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Abstract

A graph G is said to be singular if its adjacency matrix is singular; oth-
erwise it is said to be non-singular. In this paper, we introduce a class
of graphs called looped-trees, and find the determinant and the non-
singularity of looped-trees. Moreover, we determine the singularity or
non-singularity of the complement of a certain class of trees with diame-
ter 5 by using the results for looped-trees.

1 Introduction and Preliminaries

Non-singular trees were completely characterized by Gervacio and Rara [2]. Further-
more, the singularity or non-singularity of the complement of a tree with diameter
less than 5 was completely determined by Gervacio [1]. Recently, Pipattanajinda and
Kim [7] obtained the determinant of the complement of a tree with diameter 5, and
determined the singularity or non-singularity of the complement of a certain class
of trees with diameter 5. In this paper we shall introduce a class of graphs called
looped-trees and determine the singularity of looped-trees with diameter less than
or equal to 5. Moreover, we shall solve the singularity or non-singularity problem of
the complement of a certain class of trees with diameter 5. In Section 2, we shall
give the formula for the determinant of looped-trees with diameter less than 5. We
note that an adjacency matrix of a looped-tree is also a neighborhood matrix of a
tree (for details, see [5]). We then determine the singularity or non-singularity of
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the complement of a looped-tree with diameter 4. Furthermore, the determinant and
the non-singularity of looped-trees with diameter 5 will be solved in Section 3. In
final section we find some relation between determinants of a looped-tree and the
complement of a tree with diameter 5 by using the results in [4], and determined
the singularity or non-singularity of the complement of a certain class of trees with
diameter 5.

By a graph G we mean a pair (V (G), E(G)), where V (G) is a finite non-empty set
of elements called vertices and E(G) is a set of 2-subsets of V (G) whose elements are
called edges. In particular, G is a simple graph if it has no loops (edges connected at
both ends to the same vertex) and no more than one edge between any two different
vertices. For a simple graph G = (V (G), E(G)), a graph Go = (V (Go), E(Go)) with
V (Go) = V (G) and E(Go) = {{u, v}|{u, v} ∈ E(G)} ∪ {{u, u}|u ∈ V (Go)} is called
a looped-graph of G. In particular, if G is a tree, Go is called a looped-tree.

If G is a graph with vertices x1, x2, . . . , xn, we define the adjacency matrix of G
to be the n × n matrix A(G) = (aij), where aij = 1 if {xi, xj} ∈ E(G) and aij = 0
otherwise. The graph G is said to be singular if A(G) is singular, i.e., detA(G) = 0;
otherwise G is said to be non-singular. If S ⊂ V (G), then G\S denotes the graph
obtained from G by deleting all the vertices x ∈ S. The complement G of G is a
graph such that V (G) = V (G) and {u, v} ∈ E(G) if and only if {u, v} /∈ E(G) for
any u, v ∈ V (G) and u �= v. The loop complement G

o
of G is a graph such that

V (G
o
) = V (G) and {u, v} ∈ E(G

o
) if and only if {u, v} /∈ E(G) for any u, v ∈ V (G).

When G is a simple graph, the loop complement of G is the complement of Go,
that is, G

o
= Go, and the loop complement of Go is the complement of G, that is,

Goo = G. Other terms whose definitions are not given here may be found in many
graph theory books, e.g., [3].

For non-negative integers m, r, s,m1, m2, · · · , mr, n1, n2, · · · , ns, we define a series
of looped-trees, T o

2:m, T
o
3:r,s, T

o
4:m1,m2,...,mr

, and T o
5:m1,··· ,mr ;n1,··· ,ns

as follows: by T o
2:m

we mean a looped-tree of a tree with diameter ≤ 2, which is depicted in Figure
1 where w is called the central vertex, and m is the number of vertices but the
central vertex w. For two disjoint looped-trees T o

2:r, T
o
2:s, with central vertices x0, y0

respectively, we form a looped-tree T o
3:r,s by joining two central vertices as shown

in Figure 1, where x0, y0 are called central vertices of T o
3:r,s. For disjoint looped-

trees T o
2:m1

, T o
2:m2

, . . . , T o
2:mr

, with central vertices x1, x2, . . . , xr respectively, we form a
looped-tree T o

4:m1,m2,...,mr
by joining all central vertices xi to a new vertex z (see Figure

2 where z is called the central vertex of T o
4:m1,m2,...,mr

). Similarly for two disjoint
looped-trees T o

4:m1,m2,...,mr
, T o

4:n1,n2,...,ns
, with central vertices x0, y0 respectively, we

form a looped-tree T o
5:m1,··· ,mr ;n1,··· ,ns

by joining two central vertices (see Figure 3
where x0, y0 are called central vertices of T o

5:m1,··· ,mr ;n1,··· ,ns
).

