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Abstract

A graph G is said to be singular if its adjacency matrix is singular; oth-
erwise it is said to be non-singular. In this paper, we introduce a class
of graphs called looped-trees, and find the determinant and the non-
singularity of looped-trees. Moreover, we determine the singularity or
non-singularity of the complement of a certain class of trees with diame-
ter 5 by using the results for looped-trees.

1 Introduction and Preliminaries

Non-singular trees were completely characterized by Gervacio and Rara [2]. Further-
more, the singularity or non-singularity of the complement of a tree with diameter
less than 5 was completely determined by Gervacio [1]. Recently, Pipattanajinda and
Kim [7] obtained the determinant of the complement of a tree with diameter 5, and
determined the singularity or non-singularity of the complement of a certain class
of trees with diameter 5. In this paper we shall introduce a class of graphs called
looped-trees and determine the singularity of looped-trees with diameter less than
or equal to 5. Moreover, we shall solve the singularity or non-singularity problem of
the complement of a certain class of trees with diameter 5. In Section 2, we shall
give the formula for the determinant of looped-trees with diameter less than 5. We
note that an adjacency matrix of a looped-tree is also a neighborhood matrix of a
tree (for details, see [5]). We then determine the singularity or non-singularity of
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the complement of a looped-tree with diameter 4. Furthermore, the determinant and
the non-singularity of looped-trees with diameter 5 will be solved in Section 3. In
final section we find some relation between determinants of a looped-tree and the
complement of a tree with diameter 5 by using the results in [4], and determined
the singularity or non-singularity of the complement of a certain class of trees with
diameter 5.

By a graph G we mean a pair (V(G), E(G)), where V(G) is a finite non-empty set
of elements called vertices and E(G) is a set of 2-subsets of V(G) whose elements are
called edges. In particular, G is a simple graph if it has no loops (edges connected at
both ends to the same vertex) and no more than one edge between any two different
vertices. For a simple graph G = (V(G), E(G)), a graph G° = (V(G°), E(G°)) with
V(G°) = V(G) and E(G°) = {{u,v}|{u,v} € E(G)} U {{u,u}|u € V(G°)} is called
a looped-graph of G. In particular, if G is a tree, G° is called a looped-tree.

If G is a graph with vertices x1, xs, ..., x,, we define the adjacency matrix of G
to be the n x n matrix A(G) = (a;j), where a;; = 1 if {x;,2,;} € E(G) and a;; =0
otherwise. The graph G is said to be singular if A(G) is singular, i.e., detA(G) = 0;
otherwise G is said to be non-singular. If S C V(G), then G\S denotes the graph
obtained from G by deleting all the vertices z € S. The complement G of G is a
graph such that V(G) = V(G) and {u,v} € E(G) if and only if {u,v} ¢ E(G) for
any u,v € V(G) and u # v. The loop complement G’ of G is a graph such that
V(GO) = V(@) and {u,v} € E(G’) if and only if {u,v} ¢ E(G) for any u,v € V(Q).
When G is a simple graph, the loop complement of G is the complement of G°,
that is, G* = G°, and the loop complement of G° is the complement of G, that is,

G°° = @G. Other terms whose definitions are not given here may be found in many
graph theory books, e.g., [3].
For non-negative integers m, r, s, my, mg, - -+ , My, Ny, Na, - - - , Ng, we define a series

of looped-trees, T3, .13, T} monin and Tg, .. as follows: by Ty,
we mean a looped-tree of a tree with diameter < 2, which is depicted in Figure
1 where w is called the central vertex, and m is the number of vertices but the
central vertex w. For two disjoint looped-trees 75, ,T% ., with central vertices xg, yo
respectively, we form a looped-tree T3, . by joining two central vertices as shown
in Figure 1, where xg,yo are called central vertices of T3, .. For disjoint looped-
trees 13, TQ"mQ, .., T3, , with central vertices x1, x, . .., z, respectively, we form a
looped-tree 17, ., . by joining all central vertices z; to a new vertex z (see Figure
2 where z is called the central vertex of Ty ). Similarly for two disjoint
looped-trees T¢,, i, s Ty o, me, With central vertices Zo, Yo respectively, we
form a looped-tree Ty, . . .. .., by joining two central vertices (see Figure 3
where o, yo are called central vertices of Ty, . . ... . . ).

