
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 62(3) (2015), Pages 240–270

The relaxed square property

Marc Hellmuth∗

Department of Mathematics and Computer Science
University of Greifswald

Walther-Rathenau-Straiße 47, D-17487 Greifswald
Germany

mhellmuth@mailbox.org

Tilen Marc†

Faculty of Mathematics and Physics
University of Ljubljana

Slovenia
marct15@gmail.com

Lydia Ostermeier‡ Peter F. Stadler§

Bioinformatics Group
Department of Computer Science and Interdisciplinary Center for Bioinformatics

University of Leipzig
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Abstract

Graph products are characterized by the existence of non-trivial equivalence
relations on the edge set of a graph that satisfy a so-called square property. We
investigate here a generalization, termed RSP-relations. The class of graphs
with non-trivial RSP-relations in particular includes graph bundles. Further-
more, RSP-relations are intimately related with covering graph constructions.
For K2,3-free graphs finest RSP-relations can be computed in polynomial-time.
In general, however, they are not unique and their number may even grow
exponentially. They behave well for graph products, however, in sense that
a finest RSP-relation can be obtained easily from finest RSP-relations on the
prime factors.

1 Introduction

Modern proofs of prime factor decomposition (PFD) theorems for the Cartesian graph
product rely on characterizations of the product relation σ on the edge set of the given
graph [17]. The key property of σ is that connected components of the subgraphs induced
by the classes of σ are precisely the layers, i.e., (e, f) ∈ σ if and only if the edges e and
f belong to copies of the same (Cartesian) prime factor [10, 22]. Classical results in the
theory of graph products establish that σ can be derived from other, easily computable,
relations on the edge set:

σ = C(δ) = (θ ∪ τ)∗,
where C(δ) denotes the convex closure of the so-called δ-relation and (θ∪τ)∗ is the transitive
closure of two different relations known as the Djoković-Winkler relation θ and relation τ
[10, 17].

Of particular interest for us is the relation δ. An equivalence relation R is said to have
the square property if (i) any pair of adjacent edges which belong to distinct equivalence
classes span a unique chordless square and (ii) the opposite edges of any chordless square
belong to the same equivalence class. The importance of δ stems from the fact that it is
the unique, finest relation on E(G) with the square property.

An equivalence relation has the unique square property if any two adjacent edges e and
f from distinct equivalence classes span a unique chordless square with opposite edges in
the same equivalence class. The slight modification, in fact a mild generalization, of the
relation δ turned out to play a fundamental role for the characterization of graph bundles
[24] and forms the basis of efficient algorithms to recognize Cartesian graph bundles [16, 23].
Graph bundles [21], the combinatorial analog of the topological notion of a fiber bundle
[14], are a common generalization of both Cartesian products [10] and covering graphs [1].

The key distinction of the unique square property is that, in contrast to the square prop-
erty, opposite edges do not have to be in the same equivalence class for all chordless squares.
Any such relation that is in addition weakly 2-convex yields the structural properties of
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a graph bundle [24]. Moreover, every Cartesian graph bundle over a triangle-free simple
base can be characterized by the relation δ∗, which satisfies the unique square property
[16]. In a recent attempt to better understand the structure of equivalence relations on the
edge set of a graph G that satisfy the unique square property, we uncovered a surprising
connection to equitable partitions on the vertex set of G [13] and a Cartesian factorization
of certain quotient graphs that was previously observed in the context of quantum walks
on graphs [2]. It was shown that for any equivalence class ϕ of a relation R with unique
square property the connected components of the graph Gϕ = (V (G), E(G) \ ϕ) form a
natural equitable partition PR

ϕ of the vertex set of G. Moreover, the so-called common
refinement PR of this partitions PR

ϕ yields again an equitable partition of V (G) and the
quotient G/PR has then a product representation as G/PR ∼= �ϕ�RGϕ/PR

ϕ .

In [20], it was shown that a further relaxation of the unique square property to the
relaxed square property still retains the product decomposition of these quotient graphs.
The connected components of Gϕ = (V (G), ϕ) have a natural interpretation as fibers, while
the graph Gϕ/PR

ϕ can be seen as base graph. Such a decomposition is a graph bundle if
and only if edges in G linking distinct connected components of Gϕ induce an isomorphism
between them. Thus, graphs with this type of relations on the edge set, which we call
RSP-relations for short, are a natural generalization of graph bundles.

In this contribution we will examine RSP-relations more systematically. First we show
that, as in the case of the unique square property, there is no uniquely determined finest
RSP-relation for given graphs in general. Even more, the number of such finest relations
on a graph can grow exponentially. However, we will see that the finest RSP-relations
R are “bounded” by relations δ0 and δ1 so that δ∗1 ⊆ R ⊆ δ∗0 . We explain how (finest)
RSP-relations can be determined in certain graph products, given the RSP-relations in
the factors. The main difficulty in determining finest RSP-relations derive from K2,3 as
induced subgraphs. We provide a polynomial-time algorithm for K2,3-free graphs and give
a recipe how finest RSP-relations can be constructed in complete and complete bipartite
graphs. Finally, we examine the close connection of covering graphs and RSP-relations.

2 Preliminaries

Notation. In the following we consider finite, connected, undirected, simple graphs unless
stated otherwise. A graph G has vertex set V = V (G) and edge set E = E(G). An
isomorphism f : G→ H between two graphsG,H is a bijective mapping f : V (G)→ V (H)
such that for all u, v ∈ V (G) holds [f(u), f(v)] ∈ E(H) if and only if [u, v] ∈ E(G). We say
G and H are isomorphic, in symbols G ∼= H , if there exists an isomorphism between them.
A graph H is a subgraph of G, H ⊆ G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph
H is an induced subgraph of G if x, y ∈ V (H) and [x, y] ∈ E(G) implies [x, y] ∈ E(H). H is
called spanning subgraph if V (H) = V (G). If none of the subgraphs H of G is isomorphic to
a graph K, we say that G is K-free. A subgraph H = ({a, b, c, d}, {[a, b], [b, c], [c, d], [a, d]})
is called square, will often be denoted by a−b−c−d and we say that [a, b] and [c, d], resp.,
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[b, c] and [a, d] are opposite edges. The complete graph on n vertices is denoted by Kn and
the complete bipartite graph on n+m vertices by Km,n. LK1 is the one-vertex graph with
a loop.

