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Abstract

Given a set of cycles C of a graph G, the tree graph of G, defined by C,
is the graph T (G,C) whose vertices are the spanning trees of G and in
which two trees R and S are adjacent if R∪S contains exactly one cycle
and this cycle lies in C. Li et al. [Discrete Math. 271 (2003), 303–310]
proved that if the graph T (G,C) is connected, then C cyclically spans
the cycle space of G. Later, Yumei Hu [Proc. 6th Int. Conf. Wireless
Communications Networking and Mobile Comput. (2010), 1–3] proved
that if C is an arboreal family of cycles of G which cyclically spans the
cycle space of a 2-connected graph G, then T (G,C) is connected. In this
note we present an infinite family of counterexamples to Hu’s result.

1 Introduction

The tree graph of a connected graph G is the graph T (G) whose vertices are the
spanning trees of G, in which two trees R and S are adjacent if R ∪ S contains
exactly one cycle. Li et al. [2] defined the tree graph of G with respect to a set of
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cycles C as the spanning subgraph T (G,C) of T (G) where two trees R and S are
adjacent only if the unique cycle contained in R ∪ S lies in C.

A set of cycles C of G cyclically spans the cycle space of G if for each cycle σ
of G there are cycles α1, α2, . . . , αm ∈ C such that: σ = α1∆α2∆ . . .∆αm and, for
i = 2, 3, . . . ,m, α1∆α2∆ . . .∆αi is a cycle of G. Li et al. [2] proved the following
theorem:

Theorem 1. If C is a set of cycles of a connected graph G such that the graph
T (G,C) is connected, then C cyclically spans the cycle space of G.

A set of cycles C of a graph G is arboreal with respect to G if for every spanning
tree T of G, there is a cycle σ ∈ C which is a fundamental cycle of T . Yumei Hu [1]
claimed to have proved the converse theorem:

Theorem 2. Let G be a 2-connected graph. If C is an arboreal set of cycles of G
that cyclically spans the cycle space of G, then T (G,C) is connected.

In this note we present a counterexample to Theorem 2 given by a triangulated
plane graph G with 6 vertices and an arboreal family of cycles C of G such that C
cyclically spans the cycle space of G, while T (G,C) is disconnected. Our example
generalises to a family of triangulated graphs Gn with 3(n + 2) vertices for each
integer n ≥ 0.

If α is a face of a plane graph G, we denote, also by α, the corresponding cycle
of G as well as the set of edges of α.

2 Preliminary results

Let G be a plane graph. For each cycle τ , let k(τ) be the number of faces of G
contained in the interior of τ . A diagonal edge of τ is an edge lying in the interior
of τ having both vertices in τ . The following lemma will be used in the proof of
Theorem 4.

Lemma 3. Let G be a triangulated plane graph and σ be a cycle of G. If k(σ) ≥ 2,
then there are two faces φ and ψ of G, contained in the interior of σ, both with at
least one edge in common with σ, and such that σ∆φ and σ∆ψ are cycles of G.

Proof. If k(σ) = 2, let φ and ψ be the two faces of G contained in the interior of σ.
Clearly σ∆φ = ψ and σ∆ψ = φ which are cycles of G.

Assume k = k(σ) ≥ 3 and that the result holds for each cycle τ of G with
2 ≤ k(τ) < k. If σ has a diagonal edge uv, then σ together with the edge uv define
two cycles σ1 and σ2 such that k(σ) = k(σ1) + k(σ2). If σ1 is a face of G, then σ∆σ1
is a cycle of G and, if k(σ1) ≥ 2, then by induction there are two faces φ1 and ψ1

of G, contained in the interior of σ1, both with at least one edge in common with
σ1, and such that σ1∆φ1 and σ1∆ψ1 are cycles of G. Without loss of generality, we
assume uv is not an edge of φ1 and therefore φ = φ1 has at least one edge in common
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with σ and is such that σ∆φ is a cycle of G. Analogously σ2 contains a face ψ with
at least one edge in common with σ and such that σ∆ψ is a cycle of G.

For the remaining of the proof we may assume σ has no diagonal edges. Since
k = k(σ) ≥ 3, there is a vertex u of σ which is incident with one or more edges lying
in the interior of σ. Let v0, v1, . . . , vm be the vertices in σ or in the interior of σ which
are adjacent to u. Without loss of generality we assume v0 and vm are vertices of σ
and that v0, v1, . . . , vm−1, vm is a path joining v0 and vm, see Figure 1.

Figure 1: Cycle σ with no diagonal edges.

As σ has no diagonal edges, vertices v1, v2, . . . , vm−1 are not vertices of σ and
therefore faces φ = uv0v1 and ψ = uvmvm−1 are such that σ∆φ and σ∆ψ are cycles
of G, each with one edge in common with σ.

Theorem 4. Let G be a triangulated plane graph and α and β be two internal faces
of G with one edge in common. If C is the set of internal faces of G with cycle α
replaced by the cycle α∆β, then C cyclically spans the cycle space of G.