From the construction, we have the following:

(i) if m > 2, then T3, is a looped-tree with diameter 2;

(ii) if rs # 0, then T%, , is a looped-tree with diameter 3;

(i) if » > 2 and m;m; # 0 for two distinct 4, j, then Tp, . .
with diameter 4; and

(iv) if r,s > 1 and m;n; # 0 for some 4, j, then T?

S5imy, s Mpin, e N
with diameter 5.

is a looped-tree

is a looped-tree
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Figure 1: 73, and Ty,

ma meo T myr—1 my

Figure 2: 77,

ma,:-,Mr
o I o o — o o — o
Moreover, we note that 77, = T35, .1,73,.¢ = T2:r+1,T4:m’0’ 0= T3,,; and
i
o —_ o
T5:m1,---,mr;o, Ce ’O - T41m1,m2,---7mraj'
————

From novv] on, for the simplicity of expressions, we denote the determinant of
an adjacency matrix of a graph G by |G| or |A(G)|, whenever there is no margin
for confusion. For example, |17, .., ., | means the determinant of an adjacency
matrix of Ty, .., . Furthermore, we use 7y, and 7y . forTg .. -
and T¢,.. i n.- We now recall a definition of some graph and a lemma in [6]
crucial for our further arguments. For any graph G with z € V(G) and y ¢ V(G),
Gyyo means the graph with V(G,op0) = V(G) U {y} and E(G,wp) = E(G) U

e,y A,y
Lemma 1.1 [6] Let G = (G(V),G(E)) be a graph, x € G(V) andy ¢ G(V'). Then
|Garye| = 1G] = [G\{}]

Lemma 1.2 (i) |13, | =1—m; (i) |13, | =rs —1 —s.

Proof. (i) We can write Ty, = (T5,,_1)z~ye (see Figure 4) and apply Lemma 1.1 to
get

|T2Om| - |T20:m—1| -1

By applying the same arguments repeatedly, we have

|T2O: T2O:m—1|_1:|T20: —2:---:|T2°:2|—(m—2):|T2°:1|—(m—1):1—m.

m| :| m—2|
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mi my,. nq N

Figure 3: Ty,

1,2, e 1,2, s

m

Figure 4: T3, = (T8, 1)anye

(ii) By the same argument for (i),

|T??:r,s| = |T3017‘,S—1| - |T2O7“| = |T??:r,s—2| - 2|T20r|
= ‘Ti;:r,373| - 3|T20r‘ == |T30:T,O| - S|T20:r|
= 15, | = s|T5 | =1—-(r+1)=s(1—r)=rs—r—s.

From Lemma 1.2, we have the following.
Corollary 1.3 7% is singular if and only if r = 1.

Corollary 1.4 T3, ; is singular if and only if r = s = 2.

2 Looped-Trees with diameter 4

Lemma 2.1 For non-negative integers my ma, - -+, m,(r > 2),

-

T, | = =(L=ma) (L —mg) - (L = myq) + (1 —m,)[ T}

Proof. We can write T}, = (T} . _1)z~ye (Figure 5, where x is adjacent to the

central vertex of T and ap.;.)i’y Lemma 1.1 to get

My —1 )

|T40:...,mr‘ = |T40:...,mrfl‘ - ‘Téf:...,mr_J'
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By applying the same arguments repeatedly, we have

|T40:...,mr| = |T4f:...,mr_1,0| - mT’|T40:...,mr_1|'

Now we write T}, . o= (T4 . _ )e~ye (see Figure 6, where y is adjacent to the

central vertex z of Ty ) and apply Lemma 1.1 to get

|Téﬁ...m,r,1,0| - |Téﬁ...,m,r,1| - |T20m1||T20m2| tt |T2O:m,r,1|

and so

----- mr—1
0
T40 yMr—1
Ti)’m*_l .......................................................
Figure 5: T} .
Ty — Jy
Figure 6: T ., 0= (Tzf:---,mr_l):vayo
Theorem 2.2 For non-negative integers my ma,- - , My,
0 - — (L—my)(L—my) - (1—m,)
75 = [T =) = T :
i=1 i=1 v

Proof. By mathematical induction on r. Let » = 1. By applying Lemma 1.2, we have

Tl = 115y al = 1= (my + 1) = (1 —my) — L.



