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Abstract

We establish closed-form expansions for the universal edge elimination
polynomial of paths and cycles and their generating functions. This in-
cludes closed-form expansions for the bivariate matching polynomial, the
bivariate chromatic polynomial, and the covered components polynomial.

1 Introduction

As a generalization of several well-known graph polynomials, Averbouch, Godlin
and Makowsky [1] introduced the so-called universal edge elimination polynomial
£(G,x,y, z), whose recursive definition involves three kinds of edge elimination:

G_.: The graph obtained from G by removing the edge e.
G/e: The graph obtained from G by removing e and identifying its endpoints,
Gie: The graph obtained from G by removing e and all incident vertices.

All graphs are considered as finite and undirected, and may have loops and multiple
edges. We use P, to denote the simple path with n vertices (n =0,1,...), and & to
denote the disjoint union of graphs. According to [1], (G, x,y, z) is defined by

€(P07xayaz):17 £(P1,x,y,z)=x, (1>
§(G 2y, 2) = E(Ges Y, 2) + Y&(Gle, 2.y, 2) + 2§(Gre, 7, Y, 2), (2)
€(G1 D G27 r,Y, Z) = g(tha Y, Z>€(G27 r,Y, Z)' (3>

The universal edge elimination polynomial £(G, x, y, z) generalizes, among others, the
bivariate matching polynomial M (G, z,y) = £(G,x,0,y) (provided G is loop-free),
the bivariate chromatic polynomial P(G,x,y) = £(G,z,—1,z — y), and the covered
components polynomial C(G, z,y, z) = {(G, x,y, xyz — xy). The implications of our
results on £(G,z,y, z) for these polynomials are new as well. We refer to [1-4] for
the definitions of the various graph polynomials and the relationships among them.
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2 Closed-form expansions for paths and cycles

We use N to denote the set of positive integers. The following theorem provides a
closed-form expansion for the universal edge elimination polynomial of a path.

Theorem 2.1. Letn € N, and x,y,z € R. If 2 > — (J”T’Ly)?, then

VD —z+y <x+y—\/5>n+\/5+x—y <x+y+\/5>n

(4)

where

D =2 4+ 2xy + 1 + 4z. (5)

sinrg) ) (6)

where
arctan —szrjyj if x+y >0,
p=q7/2 ifx+y=0, (7)
7T—|—arctan—vxjr5 if v+ y < 0.

If z=— (J”T’L?J)Z, then

(8)

Py, ) = (n+ 1)z —(n—1)y (x—ky)n_l.

2 2
Proof. By choosing e as an end edge of P,, Egs. (2) and (3) yield the recurrence
g(Pnax7y7Z) = ($+y)§(Pn—1axay7Z)+Z£(Pn—27$ayaz) (TL Z 2)a (9)

where the initial conditions are given by Eq. (1). This is a homogeneous linear
recurrence of degree 2 with constant coefficients. We solve this recurrence by applying
the method of characteristic roots. The characteristic equation of the recurrence is

r?—(z+y)r—z2=0, (10)

with discriminant D, given by Eq. (5). In our three cases, we have D > 0, D < 0,
and D = 0, respectively. In the first two cases, the solution to Eq. (9) is of the form

E(Pn,l',y,Z) :Clr?—i_cfrg (11>
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where 71,79 are the distinct roots of Eq. (10) and ¢, ¢o are chosen to satisfy Eq. (1).
In the first case we have

r_x+y—\/D C_\/D—ery
11— 5 1 — = —=
2 Vi
r+y+vD . VD 4z —vy
= 5 2 = T =

2 20/D

()

and in the second case,

= 2rY_ V2, Pl
2 2 2 2y/—-D "’ (13)
r+y —D . 1 rT—y .

9 = 5 + B 1, 0225_2\/32'

A little bit of extra work is needed in the second case in order to get rid of the
imaginary parts: Representing r; and r3 in polar form and applying Euler’s formula
we obtain

= (V-2 e_w)n = (—2)"?2 (cos(ng) — sin(ng)i)
Ty = (\/—_Z ew)n = (—2)"? (cos(ny) + sin(ny)i),

with ¢ as in Eq. (7). Thus, Eq. (11) becomes (P, x,y,2) =

(14)

1
cos(np)i — 5 sin(ny)i

(—z)"/? (% cos(nyp) + ;\/___% + % sin(nep)
_ _Y sin(mp)> .

—|—% cos(np) — 2\/% cos(nep)i + 5 sin(nep)i + 2D
This shows that the imaginary parts cancel out. This proves Eq. (6).
In the third case, the solution to Eq. (9) is £(P,, z,y,2) = (¢1 4+ can)r™ where
r= xTer is the unique root of Eq. (10) and ¢;, ¢y € R are determined by Eq. (1). If
x4y =0, then {(P,,z,y,2) = 0. Thus, in this case, Eq. (8) holds. If x +y # 0,
then by Eq. (1), ¢ =1 and ¢ = z—;z; hence,

T —y r+y\"
Pn) b b) - 1 b
§(Fn2,9.2) <+$+yn)( 2 )

which coincides with Eq. (8). This completes the proof. O

For any n € N, we use (), to denote the connected 2-regular graph with n vertices.
We adopt the convention that Cj is the empty graph. By Eq. (2) we have

