascent sequences a of length at most 3 relabeled with the triple (p, q, r)

Using this labeling and the rules for computing Sua∗ and Sia∗ from Sua and Sia given
above, we may build a generating tree isomorphic to the generating tree for A0021.
The root (0, 2, 0) comes from the definitions and labeling conventions above.

A node of type (q− 2, q, 0) is a strictly increasing ascent sequence of length q− 1
and has q children, one from appending each of the digits {0, 1, . . . , q − 1}. If we
append q − 1, we create another increasing sequence with label (q − 1, q + 1, 0). If
we append a smaller digit i, then we have repeated that digit, so Sua∗ = {0, . . . , i},
and Sia∗ = {i + 1, . . . , q − 1}.

A node of type (q− 1, q, r) has q + r children. If we repeat the last digit, Sua and
Sia remain unchanged. If we append one of the q−2 digits i ∈ Sua that is smaller than
q−1, we have repeated that digit so Sua∗ = {0, . . . , i}, and Sia∗ = {i+1, . . . , q+r−1}.
If we append one of the r digits j of Siu, then j becomes the new smallest digit of Sia
while the size of Sia increases by 1, forming a node of type (q, q, j).

A node of type (q, q, r) has q + r children. If we repeat the last digit, Sua and Sia
remain unchanged. If we append one of the q digits i ∈ Sua that is smaller than q,
Sua∗ = {0, . . . , i} and Sia decreases accordingly. If we append one of the r − 1 digits
j of Sia that is larger than q, we obtain a node of type (q, q, j).

In particular we have

• root: (0, 2, 0)

• rules:

(q − 2, q, 0)→ (q − 1, q + 1, 0), (i, i + 1, q − 1− i)q−2i=0

(q − 1, q, r)→ (q − 1, q, r), (i, i + 1, q + r − 1− i)q−2i=1 , (q, q, i)
r+1
i=2

(q, q, r)→ (q, q, r), (i, i + 1, q + r − 1− i)q−1i=0 , (q, q, i)
r
i=2

where (a(i), b(i), c(i))ei=d corresponds to a list of e − d + 1 nodes where we plug in
each value i ∈ {d, d + 1, . . . , e} into the expressions a(i), b(i), and c(i).

Notice that by convention all nodes are of the form (p, q, r) where p, q, r ∈ N,
p ∈ {q − 2, q − 1, q} and

• If p = q − 2, then r = 0.

• If p = q − 1, then q ≥ 1, r ≥ 1, and q + r ≤ n.

• If p = q, then q ≥ 1, r ≥ 2, q + r ≤ n.
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We wish to find a formula for the number of nodes at level n of this generating
tree.

3.2 The recurrence

Now, let gn,p,q,r be the number of nodes of type (p, q, r) at level n in the generating
tree above. Certainly, gn,p,q,r = 0 if n ≤ 0.

As above, we know that p ∈ {q−2, q−1, q}, so let g0n,q,r = gn,q,q,r, g
1
n,q,r = gn,q−1,q,r,

and g2n,q,r = gn,q−2,q,r. We have the following:

g2n,q,r = 0 if r 6= 0, (11)

g2n,q,0 = g2n−1,q−1,0, (12)

g0n,q,r =

0 q = 0

0 n ≤ 2

0 q + r > n or r ≤ 1

1 q + r = n and n ≥ q + 2

g0n−1,q,r +
n−q−1∑
i=r

g0n−1,q,i +
n−q−1∑
i=r−1

g1n−1,q,i otherwise,

(13)

g1n,q,r =

0 q = 0

0 q = n and r = 0

0 n = q = r = 1

0 q + r > n

1 q + r = n, r > 0∑q+r−1
i=q g1n−1,i,q+r−i +

∑q+r−2
i=q g0n−1,i,q+r−i q + r < n.

(14)

3.3 The functional equations

It is clear from the recurrence that there is only one (q − 2, q, r) type node per level
of the generating tree. In particular, g2n,n+1,0 = 1 and g2n,q,r = 0 if q 6= n+ 1 or r 6= 0.
Therefore z

1−z is the generating function where the coefficient of zn is the number of
g2n,q,r type nodes summed over all values of q and r.