N. PIPATTANAJINDA ET AL./AUSTRALAS. J. COMBIN. 63 (2) (2015), 297-313 302

We assume that the formula works for » — 1. Then by Lemma 2.1 and induction
hypothesis,

15, |

1 —my
=1
: (1 =m)(1—my)--- (1 —m,)
= 1—
[J0-mo-3 e
=1 =1
O
Corollary 2.3 For non-negative integers my_--- ,m,, j,
o (1 —=m) (1 —my)---(1—m,)
|2hm4p~,d:(r—ﬁI11—mz - a=m) :
W—/ =1 v
J
Theorem 2.4 For positive integers my -+« ,my, T, oo . 18 a singular graph if

and only if at least two distinct m; are 1.

Proof. 1f at least two distinct m; are 1, then [[;_,(1 —m;) and >, W
of [T}... ,,.| in Theorem 2.2 are zero and so [T ,, | = 0. For the converse, if only

one m; is 1, say m, = 1, then

T

15l =T[0—m) =S T om0,y

i=1 i=1 (1= m;)

which is clearly non-zero. If m; # 1 for all ¢, then

r

L (1—=m) (1 —mg)--- (1 —m,)
TO. - 1 - i) —
| 4.---,mr| H( m ) Z (1 _ mz)
i=1 1=1
r—1 r—1 r
_ (1 —mi)(d —my)--- (1 —my)
= H(l —m;) H(l —m;)m, — Z T—my)
i=1 1=1 1=1
r—1 r—1
(I1—=my)(1—mg)--- (1 —m,)
= — H (1 —my)m Z T —m)
i=1 i=1
where T[/—; (1 — m;)m, and 31—} (1= ml)(tfﬁi?;'(l*m” have the same sign, (—1) 1.

Hence, |T}... ,, | cannot be zero. O
. b T
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Theorem 2.5 For positive integers myma, -+ ,my, T} . o is a singular graph if
and only if at least two distinct m; are 1.

Proof. By Corollary 2.3,

(1= my 1—mg) - (1 —m,
_Z( )( )<+ ( )

|TO (1 — mz)

mr,0|
i=1

which is clearly zero if and only at least two distinct m,; are 1. 0

We cannot extend Theorem 2.5 to the general case that more than one m; are
zeros as we see in the following Example.

Example 2.1 For positive integers m,r, j, Tf_m 0 18 a singular graph

om0,
N—— /
r J
ifl—m—j3+3m—r=0.
Proof. By Corollary 2.3 with m; = mg =--- =m, = m and 7 times 0, we have
T e .o 0]
J
: L (1-m)(1—=m)...(1-m)
= 1 —
J H DS 1—m)
=1 =1
= (1=7)A=m)" —r(l-m)"" =1 -m)" (1 -j)(l-m)—r)=0
In particular, T}; 5 o is singular. 0
3 Looped-Trees with diameter 5
Lemma 3.1 For non-negative integers my, -+ ,m,,ny, - ,ng(s > 2),

IT5.. = (1=n)|T5... |7, (L= m2) (L = ng) - - (1 = msa)

amr§"':ns| 7m7";"'=n571|

Proof. We can write Tg ., . . =
adjacent to the central vertex of 77 .

(75...

Ms—1

i ma1)a~ye (see Figure 7, where z is
and apply Lemma 1.1 to get
) y g

15 sl = 1 T5 - 75,

mrv"',ns—1| mm"':ns—1|'

By applying the same argument repeatedly, we have

I75...

o | (0]
=T g Te . .
yMp ey Ns | Sieeympiee ms—1,0 S5 50 mpyeer ns—1

Now we note that T . . o= (15 ;. no_i)a~ye (see Figure 8, where y is
adjacent to the central vertex = of Tzf:,,,’nsil) and apply Lemma 1.1 to get
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o
|T5:~~~ ,m
Hence,

I75.... m

r;"':ns|

Ns—1,

Mo M

Figure 8: T3,

s yeee 7”6—170 -

ol = 175..., T 1T 11200, |- 1T

nall

mr;"',n571| ",mr||

Ns—1 |

304

(1 - n8)|Tg---,mr;~~~,nS,1| - |Téf,mr|(]‘ - nl)(]' - n2) e (1 - nS—l)’

Theorem 3.2 For non-negative integers my - -+ ,my, Ny, -+, Ng,

|75,

My M

S T

= - [T =n) T = m) + 175 T,

j=1 =1

0
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Proof. By induction on s. Let s = 1. Then, by the same argument as in Lemma 3.1,