From the construction, we have the following:
(i) if m ≥ 2, then T o

2:m is a looped-tree with diameter 2;
(ii) if rs �= 0, then T o

3:r,s is a looped-tree with diameter 3;
(iii) if r > 2 and mimj �= 0 for two distinct i, j, then T o

4:m1,m2,...,mr
is a looped-tree

with diameter 4; and
(iv) if r, s > 1 and minj �= 0 for some i, j, then T o

5:m1,··· ,mr;n1,··· ,ns
is a looped-tree

with diameter 5.
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Figure 1: T ◦
2:m and T ◦

3:r,s
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Figure 2: T ◦
4:m1,m2,··· ,mr

Moreover, we note that T o
4:m = T o

2:m+1, T
o
3:r,0 = T o

2:r+1, T
o
4:m,0, · · · , 0︸ ︷︷ ︸

j

= T o
3:m,j and

T o
5:m1,··· ,mr;0, · · · , 0︸ ︷︷ ︸

j

= T o
4:m1,m2,...,mr ,j.

From now on, for the simplicity of expressions, we denote the determinant of
an adjacency matrix of a graph G by |G| or |A(G)|, whenever there is no margin
for confusion. For example, |T o

4:m1,m2,...,mr
| means the determinant of an adjacency

matrix of T o
4:m1,m2,...,mr

. Furthermore, we use T o
4:...,mr

and T o
5:...,mr;...,ns

for T o
4:m1,m2,...,mr

and T o
5:m1,...,mr;n1,...,ns

. We now recall a definition of some graph and a lemma in [6]
crucial for our further arguments. For any graph G with x ∈ V (G) and y /∈ V (G),
Gx∼y0 means the graph with V (Gx∼y0) = V (G) ∪ {y} and E(Gx∼y0) = E(G) ∪
{{x, y}, {y, y}}.

Lemma 1.1 [6] Let G = (G(V ), G(E)) be a graph, x ∈ G(V ) and y /∈ G(V ). Then

|Gx∼yo| = |G| − |G\{x}|

Lemma 1.2 (i) |T o
2:m| = 1−m; (ii) |T o

3:r,s| = rs− r − s.

Proof. (i) We can write T o
2:m = (T o

2:m−1)x∼yo (see Figure 4) and apply Lemma 1.1 to
get

|T o
2:m| = |T o

2:m−1| − 1.

By applying the same arguments repeatedly, we have

|T o
2:m| = |T o

2:m−1|−1 = |T o
2:m−2|−2 = · · · = |T o

2:2|−(m−2) = |T o
2:1|−(m−1) = 1−m.



N. PIPATTANAJINDA ET AL. /AUSTRALAS. J. COMBIN. 63 (2) (2015), 297–313 300

•
• • • •· · ·

m1 · · ·

•
• • • •· · ·

mr

• · · ·
• • • •· · ·

n1

•
•

· · ·
• • •· · ·
ns

•x0 • y0
· · ·

��
��
��
��

��
��
��

��
��
��

��
��

��
��

��
��
��
��

��
��
��

��
��
��

��
��

��
��
















���
���

���
�

















���
���

���
�

��
��
��
��

��
��
��

��
��
��

��
��

��
��

��
��
��
��

��
��
��

��
��
��

��
��

��
��

Figure 3: T ◦
5:m1,m2,··· ,mr ;n1,n2,··· ,ns
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Figure 4: T o
2:m = (T o

2:m−1)x∼yo

(ii) By the same argument for (i),

|T o
3:r,s| = |T o

3:r,s−1| − |T o
2:r| = |T o

3:r,s−2| − 2|T o
2:r|

= |T o
3:r,s−3| − 3|T o

2:r| = · · · = |T o
3:r,0| − s|T o

2:r|
= |T o

2:r+1| − s|T o
2:r| = 1− (r + 1)− s(1− r) = rs− r − s.

�
From Lemma 1.2, we have the following.

Corollary 1.3 T o
2:r is singular if and only if r = 1.

Corollary 1.4 T o
3:r,s is singular if and only if r = s = 2.