We will consider equivalence relations R on E and denote equivalence classes of R by
Greek letters, ϕ ⊆ E. We will furthermore write ϕ � R to indicate that ϕ is an equivalence
class of R. The complement ϕ of an R-class ϕ is defined as ϕ := E \ϕ. For an equivalence
class ϕ � R, an edge e is called ϕ-edge if e ∈ ϕ. The subgraph Gϕ has vertex set V (G)
and edge set ϕ. The connected component of Gϕ containing vertex x ∈ V (G) is called ϕ-
layer through x, denoted by Gx

ϕ. Analogously, the subgraphs Gϕ and Gx
ϕ are defined. Two

ϕ-layers Gx
ϕ, G

y
ϕ are said to be adjacent, if there exists an edge [x′, y′] ∈ ϕ with x′ ∈ V (Gx

ϕ)
and y′ ∈ V (Gy

ϕ).

An equivalence relation Q is finer than a relation R while the relation R is coarser than
Q if (e, f) ∈ Q implies (e, f) ∈ R, i.e, Q ⊆ R. In other words, for each class ϑ of R there is
a collection {χ|χ ⊆ ϑ} of Q-classes, whose union equals ϑ. Equivalently, for all ϕ � Q and
ψ � R we have either ϕ ⊆ ψ or ϕ∩ψ = ∅. If R is not an equivalence relation, then we will
denote with R∗ the finest equivalence relation that contains R. Moreover, an equivalence
relation R is non-trivial if it has at least two equivalence classes.

For a given partition P = {V1, . . . , Vl} of V (G) of a graph G, the quotient graph G/P
has as its vertex set P and there is an edge [A,B] for A,B ∈ P if and only if there are
vertices a ∈ A and b ∈ B such that [a, b] ∈ E(G). A partition P of the vertex set V (G)
of a graph G is equitable if, for all (not necessarily distinct) classes A,B ∈ P, every vertex
x ∈ A has the same number mAB := |NG(x) ∩B| of neighbors in B.

Graph Cover and Homomorphisms. A homomorphism f : G→ H between two graphs
G and H is a mapping f : V (G) → V (H) such that f(u) and f(v) are adjacent in H
whenever u and v are adjacent inG. A homomorphism f : G→ H is called locally surjective
if f(NG(u)) = NH(f(u)) for all vertices u ∈ V (G), i.e., if f|NG(u) : NG(u) → NH(f(u)) is
a surjection. We use here the obvious notation NG(v) for the open neighborhood of v in
the graph G. Analogously, f is called locally bijective if for all vertices u ∈ V (G) we have
f(NG(u)) = NH(f(u)) and |f(NG(u))| = |NH(f(u))|, i.e., f|NG(u) : NG(u) → NH(f(u))
is a bijection. Notice, a locally surjective homomorphism f : G → H is already globally
surjective if H is connected. If there exists a locally surjective homomorphism f : G→ H ,
we call G a quasi-cover of H . Locally surjective homomorphisms are also known as role
colorings [4]. A locally bijective homomorphism is called a covering map. G is a (graph)
cover or covering graph of H if there exists a covering map from G to H , in which case
we say that G covers H . |V (H)| is then a multiple of |V (G)|, i.e., |V (H)| = k|V (G)|. H
is referred to as k-fold cover of G. Moreover, every covering map f : H → G satisfies
|f−1(u)| = k for all u ∈ V (G) [6]. For more detailed information about locally constrained
homomorphisms and graph cover we refer to [6, 7].
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Graph Products. There are three associative and commutative standard graph products,
the Cartesian product G�H , the strong product G � H , and the direct product G × H ,
see [10].

All products have as vertex set the Cartesian set product V (G)× V (H). Two vertices
(g1, h1), (g2, h2) are adjacent in G�H if (i) [g1, g2] ∈ E(G) and h1 = h2, or (ii) [h1, h2] ∈
E(G2) and g1 = g2, or (iii) [g1, g2] ∈ E(G) and [h1, h2] ∈ E(G2). Two vertices (g1, h1),
(g2, h2) are adjacent in G�H if they satisfy only (i) or (ii), while these two vertices are
adjacent in G×H if they satisfy only (iii).

Every finite connected graph G has a decomposition G = �n
i=1Gi, resp., G = �n

i=1Gi

into prime factors that is unique up to isomorphism and the order of the factors [22]. For
the direct product an analogous result holds for non-bipartite connected graphs.

The mapping pi : V (�n
i=1Gi) → V (Gi) defined by pi(v) = vi for v = (v1, v2, . . . , vn)

is called projection on the i-th factor of G. By pi(W ) = {pi(w) | w ∈ W} the set of
projections of vertices contained in W ⊆ V (G) is denoted. An equivalence relation R on
the edge set E(G) of a Cartesian product G = �n

i=1Gi of (not necessarily prime) graphs
Gi is a product relation if (e, f) ∈ R if and only if there exists a j ∈ {1, . . . , n} such that
|pj(e)| = |pj(f)| = 2. The Gi-layer G

w
i of G is then the induced subgraph with vertex set

V (Gw
i ) = {v ∈ V (G) | pj(v) = wj, for all j 
= i}. It is isomorphic to Gi.