‘TO My nl‘ = |TO yMping— 1‘ |T40:---,mr,0| - ‘TO yMp ;N — 2‘ 2|T‘4O:---,mr,0|
= = |ng---,mr,0| n1|T4:~~~,mr,0| = |Tlﬁ---,mr,1| n1|T4:~~~,mr,0|
= (ITzﬁ...,mT,ol T, 1) =l T ol = (L= )| T ol = [T, |

= (1-m) <\Tzf:---,mrl -]~ mz')) 1%, |

i=1
r

= —(1—-mn) H(1 —m;) — n1|Tf:...,mr|
i=1

= —(L=n) [T —m) + T3 1T, |-

=1

We assume that the formula works for s — 1. Then by Lemma 3.1 and induction
hypothesis, we have

75 |
Bree ymp;ee N

= (1 =ny)|T5.. =77, (L= 12) (1 = ng) -~ (1 = ms1)

s 5o 7"5—1‘

- uﬁm<—ﬂa—qume+m1szw“0

i=1

T, (L= m0) (L= ) (1= )
= —Tla-n)TJa-m)

TG | (L= )ITE = (L= ) (L =)+ (1= nya))

r

_ _H Hl—mz)+|T4 mr||T£:---,ns'
=1

M

where the last formula is obtained by applying Lemma 2.1. U
Theorem 3.3 For non-negative integers my --- ,my, Ny, -+, Ng,
(1 —myq)- 1—mr)(1—n1)---(1—n8)
T2
7j=1 =1
: T<1—mn (1—m,)
_ 1 —n.
H( n]) Z 1 —m;
7j=1 i=1
- ° (1 — nl) (1 — ns)
_ 1 —m.
[T0-myy it
=1 7j=1

Proof. By simple application of Theorems 3.2 and 2.2. U
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Theorem 3.4 For positive integers my -+ ,mp,ny -+ ,ng, T35 . . s a singular
graph if and only if at least two distinct m; are 1 or at least two distinct n; are 1.

Proof. If at least two distinct m; are 1, or at least two distinct n; are 1, then each
term of ‘ngml,---,mr;m,---,nJ in Theorem 3.2 is zero and so |T2.. r;---,n5| = 0. For the
converse, we need to consider two cases. (i) If none of m; or n; is 1, then we just
note that three terms > 7| >0 *, —[[_ (1 —ny) D20, %, — [ (1 —my) 377 *
in the expression of |3, . . | have the same sign (—1)""*. Hence, the sum cannot
be zero unless each of three terms is zero, which cannot happen. (ii) For the other
case, when only one m; or n; is 1, or only one m; and only one n; are 1, then

, My

S T
|T5O:---,mr;---,n5 = - H(l - nj) H(l - ml) + ‘Tz---,mTHTZlO:---,nS
j=1 i=1
= T3 o |5,
which cannot be zero by Theorem 2.4. 0
We cannot get the similar version of Theorem 2.5 for 77 . g my S WE see in the
following Examples.
Corollary 3.5 For non-negative integers my mao,- -« , My, Ny, -+ , Ng,

[
= - H(l —m;) (H(l —n;) + Z (1-n)(1 1@@' (1 - nsl)>

+(ivamu—m»~aﬂmvﬁiu—mm—m»~u—mn

i1 ]_—T)’LZ 1—nj

j=1

Example 3.1 T5m m,--- ,mn,n,--- ,no S a singular graph if n +m — s —mn +
N -~ 7\ -~ >
™ S

ms+rs—1=0.
Proof. By Corollary 3.5 and simple calculation gives

T2
Tom,m,--- ,mn,n,---,nol
A o g

v~
s

—(1=m)" (1=n)+s(1—n) ") +r(l—m) 's(1—n)*""
—(1=n)* 1 -—m)"" (1 -=m)1—-n)+s(1—-m)—rs)=0
In particular, 755, is singular. O]
Corollary 3.6 For non-negative integers my msg,- -« , My, Ny, -+, Ng,

|T5O My, 05+ ,ns,0|
T

aiit | CEEND | (CEE

=1

+<Z (1—m1)(1—m2)...(1—mr)> (L m)(L—ne) oo (L= n)

i=1 j=1
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Example 3.2 77, 4 Lo om+lon+1,-- n+1lo 1s a singular graph.

Proof. By Corollary 3.6 and simple calculation, we have

J

|T5O:m—|—1,m—|—1,--- ,m+lon+1,n+1--- ,n—l—l,o‘

m n

= —(=n)"(=m)" + n(=n)""'m(=m)""" = 0.
In particular, 75, o5 is singular. O

Corollary 3.7 Let Ty ., and T3 . .
nyng,- -+ ,Nns are positive integers. Then
(i) |T%... ;.| is positive if and only if r is even and,

(i1) |T5°mrn5| is positive if and only if r and s have the same parity.