2 Looped-Trees with diameter 4

Lemma 2.1 For non-negative integers m1,m2, · · · , mr(r ≥ 2),

|T o
4:··· ,mr

| = −(1 −m1)(1−m2) · · · (1−mr−1) + (1−mr)|T o
4:...,mr−1

|

Proof. We can write T o
4:...,mr

= (T o
4:...,mr−1)x∼yo (Figure 5, where x is adjacent to the

central vertex of T o
4:...,mr−1

) and apply Lemma 1.1 to get

|T o
4:...,mr

| = |T o
4:...,mr−1| − |T o

4:...,mr−1
|.
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By applying the same arguments repeatedly, we have

|T o
4:...,mr

| = |T o
4:...,mr−1,0| −mr|T o

4:...,mr−1
|.

Now we write T o
4:...,mr−1,0 = (T o

4:...,mr−1
)x∼yo (see Figure 6, where y is adjacent to the

central vertex x of T o
4:··· ,mr−1

) and apply Lemma 1.1 to get

|T o
4:...mr−1,0

| = |T o
4:...,mr−1

| − |T o
2:m1

||T o
2:m2

| . . . |T o
2:mr−1

|

and so

|T o
4:...,mr

| = −(1−m1)(1−m2) . . . (1−mr−1) + (1−mr)|T o
4:...,mr−1

|.

�
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Figure 5: T o
4:··· ,mr

= (T o
4:··· ,mr−1)x∼yo

• yT o
4:··· ,mr−1

Figure 6: T o
4:··· ,mr−1,0

= (T o
4:··· ,mr−1

)x∼yo

Theorem 2.2 For non-negative integers m1,m2, · · · , mr,

|T o
4:··· ,mr

| =
r∏

i=1

(1−mi)−
r∑

i=1

(1−m1)(1−m2) · · · (1−mr)

1−mi

.

Proof. By mathematical induction on r. Let r = 1. By applying Lemma 1.2, we have

|T o
4:m1

| = |T o
2,m1+1| = 1− (m1 + 1) = (1−m1)− 1.
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We assume that the formula works for r − 1. Then by Lemma 2.1 and induction
hypothesis,

|T o
4:··· ,mr

|
= −(1−m1) · · · (1−mr−1) + (1−mr)|T o

4:··· ,mr−1
|

= −(1−m1) · · · (1−mr−1)

+(1−mr)

(
(1−m1) · · · (1−mr−1)−

r−1∑
i=1

(1−m1) · · · (1−mr−1)

1−mi

)
= −(1−m1) · · · (1−mr−1) + (1−m1) · · · (1−mr−1)(1−mr)

−(1−mr)
r−1∑
i=1

(1−m1) · · · (1−mr−1)

1−mi

=

r∏
i=1

(1−mi)−
r∑

i=1

(1−m1)(1−m2) · · · (1−mr)

1−mi
.

�

Corollary 2.3 For non-negative integers m1, · · · , mr, j,

|T o
4:...,mr ,0, · · · , 0︸ ︷︷ ︸

j

| = (1− j)
r∏

i=1

(1−mi)−
r∑

i=1

(1−m1)(1−m2) · · · (1−mr)

(1−mi)
.

Theorem 2.4 For positive integers m1, · · · , mr, T
o
4:m1,m2,··· ,mr

is a singular graph if
and only if at least two distinct mi are 1.

Proof. If at least two distinct mi are 1, then
∏r

i=1(1 −mi) and
∑r

i=1
(1−m1)···(1−mr)

1−mi

of |T o
4:··· ,mr

| in Theorem 2.2 are zero and so |T o
4:··· ,mr

| = 0. For the converse, if only
one mi is 1, say mr = 1, then

|T o
4:...,mr−1,1

| =
r∏

i=1

(1−mi)−
r∑

i=1

(1−m1) · · · (1−mr)

(1−mi)
= −(1−m1) · · · (1−mr−1)

which is clearly non-zero. If mi �= 1 for all i, then

|T o
4:··· ,mr

| =
r∏

i=1

(1−mi)−
r∑

i=1

(1−m1)(1−m2) · · · (1−mr)

(1−mi)

=

r−1∏
i=1

(1−mi)−
r−1∏
i=1

(1−mi)mr −
r∑

i=1

(1−m1)(1−m2) · · · (1−mr)

(1−mi)

= −
r−1∏
i=1

(1−mi)mr −
r−1∑
i=1

(1−m1)(1−m2) · · · (1−mr)

(1−mi)

where
∏r−1

i=1 (1 − mi)mr and
∑r−1

i=1
(1−m1)(1−m2)···(1−mr)

(1−mi)
have the same sign, (−1)r+1.

Hence, |T o
4:··· ,mr

| cannot be zero. �
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Theorem 2.5 For positive integers m1,m2, · · · , mr, T
o
4:··· ,mr ,0 is a singular graph if

and only if at least two distinct mi are 1.