Given two graphs G and H , a map p : G→ H is called a graph map if p maps adjacent
vertices of G to adjacent or identical vertices in H and edges of G to edges or vertices of H .
A graph G is a (Cartesian) graph bundle if there are two graphs F , the fiber, and B, the
base graph, and a graph map p : G→ B such that: For each vertex v ∈ V (B), p−1(v) ∼= F
and for each edge e ∈ E(B) we have p−1(e) ∼= K2�F .

3 RSP-Relations: Definition and Basic Properties

As mentioned in the introduction, relations that have the square property play a funda-
mental role for the �-PFD of graphs. In particular, the relation δ is the unique, finest
relation on E(G) with the square property. For such relations two adjacent edges of dif-
ferent classes span exactly one chordless square and this square has opposite edges in the
same equivalence classes. A mild generalization of the latter kind of relations are relations
that have the unique square property. Here two adjacent edges e and f of different classes
might span more than one square, however, there must be exactly one chordless square
spanned by e and f with opposite edges in the same equivalence classes. As it turned out,
a further generalization of such relations plays an important role for the characterization
of certain properties of hypergraphs [20]. Here, we examine this generalization in realm of
undirected graph in a systematic manner.

Definition 3.1. Let R be an equivalence relation on the edge set E(G) of a connected
graph G. We say R has the relaxed square property if any two adjacent edges e, f of G
that belong to distinct equivalence classes of R span a square with opposite edges in the
same equivalence class of R.
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Figure 1: In Fig. (a) two isomorphic graphs with two non-equivalent finest RSP-relations are
shown. Each RSP-relation has two equivalence classes, highlighted by dashed and
solid edges. By stepwisely identifying the vertices marked with x and y, resp., one
obtains a chain of graphs G, see Fig. (b). For each subgraph that is a copy of the
graph above, a finest RSP-relation can be determined independently of the remaining
parts of the graph G. Hence, with an increasing number of vertices of such chains G
the number of finest RSP-relations is growing exponentially.

An equivalence relation R on E(G) with the relaxed square property will be called an
RSP-relation for short. In contrast to the more familiar (unique) square property, we do not
require there that squares spanned by adjacent edges that belong to different equivalence
classes are unique or chordless.

The following basic result was shown in [20] for hypergraphs and equivalence relations
with the “relaxed grid property”, of which graphs and RSP-relations are a special case.

Lemma 3.2 ([20]). Let R be an RSP-relation on E of a connected graph G = (V,E). Then
each vertex of G is incident to at least one edge of each R-class and thus, the number of
R-classes is bounded by the minimum degree of G. Moreover, if S is a coarser equivalence
relation, R ⊆ S, then S is also an RSP-relation.

For later reference we record the following technical result:

Lemma 3.3. Let R be an RSP-relation on the edge set E of a connected graph G = (V,E)
and ϕ be an equivalence class of R. Moreover, let S be the equivalence relation on the
edge set E \ ϕ of the spanning subgraph G′ = (V,E \ ϕ) of G that retains all equivalence
classes of R different from ϕ, i.e., ψ � S if and only if ψ � R and ψ 
= ϕ. Then S is an
RSP-relation.

Proof: Let e, f be adjacent edges in E(G′) such that (e, f) /∈ S, say e ∈ ψ, f ∈ ψ′,
ϕ 
= ψ, ψ′ � S ⊆ R. By construction, e, f ∈ E(G) and (e, f) /∈ R. Thus, there exists a
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Figure 2: The two panels show two distinct finest RSP-relations R and S on a graph with
different number of equivalence classes, see Example 1.

square with edges e, f, e′, f ′ such that e, e′ and f, f ′ are opposite edges and e′ ∈ ψ as well
as f ′ ∈ ψ′. Hence, e′, f ′ ∈ E(G′) and thus the assertion follows. �
The RSP-relation S on the spanning subgraph, as defined in Lemma 3.3, need not be a

finest RSP-relation, although R might be a finest one. Consider the right graph in Figure
2. If S consists only of the class ϕ that is highlighted by the solid edges, then the spanning
subgraph H = (V (G), E(G)\ϕ) is the Cartesian graph product of a path on three vertices
and an edge. The finest RSP-relation on E(H) is thus the product relation σ w.r.t. the
unique �-PFD of H with two equivalence classes.

As the examples in Figures 1, 2 and 3 show, there is no unique finest RSP-relation for a
given graph G and finest RSP-relations need not to have the same number of equivalence
classes. Even more, the number of such finest relations on a graph can grow exponentially
as the example in Figure 1 shows.

Example 1. There are graphs G = (V,E) with distinct finest RSP-relations that even
have a different number of equivalence classes. Consider the graph in Figure 2. We leave
it to the reader to verify that the relations, whose equivalence classes are indicated by
different line styles, indeed satisfy the relaxed square property. The RSP-relation on the
left graph has three and on the right graph two equivalence classes. It remains to show,
that both RSP-relations are finest ones.

Left Graph: For all equivalence classes there is a vertex that is incident to exactly one
edge of each class. Lemma 3.2 implies that R is a finest RSP-relation.

Right Graph: Assume the relation is not finest. The equivalence class indicated by the
dashed edges cannot be subdivided further since this would lead to vertices that are not met
by each of the two or more subclasses, thus contradicting Lemma 3.2. The equivalence class
depicted by solid edges is isomorphic to a Cartesian product P3�K2. Using Lemma 3.3,
the only possible split would be the product relation on this subgraph, i.e., with classes
ψ1 = {[a, b], [c, d], [e, f ]} and ψ2 = {[a, d], [a, f ], [b, c], [b, e]}. But then there is no square
with opposite edges in the same equivalence classes spanned by the edges [b, c] and [c, e],
again a contradiction.

We next discuss the relationship of (finest) RSP-relations with relations of the edge set
that play a role in the theory of product graphs and graph bundles.
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Definition 3.4 ([5]). Two edges e = {x, z} and f = {z, y} are in the relation τ , eτf if z
is the unique common neighbor of x and y.