. be non-singular where myma, - -+, m,,

4 The complement of a tree with diameter 5

We now find the determinant of a tree complement with diameter 5 in terms of
determinants of looped-trees. Let G be a graph whose vertices are vy, vs,... and
let every edge be associated with the variable w;. Then we can construct a variable
adjacency matrix A(G,w) for the graph G as follows: the (4, 7) entry is wy, if and only
if {v;,v;} € E(G) and the variable wy, is associated with edge {v;, v;}, and this entry
is 0 if {v;,v;} ¢ E(G). We note that the ordinary adjacency matrix A(G) is obtained
from A(G,w) by substituting wy = 1 for each of the variables for the edges of G.
Let G be a graph. An (ordinary) linear subgraph of G is a spanning subgraph whose
components are lines or cycles. Further, let n be the number of linear subgraphs of
G and let G; be the " linear subgraph. In [4], Harary showed the following theorem.
We note that a simple observation gives that the theorem works for our case in which
the components of a linear subgraph contain loops.

Theorem 4.1 [}/ Let G be a graph. Then

|A(G,w)| = ZIA(Gi,w)\,

and
n

AG ) =) (=172 [T wi [T w;

i=1 wi€L; ijMi

where (1) e; is the number of even components of G;, (2) ¢; is the number of com-
ponents of G; containing more than two points, and thus consisting of a single undi-
rected cycle, (3) L; is the set of components of G; consisting of two points and the
line joining them, and (4) M; is the remaining components of G; each of which is a
cycle.
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For the complete graph K él) of order ¢(> 1) with 1 loop, and a graph G of order

n, the following property was shown in [6], where K él) + G means the join of K él)
and G

emma 4.2 [6] Let G be a graph of order n. Then |A(G)| = (—1)"”’1|A(K1§1) +

—0

G)l.

Let G be a graph, xg,y0 € V(G) and z ¢ V(G). By G)z°, we mean the graph

y
with V(G)z°) = V(G)U{z} and E(G)z°) = E(G) U{{x, z},{y, 2}, {2, 2} }.
y y
Lemma 4.3 For non-negative integers my ma, - -+ , My, Ny Na, -+ -, N,
T = (AL 527 0),

where the values associated with a loop at z, the edge {x, z} and the edge {y,z} are
1—(r+s),1 —r and 1 — s respectively, and every other edge has the value 1, and t
is the order of Ts.... iy

s*

s N
}Q\ /%
o o o o
TQ:ml TQ:mr T2:n1 T TQ:ns

Figure 9: T7 . +2°

s Mooy

Proof. From Lemma 4.2, |T5.... ... n

AL

= (=)"T%.. e . + 2°|, where ¢ is the
order of T5... y,.o m,- (See Figure 9, where the double-dotted line between z and
T3.. . n, means that z is adjacent to every point of 7 . . We note that the

adjacency matrix of 79 . .. ne T 2° is of the following fofn;;

PLLLZA
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r Yy T - Ty Y1 oo Ys z
x /1 1 1 1 0 0 1
y(1l 1 0 0 1 1 1
T 1 0 1
o o z |1 0 1
AT+ = 7 1 .
ys | 0 1 1
z \1 1 1 1 1 1 1
By subtracting rows corresponding to x1, ..., x, from the last row corresponding
to z, we have
x Y z
1 1 1
1 1 1
TS, e+ 2°] = ot '

\1;7“

ws e wy | 1—1

where w; = 0 (resp. 1) if w; is an element of a column corresponding to a vertex
in 73, (resp. T3, ). Similarly, by subtracting rows corresponding to yi, ...,y from
the last row corresponding to z, we have

x Y z
1 1 1
1 1 1
T8, i, 2°] = det '
\1-r 1—-s 0 -+ 0 [1-(r+s)
We now subtract columns corresponding to x1,...,%.,y1,...,Yys from the last

column to get
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x Yy z
1 1 1—r
1 1 1—s
: 0
‘Tg---,mr;~~~,ns + z0| = det
: : 0
l—r 1—=s 0 -+ 0 |1—=(r+s)