Proof. Let σ be a cycle of G. If k(σ) = 1, then σ ∈ C or σ = α in which case
σ = (α∆β)∆β. In both cases σ is cyclically spanned by C.

We proceed by induction assuming k = k(σ) ≥ 2 and that if τ is a cycle of G
with k(τ) < k, then τ is cyclically spanned by C.

By Lemma 3, there are two faces φ and ψ of G, contained in the interior of σ,
such that both σ∆φ and σ∆ψ are cycles of G; without loss of generality we assume
φ 6= α. Clearly k(σ∆φ) < k; by induction, there are cycles τ1, τ2, . . . , τm ∈ C such
that: σ∆φ = τ1∆τ2∆ . . .∆τm and, for i = 2, 3, . . . ,m, τ1∆τ2∆ . . .∆τi is a cycle of G.
As σ = (σ∆φ)∆φ = τ1∆τ2∆ . . .∆τm∆φ, cycle σ is also cyclically spanned by C.

3 Main result

Let G be the skeleton graph of a octahedron (see Figure 2) and C be the set of cycles
that correspond to the internal faces of G with cycle α replaced by cycle α∆β.
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Figure 2: Graph G with internal faces α, β, γ, δ, σ, τ and ρ and outer face ω.

By Theorem 4, C cyclically spans the cycle space of G. Suppose C is not arboreal
and let P be a spanning tree of G with none of its fundamental cycles in C. For this
to happen, each of the cycles β, γ, δ, σ, τ and ρ of G, must have at least two edges
which are not edges of P and since P has no cycles, at least one edge of cycle α and
at least one edge of cycle ω are not edgs of P .

Therefore G has at least 7 edges which are not edges of P . These, together with
the 5 edges of P sum up to 12 edges which is exactly the number of edges of G. This
implies that each of the cycles ω and α has exactly two edges of P and that each of
the cycles β, γ, δ, σ, τ and ρ has exactly one edge of P .

If edges xy and xz are edges of P , then vertex x cannot be incident to any other
edge of P and therefore cycle α can only have one edge of P , which is not possible.

If edges xy and yz are edges of P , then vertex y cannot be incident to any other
edge of P . In this case, the edge in cycle σ, opposite to vertex y, must be an edge of
P and cannot be incident to any other edge of P , which again is not possible. The
case where edges xz and yz are edges of P is analogous. Therefore C is an arboreal
set of cycles of G.

Let T , S and R be the spanning trees of G given in Figure 3. The graph T (G,C)
has a connected component formed by the trees T , S and R since cycle ρ is the
only cycle in C which is a fundamental cycle of either T , S or R. This implies that
T (G,C) is disconnected.

Figure 3: Trees T (left), S (center) and R (right).

We proceed to generalise the counterexample to graphs with arbitrary large num-
ber of vertices. Let G0 = G, x0 = x, y0 = y, z0 = z and for t ≥ 0 define Gt+1 as the
graph obtained by placing a copy of Gt in the inner face of the skeleton graph of an
octahedron as in Figure 4.
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Figure 4: Gt+1.

Notice that each graph Gn contains a copy G′ of G in the innermost layer. We
also denote by α, β, γ, δ, σ, τ and ρ the cycles of Gn that correspond to the cycles
α, β, γ, δ, σ, τ and ρ of G′. Let ωn denote the cycle given by the edges in the outer
face of Gn.

For n ≥ 0 let Cn be the set of cycles that correspond to the internal faces of Gn

with cycle α replaced by cycle α∆β. By Theorem 4, Cn cyclically spans the cycle
space of Gn.

We claim that for n ≥ 0, set Cn is an arboreal set of cycles of Gn. Suppose Ct is
arboreal but Ct+1 is not and let Pt+1 be a spanning tree of Gt+1 such that none of
its fundamental cycles lies in Ct+1.

As in the case of graph G and tree P , above, each cycle in Ct+1, other than α∆β,
has exactly one edge in Pt+1, while cycles α and ωt+1 have exactly two edges in Pt+1.
The reader can see that this implies that the edges of Pt+1 which are not edges of Gt

form a path with length 3. Then Pt+1−{xt+1, yt+1, zt+1} is a spanning tree of Gt and
by induction, one of its fundamental cycles lies in Ct ⊂ Ct+1 which is a contradiction.
Therefore Ct+1 is arboreal.

Let T0 = T and for t ≥ 0 define Tt+1 as the spanning tree of Gt+1 obtained by
placing a copy of Tt in the inner face of the skeleton graph of an octahedron as in
Figure 5.

Trees St+1 and Rt+1 are obtained from St and Rt in the same way with S0 = S
and R0 = R respectively. We claim that, for each integer n ≥ 0, cycle ρ is the only
cycle in Cn which is a fundamental cycle of either Tn, Sn or Rn. Therefore Tn, Sn and
Rn form a connected component of Gn which implies that T (Gn, Cn) is disconnected.
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Figure 5: t = 3k (left), t = 3k + 1 (centre) and t = 3k + 2 (right).
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