For nodes of type (q, q, r) and of type (q − 1, q, r), we first compute arrays for
initial data. Let A0n be the array where g0n,q,r is in row q, column r− 1, and let A1n
be the array where g1n,q,r appears in row q column r. We have the data shown in
Table 2.
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n A0n A1n
2

[
1
]

3
[

1
] [

1 1
1 0

]
4

[
4 1
1 0

]  1 3 1
1 1 0
1 0 0


5

 14 6 1
4 1 0
1 0 0




1 8 5 1
1 3 1 0
1 1 0 0
1 0 0 0



6


50 27 8 1
14 6 1 0
4 1 0 0
1 0 0 0




1 23 19 7 1
1 8 5 1 0
1 3 1 0 0
1 1 0 0 0
1 0 0 0 0



7


187 113 44 10 1
50 27 8 1 0
14 6 1 0 0
4 1 0 0 0
1 0 0 0 0




1 74 69 34 9 1
1 23 19 7 1 0
1 8 5 1 0 0
1 3 1 0 0 0
1 1 0 0 0 0
1 0 0 0 0 0



8


730 468 212 65 12 1
187 113 44 10 1 0
50 27 8 1 0 0
14 6 1 0 0 0
4 1 0 0 0 0
1 0 0 0 0 0





1 262 256 147 53 11 1
1 74 69 34 9 1 0
1 23 19 7 1 0 0
1 8 5 1 0 0 0
1 3 1 0 0 0 0
1 1 0 0 0 0 0
1 0 0 0 0 0 0


Table 2: Arrays containing gn,q,q,r and gn,q−1,q,r for small values of n
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Let
C(x, y, z) =

∑
n≥3

∑
q≥1

∑
r≥2

g0n,q,rx
qyrzn,

D(x, y, z) =
∑
n≥2

∑
q≥1

∑
r≥1

g1n,q,rx
qyrzn.

From the recurrence for g0n,q,r, we have that

C(x, y, z) =zC(x, y, z) +
zy

y − 1
C(x, y, z)− zy2

y − 1
C(x, 1, z)

+
xy2z2

(1− z)(1− yz)(1− xz)

+
zy2

y − 1

(
D(x, y, z)− xyz2

(1− xz)(1− yz)

)
− zy2

y − 1

(
D(x, 1, z)− xz2

(1− xz)(1− z)

)
.

(15)

From the recurrence for g1n,q,r, we have that

D(x, y, z) =
xyz2

(1− xz)(1− yz)

+
zx

x− y
D(x, y, z)− zx

x− y
D(y, y, z)

+
zx

x− y
C(x, y, z)− zx

x− y
C(y, y, z).

(16)

These equations are complicated to solve by hand, but the structure evident in
A0n and A1n for small n makes it easier to predict a solution by hand and verify that
the solution works. In particular, notice that A0n looks like A0n−1 with a column of
0s added to the right and a new row added to the top. The same holds true for A1n.
In other words the (i, j) entry of A0n is the (i− 1, j) entry of A0n−1 for i ≥ 2.

It turns out that the entries of the first column of A0n are terms in f(z)−1
1−z where

f(z) = 1−z−
√
1−6z+5z2

2z
= 1 + z + 3z + 10z3 + 36z4 + 137z5 + · · · is the generating

function for the first differences of the binomial convolution of the Catalan numbers.
Further, let g(z) = 16z2(z−1)

(1−z+
√
1−6z+5z2)

3
(−1+3z+

√
1−6z+5z2)

. It also turns out that the

generating function for column i in A0n is the generating function for column i− 1
times g(z).

As for A1n, we have the same effect of entry (i, j) in A1n matching entry (i−1, j)
in A1n−1, but the generating function is different. It turns out that entry A091698 in
the OEIS matches these entries but with additional minus signs. From this structure,
we may reverse engineer a conjecture for the entries in A1n.