In other words, two edges are in relation τ if they are adjacent and there is no square
containing both of them. Obviously, τ is symmetric. Its reflexive and transitive closure,
i.e. the smallest equivalence relation containing τ , will be denoted by τ ∗. By definition,
τ ∗ ⊆ R for any RSP-relation R.

Definition 3.5. Two edges e, f ∈ E(G) are in the relation δ0, eδ0f , if one of the following
conditions is satisfied:

(i) e and f are opposite edges of a square.

(ii) e and f are adjacent and there is no square containing e and f , i.e. (e, f) ∈ τ .
(iii) e = f .

The relation δ0 is reflexive and symmetric. Its transitive closure, denoted with δ∗0 , is
therefore an equivalence relation.

Proposition 3.6. Let G be a connected K2,3-free graph and R an equivalence relation on
E(G). Then R has the relaxed square property if and only if δ0 ⊆ R.

Proof: It is easy to see, that δ∗0 has the relaxed square property and moreover, that any
equivalence relation containing δ0 has the relaxed square property.

Let R be an RSP-relation on the edge set of a connected K2,3-free graph G. Notice, if G
contains no K2,3 then any pair of adjacent edges of G spans at most one square. Let e, f
be two edges in G such that (e, f) ∈ δ0. We have to show that this implies (e, f) ∈ R. If
e = f , then (e, f) ∈ R is trivially fulfilled since R is an equivalence relation. If e and f are
not adjacent, they have to be opposite edges of a square. Let g be an edge of this square
that is adjacent to both edges e and f . If e and g are not in relation R, by the relaxed
square property, they span some square with opposite edges in the same equivalence class.
Since G contains no K2,3, this square is unique, thus (e, f) ∈ R. Assume now, (e, g) ∈ R. If
e and f are not in the same equivalence class of R, we can conclude that also f and g are in
distinct equivalence classes, since R is an equivalence relation. Thus, by the relaxed square
property, f and g span a square with opposite edges in the same equivalence class and as
G is K2,3-free, this square has to be unique, which implies (e, f) ∈ R, a contradiction. Now
let e and f be two adjacent edges and suppose for contraposition (e, f) /∈ R. Hence, e and
f have to span a square. Thus, condition (ii) in the definition of δ0 is not satisfied, hence,
(e, f) /∈ δ0. In summary, we can conclude δ0 ⊆ R. �
Proposition 3.6 implies that there is a uniquely determined finest RSP-relation, namely

the relation δ∗0 if G is K2,3-free. However, if G is not K2,3-free, there is no uniquely
determined finest RSP-relation, see Fig. 1, 2 and 3. Moreover, the quotient graphs that
are induced by these relations (see [13, 20]) need not be isomorphic.

By construction, δ0 places all edges of a K2,3-subgraph in the same equivalence class.
In many graphs this leads to an RSP-relation which is not finest. On the other hand, the
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1 2 3

4 5 6

equiv. rel. R on E(G)

1 2 31,4 2,5 3,6

G/PR

1 2 3

4 5 6

1 2 3

4 5 6

equiv. rel. S on E(G)

1 2

4 5

G/PS

1 2,6

4 3,5

Figure 3: Two distinct RSP-relations R and S on the edge set of the same graph G and the quo-
tient graphs induced by these relations (below). Their coarsest common refinement,
i.e., the coarsest equivalence relation T with T ⊆ R and T ⊆ S does not have the
relaxed square property. Moreover, the quotient graphs induced by these relations are
not isomorphic.

opposite edges of a square that is not contained in a K2,3 must always be in the same
equivalence class. This motivates us to introduce the following

Definition 3.7. Two edges e, f ∈ E(G) are in the relation δ1, eδ1f , if one of the following
conditions is satisfied:

(i) e and f are opposite edges of a square that is not contained in any K2,3 subgraph of
G.

(ii) e and f are adjacent and there is no square containing e and f , i.e. (e, f) ∈ τ .
(iii) e = f .

If G is K2,3-free then it is easy to verify that δ0 = δ1. Proposition 3.6 implies that
δ∗1 is contained in any RSP-relation and therefore, that it is a uniquely determined finest
RSP-relation on K2,3-free graphs. We can summarize this discussion of the properties of
finest RSP-relations as follows:

Theorem 3.8. Let G be an arbitrary graph and R be a finest RSP-relation on E(G). Then
the following holds:

δ∗1 ⊆ R ⊆ δ∗0 .

Moreover, if G is K2,3-free, then δ
∗
1 = R = δ∗0.

Theorem 3.8 suggests that K2,3-subgraphs are to blame for complications in understand-
ing RSP-relations. It will therefore be useful to consider a subclass of RSP-relations that
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1 2 3 4

5 6 7 8

Figure 4: The well-behaved RSP-relation R on the edge set E(G) of the “diagonalized cube”
G has the four equivalence classes ϕ1, ϕ2, ϕ3 and ϕ4 depicted by solid, zigzag, dotted
and dashed edges, respectively. In addition, R satisfies the unique square property.
The relation R′ with classes ϕ3, ϕ4 and ψ1 = ϕ1 ∪ ϕ2, however, is not well-behaved,
because the K2,3-subgraph with partition {1, 6} and {2, 4, 5} has a forbidden coloring.
Note, R′ has the unique square property.

are “well-behaved” on K2,3-subgraphs. They will turn out to play a crucial role to estab-
lish the connection of RSP-relations, (quasi-)covers, and equitable partitions. We fix the
notation for K2,3 so that {x, y}, {a, b, c} is the canonical partition of the vertex set. We
say that graph K2,3 has a forbidden coloring if the edges [a, x], [x, c], and [y, b] are in one
equivalence class ϕ and the other edges are in the union ϕ of the classes different from ϕ.