Proof. By Corollary 2.3,

|T o
4:··· ,mr ,0| = −

r∑
i=1

(1−m1)(1−m2) · · · (1−mr)

(1−mi)

which is clearly zero if and only at least two distinct mi are 1. �
We cannot extend Theorem 2.5 to the general case that more than one mi are

zeros as we see in the following Example.

Example 2.1 For positive integers m, r, j, T o
4:m, · · · , m︸ ︷︷ ︸

r

,0, · · · , 0︸ ︷︷ ︸
j

is a singular graph

if 1−m− j + jm− r = 0.

Proof. By Corollary 2.3 with m1 = m2 = · · · = mr = m and j times 0, we have

|T o
4:m, · · · , m︸ ︷︷ ︸

r

,0, · · · , 0︸ ︷︷ ︸
j

|

= (1− j)

r∏
i=1

(1−m)−
r∑

i=1

(1−m)(1−m) . . . (1−m)

(1−m)

= (1− j)(1−m)r − r(1−m)r−1 = (1−m)r−1((1− j)(1−m)− r) = 0

In particular, T o
4:3,3,0,0 is singular. �

3 Looped-Trees with diameter 5

Lemma 3.1 For non-negative integers m1, · · · , mr, n1, · · · , ns(s ≥ 2),

|T o
5:··· ,mr;··· ,ns

| = (1− ns)|T o
5:··· ,mr ;··· ,ns−1

| − |T o
4:··· ,mr

|(1− n1)(1− n2) · · · (1− ns−1)

Proof. We can write T o
5:··· ,mr ;··· ,ns

= (T o
5:··· ,mr ;··· ,ns−1)x∼yo (see Figure 7, where x is

adjacent to the central vertex of T o
4:··· ,ns−1

) and apply Lemma 1.1 to get

|T o
5:··· ,mr ;··· ,ns

| = |T o
5:··· ,mr ;··· ,ns−1| − |T o

5:··· ,mr ;··· ,ns−1
|.

By applying the same argument repeatedly, we have

|T o
5:··· ,mr ;··· ,ns

| = |T o
5:··· ,mr ;··· ,ns−1,0

| − ns|T o
5:··· ,mr ;··· ,ns−1

|.

Now we note that T o
5:··· ,mr;··· ,ns−1,0

= (T o
5:··· ,mr;··· ,ns−1

)x∼yo (see Figure 8, where y is
adjacent to the central vertex x of T o

4:··· ,ns−1
) and apply Lemma 1.1 to get
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Figure 7: T o
5:··· ,mr ;··· ,ns

= (T o
5:··· ,mr;··· ,ns−1)x∼yo

• yT o
4:··· ,mr

T o
4:··· ,ns−1

T o
5:··· ,mr ;··· ,ns−1

Figure 8: T o
5:··· ,mr ;··· ,ns−1,0 = (T o

5:··· ,mr ;··· ,ns−1
)x∼yo

|T o
5:··· ,mr ;··· ,ns−1,0

| = |T o
5:··· ,mr ;··· ,ns−1

| − |T o
4:··· ,mr

||T o
2,n1

||T o
2,n2

| · · · |T o
2,ns−1

|.

Hence,

|T o
5:··· ,mr ;··· ,ns

| = (1− ns)|T o
5:··· ,mr ;··· ,ns−1

| − |T o
4:··· ,mr

|(1− n1)(1− n2) · · · (1− ns−1).

�

Theorem 3.2 For non-negative integers m1, · · · , mr, n1, · · · , ns,

|T o
5:··· ,mr ;··· ,ns

| = −
s∏

j=1

(1− nj)

r∏
i=1

(1−mi) + |T o
4:··· ,mr

||T o
4:··· ,ns

|
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Proof. By induction on s. Let s = 1. Then, by the same argument as in Lemma 3.1,

|T o
5:··· ,mr;n1

| = |T o
5:··· ,mr;n1−1| − |T o

4:··· ,mr ,0| = |T o
5:··· ,mr ;n1−2| − 2|T o

4:··· ,mr,0|
= · · · = |T o

5:··· ,mr ,0| − n1|T o
4:··· ,mr ,0| = |T o

4:··· ,mr ,1| − n1|T o
4:··· ,mr ,0|

=
(|T o

4:··· ,mr ,0| − |T o
4:··· ,mr

|)− n1|T o
4:··· ,mr,0| = (1− n1)|T o

4:··· ,mr,0| − |T o
4:··· ,mr

|

= (1− n1)

(
|T o

4:··· ,mr
| −

r∏
i=1

(1−mi)

)
− |T o

4:··· ,mr
|

= −(1 − n1)
r∏

i=1

(1−mi)− n1|T o
4:··· ,mr

|

= −(1 − n1)

r∏
i=1

(1−mi) + |T o
4:··· ,mr

||T o
4:n1

|.