The unique solution to this system that matches the initial coefficients given
above is
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C(x, y, z) =
2xy2z3

(1− xz)((1− (y + 1)z)
√

5z2 − 6z + 1 + (1− (y + 3)z)(1− z))
, (17)

D(x, y, z) =
2xyz2

(1− xz)(y
√

5z2 − 6z + 1 + yz − 2z − y + 2)
. (18)

3.4 The punchline

We have determined closed forms for C(x, y, z) and D(x, y, z). Since we really care
only about the total number of nodes at level n, the total number of nodes where
p = q − 2 is 1 (generating function z

1−z ), where p = q − 1 is D(1, 1, z), and where
p = q is C(1, 1, z). Adding and simplifying yields

C(1, 1, z) + D(1, 1, z) +
z

1− z
=
−1 + z +

√
5z2 − 6z + 1

2(z − 1)
(19)

This is, as per OEIS entry A007317, the generating function for the binomial
convolution of the Catalan numbers.

4 Conclusion

In this paper we identified two sets, namely A201,210(n) and A0021(n), whose enumer-
ation is given by sequence A007317 in OEIS. Verifying this enumeration for 0021-
avoiding ascent sequences completes the Wilf-classification of length 4 patterns for
ascent sequences in conjunction with the work of Duncan and Steingŕımsson [7] and
Mansour and Shattuck [10]. Both results use generating trees and experimentally-
derived multivariate generating functions. It remains open, and appears quite chal-
lenging, to find a statistic on each of these sets of ascent sequences corresponding to
k in the explicit formula of

∑n−1
k=0

(
n−1
k

)
Ck for the enumeration sequence.

Appendix

A Proof of Lemma 5

Proof. We prove each part of Lemma 5 in turn.

Part 5.a: Since i ≥ 2, i− 1 ≥ 1. By Equation 1 we have dn,i = gn,i−1,i = gn−1,i−1,i +∑i−2
j=0 gn−1,j,i−1 = dn−1,i + cn−1,i−1, as desired.

Part 5.b: First, consider the case where i = 0. By Equation 1, we have gn,0,n =
gn−1,0,n +

∑n−q
i=1 i · gn−1,i,n−1+i. In all terms gn∗,p∗,q∗ on the right hand side, q∗ > n∗,

so all terms on the right are equal to 0. Therefore, gn,0,n = 0 for n ≥ 2.
Now, if i > 0, we proceed by induction. For n = 1, we have g1,0,1 = 1, and

g1,i,1 = 0 for i 6= 0. Next, assume that gn−1,i,n−1 = 0 for i 6= n− 2, and consider gn,i,n
where i ≤ n − 2. We have gn,i,n = gn−1,i,n +

∑i−1
j=0 gn−1,j,n−1. Since n > n − 1, we
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have that gn−1,i,n = 0. Also, since j ≤ i − 1 ≤ n − 3, by the induction hypothesis,
we have that all gn−1,j,n−1 terms in the sum are equal to 0.

Part 5.c: We know that gn,0,1 = 1, dn,1 = gn,0,1, and cn,1 = gn,0,1 by the definitions
above.

We prove that dn,n = cn,n = 1 by induction on n. By part 5.b, cn,n =
∑n−1

i=0 gn,i,n =
gn,n−1,n = dn,n since all terms except the last one in the sum are 0.

Now, for the base case, we see that d1,1 = c1,1 = 1.
For the induction step, we assume that dn−1,n−1 = cn−1,n−1 = 1, and we show

that dn,n = cn,n = 1.
We have: dn,n = gn,n−1,n = gn−1,n−1,n +

∑n−2
i=0 gn−1,i,n−1. We know gn−1,n−1,n = 0

since n > n − 1. We know from part 5.b that
∑n−3

i=0 gn−1,i,n−1 = 0. Therefore
dn,n = gn−1,n−2,n−1 = dn−1,n−1, which is 1 by the induction hypothesis.