Definition 3.9. An RSP-relation is well-behaved (on G) if G does not contain a subgraph
isomorphic to a K2,3 with a forbidden coloring.

For a graph G and an RSP-relation R consisting of only two equivalence classes we can
strengthen this definition. It is easy to verify that in this case the two statements are
equivalent:

(i) R is well-behaved

(ii) for each pair of adjacent edges [a, b], [a, c] which are not in relation R there exists
a unique (not necessarily chordless) square a− b− d − c with opposite edges in the
same classes, i.e., ([a, b], [c, d]), ([a, c], [b, d]) ∈ R.

In the general case (i) implies (ii). To see this, note that if there are adjacent edges that
span more than one square, say SQ1 and SQ2, with opposite edges in the same classes, then
there is a K2,3 with forbidden coloring that consists of the squares SQ1 and SQ2. Hence,
R cannot be well-behaved. The converse is not true in general, as shown in Fig. 4. by the
non-well-behaved RSP-relation R′ that nevertheless has the property (ii).

To obtain well-behaved RSP-relations R on G one can simply use δ0 and coarsenings of
it. That is, any equivalence relation R with δ0 ⊆ R is well-behaved. In this case, all edges
of any K2,3-subgraph are in the same equivalence class. However, coarsenings of arbitrary
well-behaved RSP-relation R need not be well-behaved, see Fig. 4.

Furthermore, if R is not well-behaved, this is equivalent to the existence of squares with
two adjacent edges in same class ϕ � R and others in class(es) different from ϕ, see Figure 5
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Figure 5: Forbidden coloring of a (sub)graph isomorphic to K2,3 based on the classes ϕ and ϕ
of a (non-well-behaved) RSP-relation. The class ϕ might consist of more than one
equivalence class. The existence of a forbidden coloring is equivalent to the existence
of squares spanned by edges in same equivalence class with opposite edges in different
equivalence classes. Such a square contained in the (sub)graph K2,3 is shown on the
right.

and the next explanations. It is easy to verify that any K2,3(-subgraph) with a forbidden
coloring contains such a square. By way of example, consider the square a− x− c− y in
Figure 5. Conversely, let R be an RSP-relation on E(G) and suppose that G contains a
square a − x − c − y with ([a, x], [c, x]) ∈ R and ([a, x], [c, y]), ([a, y], [c, x]) /∈ R. By the
relaxed square property, [a, x] and [c, y] span a square, say a − x − b − y with opposite
edges in the same equivalence class. Hence, there is a complete bipartite graph K2,3 with
partition {x, y} and {a, b, c} of V (K2,3) and forbidden coloring.

Let us now turn to the computational aspects of RSP-relations. It is an easy task to
determine finest relations that have the square property in polynomial time, see [11, 12].
In contrast, it seems to be hard in general to determine one or all finest RSP-relations. We
conjecture that the corresponding decision problem is NP- or GI-hard for general graphs.
For definitions of NP- and GI-hard see [8, 18].

On the other hand, an efficient polynomial-time solution exists for K2,3-free graphs since
δ0 can be constructed efficiently, e.g., by listing all squares [3]. Algorithm 1 serves as a
heuristic to find a finest RSP-relation for general graphs. The basic idea is to start from the
lower bound R = δ∗1 and to unite equivalence classes of R stepwisely until an RSP-relation
is obtained.

Proposition 3.10. Let G = (V,E) be a given graph with maximum degree Δ. Algorithm 1
computes an RSP-relation R on E in O(|V ||E|2Δ4) time. If G is K2,3-free, then Algorithm
1 computes a finest RSP-relation on E.

Proof: Clearly, δ∗1 must be contained in every RSP-relation R. The set Q contains all
adjacent candidate edges (e, f), where we have to ensure that they span a square with
opposite edges in the same equivalence class. Since we already computed τ ⊆ δ1, we can
conclude that if e and f are contained in Q, then they span some square. Thus, in Line
10 we check whether there are opposite edges ei of e and fi of f in one of those squares
spanned by e and f with (e, ei), (f, fi) ∈ R∗

j , i.e., ei and e, resp., fi and f are in the same
equivalence class. If so, we can safely remove (e, f) from Q. If not, we will construct a
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Algorithm 1 Compute RSP-Relation

1: INPUT: A connected graph G = (V,E)
2: Compute R0 = δ∗1 ;
3: Q← {(e, f) | e, f ∈ E, e ∩ f 
= ∅} \R0;
4: j ← 0;
5: {Note, edges e and f with (e, f) ∈ Q are adjacent, span a square and are necessarily

distinct}
6: while Q 
= ∅ do
7: Take an arbitrary pair (e, f) ∈ Q with e ∩ f 
= ∅;
8: Let sq1, . . . , sqk be the squares spanned by e and f ;
9: Find the opposite edges ei of e and fi of f in sqi;
10: if there is a square sqi with (e, ei) ∈ R∗

j and (f, fi) ∈ R∗
j then

11: Q← Q \ {(e, f), (f, e)};
12: else
13: take an arbitrary square, say sq1 {with edge set E0 = (e, f, e1, f1)};
14: Rj+1 ← R∗

j ∪ {(e, e1), (e1, e), (f1, f), (f, f1)};
15: compute R∗

j+1;
16: Q← Q \R∗

j+1;
17: j ← j + 1;
18: end if
19: end while
20: R← R∗

j

21: OUTPUT: An RSP-relation R on E;

square spanned by e and f with opposite edges in the same class and the pair (e, f) will be
removed from Q in the next run of the while-loop (Line 11). To be more precise, we take
one of those squares spanned by e and f and add (e, ei) and (f, fi) to Rj resulting in Rj+1.
Hence, e and f now span a square with opposite edges in the same class. We then compute
the transitive closure R∗

j+1. This might result in new pairs (a, b) ∈ R∗
j+1 of adjacent edges,

which can safely be removed from Q since they are in the same equivalence class, and
thus need not span a square with opposite edges in the same class. Hence, we compute
Q ← Q \ R∗

j+1. When Q is empty all adjacent pairs (which span at least one square) are
added in a way that at least one square has opposite edges in the same equivalence class.
Thus, R satisfies the relaxed square property. Note, if G is K2,3-free, then all pairs (e, f)
of adjacent edges e and f already span a square with opposite edges in the same class, due
to δ1. Hence, all such pairs (e, f) will be removed from Q, without adding any new pair to
R∗