We assume that the formula works for s− 1. Then by Lemma 3.1 and induction
hypothesis, we have

|T o
5:··· ,mr;··· ,ns

|
= (1− ns)|T o

5:··· ,mr ;··· ,ns−1
| − |T o

4:··· ,mr
|(1− n1)(1− n2) · · · (1− ns−1)

= (1− ns)

(
−

s−1∏
j=1

(1− nj)

r∏
i=1

(1−mi) + |T o
4:··· ,mr

||T o
4:··· ,ns−1

|
)

−|T o
4:··· ,mr

|(1− n1)(1− n2) · · · (1− ns−1)

= −
s∏

j=1

(1− nj)

r∏
i=1

(1−mi)

+|T o
4:··· ,mr

| ((1− ns)|T o
4:··· ,ns−1

| − (1− n1)(1− n2) · · · (1− ns−1)
)

= −
s∏

j=1

(1− nj)

r∏
i=1

(1−mi) + |T o
4:··· ,mr

||T o
4:··· ,ns

|.

where the last formula is obtained by applying Lemma 2.1. �

Theorem 3.3 For non-negative integers m1, · · · , mr, n1, · · · , ns,

|T o
5:··· ,mr ;··· ,ns

| =
s∑

j=1

r∑
i=1

(1−m1) · · · (1−mr)(1− n1) · · · (1− ns)

(1−mi)(1− nj)

−
s∏

j=1

(1− nj)

r∑
i=1

(1−m1) · · · (1−mr)

1−mi

−
r∏

i=1

(1−mi)
s∑

j=1

(1− n1) · · · (1− ns)

1− nj

Proof. By simple application of Theorems 3.2 and 2.2. �
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Theorem 3.4 For positive integers m1, · · · , mr, n1, · · · , ns, T
o
5:··· ,mr ;··· ,ns

is a singular
graph if and only if at least two distinct mi are 1 or at least two distinct ni are 1.

Proof. If at least two distinct mi are 1, or at least two distinct ni are 1, then each
term of |T o

5:m1,··· ,mr ;n1,··· ,ns
| in Theorem 3.2 is zero and so |T o

5:··· ,mr;··· ,ns
| = 0. For the

converse, we need to consider two cases. (i) If none of mi or nj is 1, then we just
note that three terms

∑s
j=1

∑r
i=1 ∗, −

∏s
j=1(1 − nj)

∑r
i=1 ∗, −

∏r
i=1(1 −mi)

∑s
j=1 ∗

in the expression of |T o
5:··· ,mr ;··· ,ns

| have the same sign (−1)r+s. Hence, the sum cannot
be zero unless each of three terms is zero, which cannot happen. (ii) For the other
case, when only one mi or nj is 1, or only one mi and only one nj are 1, then

|T o
5:··· ,mr ;··· ,ns

| = −
s∏

j=1

(1− nj)

r∏
i=1

(1−mi) + |T o
4:··· ,mr

||T o
4:··· ,ns

|

= |T o
4:··· ,mr

||T o
4:··· ,ns

|
which cannot be zero by Theorem 2.4. �

We cannot get the similar version of Theorem 2.5 for T o
5:··· ,mr ;··· ,ns

as we see in the
following Examples.

Corollary 3.5 For non-negative integers m1,m2, · · · , mr, n1, · · · , ns,

|T o
5:··· ,mr;··· ,ns,0|

= −
r∏

i=1

(1−mi)

(
s∏

j=1

(1− nj) +

s∑
j=1

(1− n1)(1− n2) · · · (1− ns−1)

1− nj

)

+

(
r∑

i=1

(1−m1)(1−m2) · · · (1−mr)

1−mi

)
s∑

j=1

(1− n1)(1− n2) · · · (1− ns−1)

1− nj

Example 3.1 T o
5:m,m, · · · , m︸ ︷︷ ︸

r

;n, n, · · · , n︸ ︷︷ ︸
s

,0 is a singular graph if n+m− s−mn+

ms + rs− 1 = 0.