B i M

TO

. To

2:m 2:my 2:m1 2:ins
Figure 10: 15 ,, ... . >y 2°
Theorem 4.4 For non-negative integers my ma,- -+ , My, Ny No, - -+ , N, then
(DT iyl = 200 =r)(1 =) [J@ = ma) JJ(1 = n)
i=1 i=1
—( =) T =m)Ty | = (=) T (1 = na)ITS |
i=1 i=1
F( = (r+ N5 i el
where t is the order of Ts.. m,.. n.-
Proof. By applying Lemma 4.3, we have
T = (AT 320 0),
y

where ¢ is the order of T5. .. ... We partition the set of all linear subgraphs of

T

T3, sy o) 2° into 4 classes Gy, Ga, G, which consists of all linear subgraphs contain-

y
ing a cycle {z,y, 2z}, a line {z, z}, and a line {y, z} respectively, and G, consisting of
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all linear subgraphs containing neither {x, z} or {y, z} nor a cycle {z,y, z}. Thanks
to Theorem 4.1, we have

(—1)t|A(T§..-,mr;---,nsfzo)l = (Z IA(H,w)I> :

i=1 \HEG;

Let H € G;. We note that the determinant of H is independent of the ordering of the

xT
vertices of Ty, . . ., )2° and so we may separate the vertices of a cycle {x,y, 2} so

yMr e

y
that the variable adjacency matrix is decomposed into diagonal block submatrices

as follows:
T Y z

x 0 1 1—r
z\1—r 1-—s 0

\ Dy /

where Dy is a variable adjacency matrix of the complement of a cycle {z,y, z} in H.
Moreover, » s | Dyl is the determinant of 7, U---UTe UTy U---UT? . Hence,
we have

U IAMH )| = 201 =)L = 9)|T5, |-\ To [IT2] . T3
HeG
= 201 —r)(1—5) H(1 — m;) H(1 —ny).

We apply the same argument for Gy, G3, and G4 to get

r

Yo IAMH D) = —Q-rP ][ -m)TE

?

Hegs i=1
S IAH,2)| = —(1 =] = n)IT 0l
Hegs i=1
and
S IAMH, ) = (1= (r+ TS -
Hegy
O
Theorem 4.5 For positive integers my ma, ..., My, Ny Na, ..., N, I5. . n, 45 SiN-

gular if and only if T3, ., . . 1s singular, that is, at least two distinct m; are 1 or

at least two distinct n; are 1.

Proof. For the simplification, we suppress (1—m;) and (1—n;) in |[T5| = |T5... i |-
We note that by Theorems 4.4, 2.2 and 3.2,
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(—1)'|T5]

= 20-r) (=) [[]]*- Q=] 700 = @ =) ] #IT%,, |

+(A = (r+)IT5. i,
= 2(1—7)(1—s) HH*
=TT - 3= - T - 30

R LoD 31 DI 103

— _(T_S)ZHH*+(T2—r+s)H*Z*+(32—s—l—T)H*Z*
H1=(r+9) Y *> =

LTS .. n, 1ssingular, then at least two distinct m; are 1 or at least two distinct n;
are 1. Therefore, in the expression of |T5|, block terms [ [T, [T *>.7*, [T° * D" *,
and > 7% > " x clearly vanish and so Ts.... y,.... o, is singular. For the converse, we

assume that 77 . S non-singular. We need to consider three cases: (i) only

one m; or n; is 1, (ii) only one m; and only one n; are 1, (iii) neither m; nor n; is 1.
If only one m; is 1, then

(-5 = —(r—s)2H*H*+(r2—r+s)H*Z*
+(s2—s—|—r)H*Z*+(1—(T—i—s))Z*Z*
= (32—s+r)H*Z*+(1—(T—l—s))Z*Z*

where two block terms have the same sign (—1)*™ ! and so the sum can not be zero.
The same argument can be applied for the case that only one n; is 1. If only one m;
and only one n; are 1, then

(-1 T5| = —(r—s)2HH*+(T2—T+s)H*Z*
+(s2—s—|—r)H*Z*+(1—(T—i—s))Z*Z*
= (1—(7"4—3))2*2*
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which is nonzero. If none of m; nor n; is 1, then

(-D)"T5| = —(r—3)2HH*+(T2—T+s)H*Z*
+(32—3+T)H*Z*+(1—(7“+8))Z*Z*

where each block term has the same sign (—1)"***1. Hence, |T5| does not vanish and
$0 T5.... m,:. m, 1S NON-singular. O
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