0. In this case we obtain R = δ∗1.

In order to determine the time complexity we first consider the relation δ1. Note that there
are at most O(|E|Δ2) squares in a graph, that can be listed efficiently in O(|E|Δ) time,
see Chiba and Nishizeki [3]. For the computation of δ1, we first have to check for each
square a − b − c− d whether it is contained in a K2,3 subgraph or not. Thus, we need to
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verify whether a and c have a common neighbor x 
∈ {b, d}, and, if b and d have a common
neighbor x 
∈ {a, c}, respectively. If none of the cases occur, i.e., the square is not part of a
K2,3 subgraph, then we put the pairs ([a, b], [c, d]) and ([a, d], [b, c]) to δ1. This task can be
done in O(Δ2) time for each square, resulting in an overall time complexity of O(|E|Δ4).
The relation τ ⊆ δ1 can then be computed in O(|V ||E|) time [10, Prop. 23.5] and the
transitive closure δ∗1 in O(|E|2) time, [10, Prop. 18.2]. Thus, we end in time complexity
O(|E|2Δ4) for the computation of δ∗1 . Finally, we have to check for the at most |V |Δ2 pairs
of adjacent edges whether they already span a square with opposite edges in the same
class or not and compute the transitive closure R∗

j+1 if necessary. Since there are at most
|E|Δ2 squares, |E| ≤ |V |Δ, and the transitive closure can be computed in O(|E|2) time,
the latter task can be done in O(|V ||E|2Δ3) time. �
As the following example shows, the order in which the squares are examined does matter

in the general case, hence Alg. 1 does not produce a finest RSP-relation in general.

Example 2. Consider the complete graph K5 = (V,E) with vertex set V = Z5 and
natural edge set. After the init step we have R0 = {(e, e) | e ∈ E} and hence, Q contains
all pairs of adjacent edges. To obtain a finest RSP-relation, we could start with the pair
([0, 1][1, 4]) ∈ Q that span the square 0 − 1 − 4 − 3 get as classes ϕ1 = {[0, 1], [3, 4]} and
ϕ2 = {[1, 4], [0, 3]} of R∗

1. Continuing with ([0, 1][1, 2]) ∈ Q and the square 0−1−2−3, we
obtain the classes ϕ1 ∪ {[2, 3]} and ϕ2 ∪ {[1, 2]} of R∗

2. Next, take ([0, 1][0, 4]) ∈ Q and the
square 0−1−2−4, followed by the pair ([0, 1][0, 2]) ∈ Q and the square 0−1−4−2, resulting
in the classes ϕ1 = {[0, 1][2, 3], [3, 4], [2, 4]} and ϕ2 = {[0, 2], [0, 3], [0, 4], [1, 2], [1, 4]} for R∗

4.
Finally, take ([0, 1][1, 3]) ∈ Q and the square 0 − 1 − 3 − 4 to obtain the classes ϕ1 and
ϕ2 ∪ {[1, 3]} for a valid finest RSP-relation, see Example 3 for further details. Note, the
computed RSP-relation is not well-behaved.

However, if we start with the pair ([0, 1][0, 4]) ∈ Q and square 0 − 1 − 3 − 4, followed
by ([1, 2][1, 3]) ∈ Q and 1 − 2 − 4 − 3, then ([1, 4][3, 4]) ∈ Q and 1 − 2 − 3 − 4, next
([0, 1][0, 3]) ∈ Q and 0 − 1 − 2 − 3 and finally ([0, 2][2, 3]) ∈ Q and 0 − 2 − 3 − 4, the
resulting RSP-relation has only one equivalence class.

4 RSP-Relations and Graph Products

Graph products are intimately related with the square property. It seems natural, therefore
to ask whether finest RSP-relations can be found more easily in products. We use the
symbol � for one of the three graph products defined in Section 2.

Definition 4.1. For� ∈ {�,�,×} let G = �i∈IGi. For each i ∈ I let Ri be an equivalence
relation on E(Gi). Furthermore, define for e ∈ E(G) the set Ie := {i ∈ I | pi(e) ∈ E(Gi)}.
We define an equivalence relation �i∈IRi on E(G) as follows: (e, f) ∈ �i∈IRi if and only
if Ie = If and (pi(e), pi(f)) ∈ Ri, for all i ∈ Ie.

If � = � then |Ie| = 1 for all e ∈ E(G), and if � = × then Ie = I for all e ∈ E(G).
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Lemma 4.2. For � ∈ {�,�,×} let G = �i∈IGi. For each i ∈ I let Ri be an equivalence
relation on E(Gi). Then R := �i∈IRi is an RSP-relation if and only if Ri is an RSP-
relation for all i ∈ I.
Proof: First suppose Ri has the relaxed square property for all i ∈ I. We have to
show that R has the relaxed square property. Therefore, let e = [x, y], f = [x, z] ∈ E(G)
such that (e, f) /∈ R. We need to show that there exists a vertex w ∈ V (G) such that
e′ = [w, z] ∈ E(G), f ′ = [w, y] ∈ E(G) and (e, e′) ∈ R as well as (f, f ′) ∈ R.
Let I0 := {i ∈ I | (pi(e), pi(f)) ∈ Ri}. Notice, that I0 ⊆ Ie ∩ If . Moreover, we have
(pj(e), pj(f)) /∈ Rj for all j ∈ (Ie ∩ If ) \ I0 =: I∗. Since Ri has the relaxed square property
for all i ∈ I, for all j ∈ I∗ there exists a vertex wj ∈ V (Gj) such that (pj(e), [pj(z), wj]) ∈ Rj

as well as (pj(f), [pj(y), wj]) ∈ Rj .