Proof. By Corollary 3.5 and simple calculation gives

|T o
5:m,m, · · · , m︸ ︷︷ ︸

r

;n, n, · · · , n︸ ︷︷ ︸
s

,0|

= −(1−m)r
(
(1− n)s + s(1− n)s−1

)
+ r(1−m)r−1s(1− n)s−1

= −(1− n)s−1(1−m)r−1 ((1−m)(1− n) + s(1−m)− rs) = 0

In particular, T o
5:3;2,0 is singular. �

Corollary 3.6 For non-negative integers m1,m2, · · · , mr, n1, · · · , ns,

|T o
5:··· ,mr ,0;··· ,ns,0|

= −
s∏

j=1

(1− nj)

r∏
i=1

(1−mi)

+

(
r∑

i=1

(1−m1)(1−m2) . . . (1−mr)

(1− ni)

)
s∑

j=1

(1− n1)(1− n2) · · · (1− ns)

1− nj
.
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Example 3.2 T o
5:m+ 1, · · · , m+ 1︸ ︷︷ ︸

m

,0;n+ 1, · · · , n+ 1︸ ︷︷ ︸
n

,0 is a singular graph.

Proof. By Corollary 3.6 and simple calculation, we have

|T o
5:m+ 1, m+ 1, · · · , m+ 1︸ ︷︷ ︸

m

,0;n+ 1, n+ 1, · · · , n+ 1︸ ︷︷ ︸
n

,0
|

= −(−n)n(−m)m + n(−n)n−1m(−m)m−1 = 0.

In particular, T o
5:2,0;2,0 is singular. �

Corollary 3.7 Let T o
4:··· ,mr

and T o
5:··· ,mr;··· ,ns

be non-singular where m1,m2, · · · , mr,
n1,n2, · · · , ns are positive integers. Then
(i) |T o

4:··· ,mr
| is positive if and only if r is even and,

(ii) |T o
5:··· ,mr ;··· ,ns

| is positive if and only if r and s have the same parity.

4 The complement of a tree with diameter 5

We now find the determinant of a tree complement with diameter 5 in terms of
determinants of looped-trees. Let G be a graph whose vertices are v1, v2, . . . and
let every edge be associated with the variable wi. Then we can construct a variable
adjacency matrix A(G,w) for the graph G as follows: the (i, j) entry is wk if and only
if {vi, vj} ∈ E(G) and the variable wk is associated with edge {vi, vj}, and this entry
is 0 if {vi, vj} /∈ E(G). We note that the ordinary adjacency matrix A(G) is obtained
from A(G,w) by substituting wk = 1 for each of the variables for the edges of G.
Let G be a graph. An (ordinary) linear subgraph of G is a spanning subgraph whose
components are lines or cycles. Further, let n be the number of linear subgraphs of
G and let Gi be the i

th linear subgraph. In [4], Harary showed the following theorem.
We note that a simple observation gives that the theorem works for our case in which
the components of a linear subgraph contain loops.

Theorem 4.1 [4] Let G be a graph. Then

|A(G,w)| =
n∑

i=1

|A(Gi, w)|,

and

|A(G,w)| =
n∑

i=1

(−1)ei2ci
∏

wk∈Li

w2
k

∏
wj∈Mi

wj

where (1) ei is the number of even components of Gi, (2) ci is the number of com-
ponents of Gi containing more than two points, and thus consisting of a single undi-
rected cycle, (3) Li is the set of components of Gi consisting of two points and the
line joining them, and (4) Mi is the remaining components of Gi each of which is a
cycle.
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For the complete graph K
(1)
� of order �(≥ 1) with 1 loop, and a graph G of order

n, the following property was shown in [6], where K
(1)
� + G

0
means the join of K

(1)
�

and G
0
.

Lemma 4.2 [6] Let G be a graph of order n. Then |A(G)| = (−1)n+�−1|A(K(1)
� +

G
0
)|.

Let G be a graph, x0, y0 ∈ V (G) and z /∈ V (G). By G
x

〉
y

zo, we mean the graph

with V (G
x

〉
y

zo) = V (G) ∪ {z} and E(G
x

〉
y

zo) = E(G) ∪ {{x, z}, {y, z}, {z, z}}.

Lemma 4.3 For non-negative integers m1,m2, · · · , mr, n1,n2, · · · , ns,

|T5:··· ,mr;··· ,ns| = (−1)t|A(T o
5:··· ,mr ;··· ,ns

x

〉
y

zo, w)|,

where the values associated with a loop at z, the edge {x, z} and the edge {y, z} are
1− (r + s), 1− r and 1− s respectively, and every other edge has the value 1, and t
is the order of T5:··· ,mr;··· ,ns.