Using parts 5.a and 5.c, we have completely characterized the dn,i terms in a
recursive manner. Parts 5.b and 5.c are used in the proof of parts 5.d and 5.e.
Notice also that parts 5.d and 5.e are symbiotic. Part 5.d determines the non-
diagonal entries of An that are not in the first row, while part 5.e determines the
non-diagonal entries of the first row. Since parts 5.a, 5.b, and 5.c determine the
diagonal entries and the rightmost column of An, repeated applications of 5.d and
5.e completely determine the remaining entries of An.

Parts 5.d and 5.e: We prove these parts together by induction on n. We assume
that An is characterized by the two parts for n < n∗ and use this assumption to show
that the parts characterize the entries of An∗ .

The statement of part 5.d requires n ≥ 4. In this case, p = 1 and q = 3 are the
only values that satisfy the inequality. Using parts 5.a, 5.b, and 5.c and Equation 1,
we see g4,1,3 = g3,1,3 + g3,0,2 = 0 + g3,0,2 = g2,0,2 + g2,1,2 = 0 + 1 = 1 and g4,3,4 = 1.

In part 5.e, we need n ≥ 3. It is quickly verified that g3,0,2 = 1 and g3,0,3 + g3,1,3 +
g3,2,3 = 0 + 0 + 1 = 1. Also for n = 4, we have g4,0,2 = 5 and g4,0,3 + g4,1,3 + g4,2,3 =
0 + 1 + 4 = 5. Also, g4,0,3 = 0 and g4,0,4 + g4,1,4 + g4,2,4 = 0 + 0 + 0 = 0. Therefore,
part 5.d and 5.e hold for n ≤ 4.

Next, we assume that both parts simultaneously hold for n < n∗ and consider
the entries of An∗ .

For part 5.d, and consider gn∗,p,q where 3 ≤ p + 2 < q + 1 ≤ n∗. Notice that
3 < q + 1 ≤ n∗ indicates 2 < q < n∗ − 1 so part 5.e also applies. From Equation 1,

gn∗,p,q = gn∗−1,p,q +

p−1∑
i=0

gn∗−1,i,q−1.

By the induction hypothesis of part 5.d applied to every term except for gn∗−1,0,q−1
and the induction hypothesis of part 5.e applied to this remaining term, we have:
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gn∗,p,q = gn∗−1,p,q +

p−1∑
i=0

gn∗−1,i,q−1

= gn∗−1,p+2,q+1 + gn∗−1,0,q−1 +

p−1∑
i=1

gn∗−1,i+2,q

= gn∗−1,p+2,q+1 + gn∗−1,0,q−1 +

p+1∑
i=3

gn∗−1,i,q

= gn∗−1,p+2,q+1 + (gn∗−1,0,q + gn∗−1,1,q + gn∗−1,2,q) +

p+1∑
i=3

gn∗−1,i,q

= gn∗−1,p+2,q+1 +

p+1∑
i=0

gn∗−1,i,q

= gn∗,p+2,q+1.

(20)

For part 5.e, consider gn∗,0,q+1 + gn∗,1,q+1 + gn∗,2,q+1 where 2 ≤ q ≤ n∗ − 1.
By Equation 1 we have:

gn∗,0,q+1 + gn∗,1,q+1 + gn∗,2,q+1 =(
gn∗−1,0,q+1 +

n∗−q−1∑
i=1

i · gn∗−1,i,q+i

)
+ (gn∗−1,1,q+1 + gn∗−1,0,q)

+ (gn∗−1,2,q+1 + gn∗−1,0,q + gn∗−1,1,q) .

(21)

We wish to show that this quantity is equal to gn∗,0,q = gn∗−1,0,q +
∑n∗−q

i=1 i ·
gn∗−1,i,q−1+i.

First, apply part 5.d to the summation to obtain

gn∗,0,q+1 + gn∗,1,q+1 + gn∗,2,q+1 =(
gn∗−1,0,q+1 +

n∗−q−1∑
i=1

i · gn∗−1,i+2,q+1+i

)
+ (gn∗−1,1,q+1 + gn∗−1,0,q)

+ (gn∗−1,2,q+1 + gn∗−1,0,q + gn∗−1,1,q) .