Let w ∈ V (G) such that

pi(w) = pi(x), for all i ∈ I0 and

pi(w) = wi, for all i ∈ I∗ and

pi(w) = pi(z), for all i ∈ I \ Ie and
pi(w) = pi(y), for all i ∈ I \ If .

Since I = I0 ∪· I∗ ∪· (I \ (Ie ∩ If)), I \ (Ie ∩ If) = I \ Ie ∪ I \ If and pi(z) = pi(x) = pi(y)
for all i ∈ I \ Ie ∩ I \ If , this vertex exists in V (G) and is well defined.

We now have to verify that w has the desired properties. More precisely, we have to verify
the following statements:

(i) pi(w) = pi(z) for all i ∈ I \ Ie,
(ii) pi(w) = pi(y) for all i ∈ I \ If ,
(iii) e′i := [pi(z), pi(w)] ∈ E(Gi) and (pi(e), e

′
i) ∈ Ri for all i ∈ Ie,

(iv) f ′
i := [pi(y), pi(w)] ∈ E(Gi) and (pi(f), f

′
i) ∈ Ri for all i ∈ If .

Assertions (i) and (ii) are trivially fulfilled by construction. To prove assertion (iii), note
that Ie = I0∪· I∗∪· (Ie\If ). From pi(w) = pi(x) for all i ∈ I0, we conclude e′i = [pi(z), pi(x)] =
pi(f) ∈ E(Gi), and moreover, by construction of I0 and since Ri is an equivalence relation,
we have (pi(e), e

′
i) ∈ Ri for all i ∈ I0. By the choice of w, it follows that e′i ∈ E(Gi) and

(pi(e), e
′
i) ∈ Ri for all i ∈ I∗. Finally, we have e′i = [pi(z), pi(y)] = [pi(x), pi(y)] = pi(e) ∈

E(Gi) for all i ∈ Ie \ If and since Ri is an equivalence relation, (e′i, pi(e)) ∈ Ri. Thus,
e′ = [w, z] ∈ E(G) and (e, e′) ∈ R.
Assertion (iv), which implies f ′ = [w, y] ∈ E(G) and (f, f ′) ∈ R, can be shown analogously.

Now suppose R is an RSP-relation. We have to show that for all i ∈ I, Ri has the relaxed
square property. Therefore, let i ∈ I and ei = [xi, yi], fi = [xi, zi] be two adjacent edges
in Gi such that (ei, fi) /∈ Ri. We need to show, that there exists some vertex wi ∈ V (Gi)
such that e′i := [wi, zi], f

′
i := [wi, yi] are edges in Gi with (ei, e

′
i) ∈ Ri and (fi, f

′
i) ∈ Ri.

By definition of �, there exist edges e = [x, y], f = [x, z] ∈ E(G), pi(x) = xi, pi(y) =
yi, pi(z) = zi, with pi(e) = ei and pi(f) = fi, that are adjacent. It holds that i ∈ Ie ∩ If
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Figure 6: Refinement of product of relations of K9 w.r.t. K9
∼= K3 �K3

and by definition of R, (e, f) /∈ R. Since R has the relaxed square property, there exists
some vertex w ∈ V (G) such that e′ := [w, z], f ′ := [w, y] are edges in G with (e, e′) ∈ R
and (f, f ′) ∈ R. That is, by definition of R, Ie = Ie′ and (pj(e), pj(e

′)) ∈ Rj for all j ∈ Ie
as well as If = If ′ and (pj(f), pj(f

′)) ∈ Rj for all j ∈ If . Thus, we have in particular
(ei, pi(e

′)), (fi, pi(f ′)) ∈ Ri and zi 
= pi(w) 
= yi. Moreover, pi(w) 
= xi, since otherwise
pi(e

′) = [pi(w), pi(z)] = [xi, zi] = fi and therefore (fi, ei) = (pi(e
′), pi(e)) ∈ Ri must hold, a

contradiction. Hence, with wi := pi(w) the assertion follows. �
For � ∈ {×,�}, the relation R = �i∈IRi need not be the finest RSP-relation on

E(G) = E(�i∈IGi) although Ri is a finest RSP-relation on E(Gi) for all i ∈ I. See Fig. 6
for an example: Shown is the complete graph K9 with a finest RSP-relation consisting
of four equivalence classes depicted by solid, double, dashed and thick lines. Joining the
two classes with dashed and thick edges to one class, one gets a coarser relation R1 � R2,
w.r.t. K9

∼= K3 �K3 where Ri denotes the trivial relation on E(K3). This together with
Lemma 3.3 implies that also R1 × R2 is not a finest RSP-relation on E(K3 ×K3).

However, this does not hold for the Cartesian product �. Moreover, we have:

Lemma 4.3. Let G = �i∈IGi be a connected and simple graph. Then R is a finest RSP-
relation on E(G) if and only if R = �i∈IRi where each Ri is a finest RSP-relation on
E(Gi).

Proof: First, observe the following: Let R′ be an arbitrary RSP-relation on G and
[x, y], [y, z] ∈ E(G) adjacent edges that lie in the same layer of G, i.e. pj([x, y]) ∈ E(Gj)
and pj([y, z]) ∈ E(Gj) for some j ∈ I. Moreover, let [x, y] and [y, z] be in different
equivalence classes of R′. Since R′ is an RSP-relation, they lie on a four cycle x−y−z−w
with opposite edges in the same equivalence class. By the definition of the Cartesian
product w is also in the same layer as x, y, z, that is w ∈ V (Gy

j ). This shows that R′

limited to subgraph Gy
j is also an RSP-relation.