T o
2:m1

T o
2:mr

T o
2:n1

· · · T o
2:ns

T o
5:··· ,mr;··· ,ns

• z

•x • y

· · ·
��
��
��

��
��

��

��
��
��

��
��

��

Figure 9: T ◦
5:··· ,mr;··· ,ns

+ zo

Proof. From Lemma 4.2, |T5:··· ,mr ;··· ,ns| = (−1)t|T o
5:··· ,mr;··· ,ns

+ zo|, where t is the
order of T5:··· ,mr ;··· ,ns. (See Figure 9, where the double-dotted line between z and
T o
5:··· ,mr ;··· ,ns

means that z is adjacent to every point of T o
5:··· ,mr ;··· ,ns

. We note that the
adjacency matrix of T o

5:··· ,mr ;··· ,ns
+ zo is of the following form:
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A(T o
5:··· ,mr ;··· ,ns

+ zo) =

x y x1 · · · xr y1 · · · ys · · · z⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

x 1 1 1 · · · 1 0 · · · 0 · · · 1
y 1 1 0 · · · 0 1 · · · 1 · · · 1
x1 1 0 1
...

...
...

...
xr 1 0 1
y1 0 1 1
...

...
...

...
ys 0 1 1
...

...
...

...
z 1 1 1 · · · 1 1 · · · 1 · · · 1

By subtracting rows corresponding to x1, . . . , xr from the last row corresponding
to z, we have

|T o
5:··· ,mr;··· ,ns

+ zo| = det

x y · · · · · · · · · z⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

1 1 · · · · · · · · · 1
1 1 1
...

...
...

...
...

...
1− r 1 w3 · · · wt 1− r

where wi = 0 (resp. 1) if wi is an element of a column corresponding to a vertex
in T o

2:mi
(resp. T o

2:ni
). Similarly, by subtracting rows corresponding to y1, . . . , ys from

the last row corresponding to z, we have

|T o
5:··· ,mr ;··· ,ns

+ zo| = det

x y · · · · · · · · · z⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

1 1 · · · · · · · · · 1
1 1 1
...

...
...

...
...

...
1− r 1− s 0 · · · 0 1− (r + s)

We now subtract columns corresponding to x1, . . . , xr, y1, . . . , ys from the last
column to get
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|T o
5:··· ,mr;··· ,ns

+ zo| = det

x y · · · · · · · · · z⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

1 1 · · · · · · · · · 1− r
1 1 1− s
...

... 0
...

...
...

...
... 0

1− r 1− s 0 · · · 0 1− (r + s)

= |A(T o
5:··· ,mr ;··· ,ns

x

〉
y

zo, w)|

where the corresponding graph T o
5:··· ,mr;··· ,ns

x

〉
y

zo is depicted in Figure 10. �

T o
2:m1

T o
2:mr

T o
2:n1

· · · T o
2:ns

•
z

1− (r + s)

1− s1− r

•x • y

· · ·
��
��
��

��
��

��

��
��
��

��
��

�����
���

���
���

�

���
���

���
���

�

Figure 10: T ◦
5:··· ,mr;··· ,ns

>x
y zo

Theorem 4.4 For non-negative integers m1,m2, · · · , mr, n1,n2, · · · , ns, then

(−1)t|T5:··· ,mr ;··· ,ns| = 2(1− r)(1− s)

r∏
i=1

(1−mi)

s∏
i=1

(1− ni)

−(1− r)2
r∏

i=1

(1−mi)|T o
4:···ns

| − (1− s)2
s∏

i=1

(1− ni)|T o
4:···mr

|

+(1− (r + s))|T o
5:··· ,mr ;··· ,ns

|.
where t is the order of T5:...,mr ;...,ns.

Proof. By applying Lemma 4.3, we have

|T5:··· ,mr;··· ,ns| = (−1)t|A(T o
5:··· ,mr ;··· ,ns

x

〉
y

zo, w)|,

where t is the order of T5:...,mr ;...,ns. We partition the set of all linear subgraphs of

T o
5:··· ,mr ;··· ,ns

x

〉
y

zo into 4 classes G1,G2,G3, which consists of all linear subgraphs contain-

ing a cycle {x, y, z}, a line {x, z}, and a line {y, z} respectively, and G4 consisting of
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all linear subgraphs containing neither {x, z} or {y, z} nor a cycle {x, y, z}. Thanks
to Theorem 4.1, we have

(−1)t|A(T o
5:··· ,mr ;··· ,ns

x

〉
y

zo)| =
4∑

i=1

(∑
H∈Gi

|A(H,w)|
)
.