(22)

Next, notice that we may apply part 5.e repeatedly to a term of the form ga,0,b
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to obtain

ga,0,b = ga,0,b+1 + ga,1,b+1 + ga,2,b+1

= (ga,0,b+2 + ga,1,b+2 + ga,2,b+2) + ga,1,b+1 + ga,2,b+1

= ((ga,0,b+3 + ga,1,b+3 + ga,2,b+3) + ga,1,b+2 + ga,2,b+2) + ga,1,b+1 + ga,2,b+1

= · · ·

= ga,0,a +
a−b∑
i=1

(ga,1,b+i + ga,2,b+i) .

(23)

Apply part 5.e repeatedly to both the gn∗−1,0,q+1 term and one of the gn∗−1,0,q
terms, and combine like terms to obtain

gn∗,0,q+1 + gn∗,1,q+1 + gn∗,2,q+1

= gn∗−1,0,q + gn∗−1,1,q +

n∗−q−1∑
i=1

i · gn∗−1,i+2,q+1+i

+
n∗−1∑
i=1

2gn∗−1,1,q+i +
n∗−1∑
i=1

2gn∗−1,2,q+i.

(24)

Now, given gn∗−1,a,q+i with a ∈ {1, 2}, we know that

gn∗−1,a,q+i = gn∗−1,a+2j,q+i+j

for all j ≥ 1. Further, given, a, i, and q, there is a unique value j∗ such that
(q + i+ j∗)− (a+ 2j∗) = q− 1. Indeed, j∗ = i+ 1− a. Rewrite each term gn∗−1,a,q+i
as gn∗−1,a+2j∗,q+i+j∗ .

Further, notice that given gn∗−1,a+2j∗,q+i+j∗ , there is a unique pair (a, i) with
a ∈ {1, 2} and i ≥ 1 that produces (a+ 2j∗, q + i+ j∗). Since a ∈ {1, 2}, the value of
a is determined by the parity of a + 2j∗. This determines the value of j∗, and since
q is fixed, the value of j∗ determines the value of i. Therefore,

n∗−1∑
i=1

2gn∗−1,1,q+i +
n∗−1∑
i=1

2gn∗−1,2,q+i =

n∗−q∑
i=2

2gn∗−1,i,q−1+i. (25)

We have:
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gn∗,0,q+1 + gn∗,1,q+1 + gn∗,2,q+1

= gn∗−1,0,q + gn∗−1,1,q +

n∗−q−1∑
i=1

i · gn∗−1,i+2,q+1+i +

n∗−q∑
i=2

2gn∗−1,i,q−1+i

= gn∗−1,0,q + gn∗−1,1,q +

n∗−q∑
i=2

(i− 2) · gn∗−1,i,q−1+i +

n∗−q∑
i=2

2gn∗−1,i,q−1+i

= gn∗−1,0,q + gn∗−1,1,q +

n∗−q∑
i=2

(i) · gn∗−1,i,q−1+i

= gn∗−1,0,q +

n∗−q∑
i=1

(i) · gn∗−1,i,q−1+i

= gn∗,0,q.

(26)

The final two parts of Lemma 5 are more straightforward. Part 5.f is a statement
about partial column sums of An that follows directly from parts 5.d and 5.e.

Part 5.f: We have:

k∑
i=0

gn,i,q = gn,0,q +
k∑
i=1

gn,i,q

= gn,0,q+1 + gn,1,q+1 + gn,2,q+1 +
k∑
i=1

gn,i+2,q+1

=
k+2∑
i=0

gn,i,q+1.

(27)

Part 5.g: This is a direct consequence of part 5.f that provides another linear
relationship between the dn,i and cn,i terms. Take part 5.f with k = q − 2. Then

q−2∑
j=0

gn,j,q =

q∑
j=0

gn,j,q+1.

The right hand side is cn,q+1, while the left is cn,q − dn,q. Let q = i− 1 to see the
statement holds.
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