§(C 2y, 2) =1+ 2y + 2, (15)
E(Cy,w,y,2) = 2 + 20y + 22 + 2y® + yz. (16)

The following theorem generalizes Egs. (15) and (16) to cycles of any finite length.
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Theorem 2.2. Let n € N and x,y,z € R. Let D and ¢ be defined as in Eq. (5)
resp. (7). If z > — (Hy) then

a:+y—\/5>n+ <x+y+\/5

E(me’y’z) = ( 9 9 ) —|—yn71(.fll'y—y+2). (17>

If z < — (%”)2, then

E(Cnm,y,2) = 2(—2)"? cos(ngp) + y"(xy — y + 2). (18)

Proof. For n = 1,2 the theorem agrees under both conditions on z with Egs. (15)
and (16). This is easy to see for z > — (J”T’L?J)Q, while for z < — (””T’Ly)2 the identities
cos(arctan(t)) = 1/v/1 + 2 and cos(a) = 2 cos?(a) — 1 reveal the coincidence.

For the rest of this proof, we assume n > 3. We may further assume that
z# — (“y) as the remaining case follows for reasons of continuity by taking limits

on both sides of Egs. (17) and (18) as z | — (%ﬂ’) resp. z T — (“y) By Eq. (2)
we have the non-homogeneous recurrence

E(Cnaxayaz)zg(Pnaxaya )+Z/§( n—1, L, Y, 2 )+Z§( n—2,1, Y, 2 ) (n23>

with initial condition as in Eq. (16). Iterating this recurrence gives

§(Cny 1y, 2 Zy< s T, Y, 2) + 2§(Paj2, 2, Y, 2 )>+y"’1(x+xy+2)

n—4

= g(Pna r,yY,z ) + yf( n—1, L, Y, < ) + (y2 + Z) Zng(P"*j*%x? Y, Z)
=0

+yn3 (xz +yz +ayt +ay® + y22) . (19)

Using Eq. (11) with ¢, 7, 2,72 from Eqgs. (12) and (13) in the preceding proof, the
sum on the right-hand side of Eq. (19) can be written as

n—4 n—4
Zng(Pn—j—%x;y)Z) = y] (C Tl +C rn i= 2)
J=0 j=0
n—4 y j n—4 y j
_ n—2 n—2
= C1ry Z (E) + cary Z (7"_2)

If 2z # —xy, then y # r and y # r9. In this case, by applying the formula for
finite geometric series the preceding equation simplifies to

n—4

n—3 —
; T
Z YE(Prj-2,,y,2) = arft——— + erj ———.
=0 =y T2 =Y
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Substituting this latter expression into Eq. (19) and taking into account that r; and
9 are given as in Eqgs. (12) and (13) leads to

E(Cpym,y, 2) = el + cory +y(er? ™ + cord ™)

n—3 n—3 n—3 n—3
r — r —
+ (y* +2) (cwfi + cgrgi)
=Y T —Y
+ y"73 (xz +yz+ ny + xyg + yzz)
=i +ri+y" ey —y+2), (20)

where the last equality follows by substituting ¢; = —%, Cy = r\"’/_ﬁy, VD = —%,

and rearranging and cancelling terms (note that VD =iv=Dif D < 0). Now, for
z > — (ITJ”’)2 Eq. (17) follows from Egs. (20) and (12), whereas for z < — (:vTer)2
Eq. (18) follows from Egs. (20) and (14) after cancelling out the imaginary parts, in
analogy to the proof of Theorem 2.1.

If 2 = —zy, then 2z > — (:”Tﬂ’)2 In this remaining case, the result follows for

reasons of continuity by taking limits on both sides of Eq. (17) as z | —xy. U

Remark 2.3. For z = — (xTﬂ’){ Egs. (17) and (18) coincide. In this case,

n 2 _9 2.4
S(me,y,z)ZQ(Hy) R

2 4

Alternatively, this can be shown by combining Eqgs. (8) and (19) and applying the
formula for finite geometric series.

Remark 2.4. The preceding closed-form expansions can also be proved by induction.
A computer algebra system might be helpful. In Sage [5], for instance, the following
lines of code prove Egs. (4) and (17) by induction on the number of vertices.

var("n x y z")
D = X72+2xx*y+y~2+4%*z
path = (sqrt(D)-x+y)/(2*sqrt(D))*((x+y-sqrt(D))/2)"n \

+(sqrt (D) +x-y) / (2*sqrt (D) ) * ((x+y+sqrt(D))/2)"n
cycle = ((x+y-sqrt(D))/2) "n+((x+y+sqrt(D))/2) "n+y”~ (n-1) * (x*xy-y+z)
bool(path(n=0)==1 and path(n=1)==x \

and (x+y)*path(n=n-1)+z*path(n=n-2)==path)
bool(cycle(n=1)==x+x*y+z and path+y*cycle(n=n-1)+z*path(n=n-2)==cycle)

We proceed with a corollary on the generating function of £(G, z,y, 2).

Corollary 2.5.

- 11—yt

PTH ) ) tn = J
anof( 7,9, 7) 1 —(x+y)t—zt?
. 1+ 2t — ¢
E g(cnaxai%z)tn = . 2 (xy y+2) ’
— 1—(x+y)t— -zt 1—yt

Proof. Corollary 2.5 is an immediate consequence of Theorem 2.1, Theorem 2.2 and
the geometric series formula. O
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