Let H ∈ G1. We note that the determinant of H is independent of the ordering of the

vertices of T o
5:··· ,mr;··· ,ns

x

〉
y

zo, and so we may separate the vertices of a cycle {x, y, z} so

that the variable adjacency matrix is decomposed into diagonal block submatrices
as follows:

A(H,w) =

x y z⎛
⎜⎝

⎞
⎟⎠

x 0 1 1− r
y 1 0 1− s
z 1− r 1− s 0

DH

where DH is a variable adjacency matrix of the complement of a cycle {x, y, z} in H.
Moreover,

∑
H∈Gi

|DH | is the determinant of T o
m1

∪ · · · ∪T o
mr

∪T o
n1
∪ · · · ∪T o

ns
. Hence,

we have ∑
H∈G1

|A(H, x)| = 2(1− r)(1− s)|T o
m1

| . . . |T o
mr

||T o
n1
| . . . |T o

ns
|

= 2(1− r)(1− s)

r∏
i=1

(1−mi)

s∏
i=1

(1− ni).

We apply the same argument for G2,G3, and G4 to get

∑
H∈G2

|A(H, x)| = −(1− r)2
r∏

i=1

(1−mi)|T o
4:...,ns

|,

∑
H∈G3

|A(H, x)| = −(1− s)2
s∏

i=1

(1− ns)|T o
4:...,mr

|,

and ∑
H∈G4

|A(H, x)| = (1− (r + s))|T o
5:...,mr ;...,ns

|.

�

Theorem 4.5 For positive integers m1,m2, . . . , mr, n1,n2, . . . , ns, T5:...,mr ;...,ns is sin-
gular if and only if T o

5:...,mr;...,ns
is singular, that is, at least two distinct mi are 1 or

at least two distinct ni are 1.

Proof. For the simplification, we suppress (1−mi) and (1−nj) in |T5| = |T5:··· ,mr ;··· ,ns|.
We note that by Theorems 4.4, 2.2 and 3.2,
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(−1)t|T5|

= 2(1− r)(1− s)

r∏ s∏
∗ − (1− r)2

r∏
∗|T o

4:ns
| − (1− s)2

s∏
∗|T o

4:mr
|

+(1− (r + s))|T o
5:··· ,mr ;··· ,ns

|

= 2(1− r)(1− s)
r∏ s∏

∗

−(1− r)2
r∏
∗
{

s∏
∗ −

s∑
∗
}

− (1− s)2
s∏
∗
{

r∏
∗ −

r∑
∗
}

+(1− (r + s))

{
s∑

∗
r∑

∗ −
s∏
∗

r∑
∗ −

r∏
∗

s∑
∗
}

= −(r − s)2
r∏ s∏

∗+ (r2 − r + s)

r∏
∗

s∑
∗+ (s2 − s+ r)

s∏
∗

r∑
∗

+(1− (r + s))

s∑
∗

r∑
∗.

If T o
5:··· ,mr ;··· ,ns

is singular, then at least two distinct mi are 1 or at least two distinct ni

are 1. Therefore, in the expression of |T5|, block terms
∏r∏s ∗,∏r ∗∑s ∗,∏s ∗∑r ∗,

and
∑s ∗∑r ∗ clearly vanish and so T5:··· ,mr ;··· ,ns is singular. For the converse, we

assume that T o
5:··· ,mr;··· ,ns

is non-singular. We need to consider three cases: (i) only
one mi or nj is 1, (ii) only one mi and only one nj are 1, (iii) neither mi nor nj is 1.
If only one mi is 1, then

(−1)t|T5| = −(r − s)2
r∏
∗

s∏
∗+ (r2 − r + s)

r∏
∗

s∑
∗

+(s2 − s+ r)
s∏
∗

r∑
∗+ (1− (r + s))

s∑
∗

r∑
∗

= (s2 − s+ r)

s∏
∗

r∑
∗+ (1− (r + s))

s∑
∗

r∑
∗

where two block terms have the same sign (−1)s+r+1 and so the sum can not be zero.
The same argument can be applied for the case that only one nj is 1. If only one mi

and only one nj are 1, then

(−1)t|T5| = −(r − s)2
r∏ s∏

∗+ (r2 − r + s)

r∏
∗

s∑
∗

+(s2 − s+ r)

s∏
∗

r∑
∗+ (1− (r + s))

s∑
∗

r∑
∗

= (1− (r + s))
s∑

∗
r∑

∗
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which is nonzero. If none of mi nor nj is 1, then

(−1)t|T5| = −(r − s)2
r∏ s∏

∗+ (r2 − r + s)
r∏
∗

s∑
∗

+(s2 − s+ r)
s∏
∗

r∑
∗+ (1− (r + s))

s∑
∗

r∑
∗

where each block term has the same sign (−1)r+s+1. Hence, |T5| does not vanish and
so T5:··· ,mr ;··· ,ns is non-singular. �
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