Let now [x, y], [w, z] ∈ E(G) be such edges that lie on a four cycle x − y − z − w with
j ∈ I such that pj([x, y]) = pj([w, z]) ∈ E(Gj). Assume that [x, y] and [w, z] do not lie in
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the same equivalence class of R′. Then at least one of the pairs [x, y], [x, w] or [w, z], [x, w]
does not lie in the same equivalence class of R′. Without loss of generality let [x, y] and
[x, w] lie in different equivalence classes of R′. By the definition of the Cartesian product,
x − y − z − w is the only four cycle that contains [x, y] and [x, w]. Since R′ is an RSP-
relation, [x, y] and [w, z] lie in the same equivalence class. By connectedness of G, all layers
are connected. Therefore, all edges {[a, b] ∈ E(G) : pj([a, b]) = pj([x, y])} are in the same
equivalence class.

Assume now that R is a finest RSP-relation on G. We define relation Rj on E(Gj) for every
j ∈ I by (e, f) ∈ Rj for e, f ∈ E(Gj) if pj(e

′) = e, pj(f
′) = f for some e′, f ′ ∈ E(G) and

(e′, f ′) ∈ R. By above arguments, this is an RSP-relation on Gj. Notice that R corresponds
to �i∈IRi with possibly some joint equivalence classes, that emerge from different layers
of �i∈IGi. Since R is a finest RSP-relation, R = �i∈IRi. If Rj is not a finest RSP-relation
on Gj for some j ∈ I, then the product of a finer relation on Gj with �i∈I\{j}Ri is a finer
relation as R, a contradiction.

To see the converse, let R = �i∈IRi, where Ri is a finest RSP-relation on Gi. If Q is a
finest relation on G, that is finer than R, by above arguments, Q = �i∈IQi, where Qi is
finer or equal than Ri for every i ∈ I. Thus Q = R. �
Lemma 4.3 implies not only that R = �i∈IRi is a finest RSP-relation on E(G) =

E(�i∈IGi) ifRi is a finest RSP-relation on E(Gi), but also that any (finest) RSP-relation on
a Cartesian product graph must reflect the layers w.r.t. its (prime) factorization. However,
this is not true for � = �, as an example take K6

∼= K3 �K2 with the relation defined in
Example 3.

Following [13], we introduce vertex partitions associated with an equivalence relation R
on E(G). In particular, we define for an equivalence class ϕ � R the partitions

PR
ϕ :=

{
V (Gx

ϕ) | x ∈ V (G)
}

and PR
ϕ :=

{
V (Gx

ϕ) | x ∈ V (G)
}
.

Graham and Winkler showed in [9] that the Djoković-Winkler relation, or more precisely,
the equivalence relation R = θ∗ on E(G) induces a canonical isometric embedding of a
graph G into a Cartesian product �ϕ�RGϕ/PR

ϕ . Moreover, Feder [5] showed that if we
choose R = (θ ∪ τ)∗ then G ∼= �ϕ�RGϕ/PR

ϕ and thus, R coincides with the product
relation σ.

In [20], we demonstrated that if R is an RSP-relation then

G/PR ∼= �ϕ�RGϕ/PR
ϕ , (4.1)

where PR denotes the common refinement of the partitions PR
ϕ , ϕ � R, i.e.,

PR :=

⎧⎨
⎩

⋂
ϕ�R

V (Gx
ϕ) | x ∈ V (G)

⎫⎬
⎭ ,

which is again a partition of V (G).
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Lemma 4.4. For i ∈ I let Gi be connected graphs and let Ri be an RSP-relation on the
edge set E(Gi). The following hold.

(�) If G = �i∈IGi and R = �i∈IRi then G/PR = �i∈IGi/PRi.

(�) If G = �i∈IGi and R = �i∈IRi then G/PR = LK1.

Proof: (�) By construction of R, ψ ⊆ E(G) is an equivalence class of R if and only if
there exists an i ∈ I such that pi(e) ∈ E(Gi) and there exists ϕ ∈ Ri with pi(e) ∈ ϕ for all
e ∈ ψ. Hence, there exists a bijection R = �i∈IRi →

⋃· i∈I Ri. For i ∈ I let ϕi
1, . . . , ϕ

i
ni

be
the equivalence classes of Ri. Moreover, for i ∈ I and 1 ≤ j ≤ ni let ψ

i
j be the equivalence

class of R such that Ie = {i} and pi(e) ∈ ϕi
j for all e ∈ ψi

j . Thus, with Equation (4.1), we
obtain G/PR = �ψ�RGψ/PR

ψ
= �i∈I(�ni

j=1Gψi
j
/PR

ψi
j

). Furthermore, due to Equation (4.1),

we have �i∈IGi/PRi = �i∈I(�ni
j=1Giϕi

j
/PRi

ϕi
j

).

Hence, we need to show Gψi
j
/PR

ψi
j

∼= Giϕi
j
/PRi

ϕi
j

for all i ∈ I and 1 ≤ j ≤ ni, to prove the

assertion. Therefore, we show that G
ψi
j
(x) 
→ Giϕi

j
(pi(x)) for all x ∈ V (G) defines an iso-

morphism Gψi
j
/PR

ψi
j

∼= Giϕi
j
/PRi

ϕi
j

. IfG
ψi
j
(x) = G

ψi
j
(y), there exists a path Px,y := (e1, . . . , ek)

from x to y in G, such that el /∈ ψi
j for 1 ≤ l ≤ k. Then pi(Px, y) = (p1(e1), . . . , pi(ek)) is

a walk from pi(x) to pi(y) in Gi and by construction, the following holds: pi(el) /∈ ϕi
j for

1 ≤ l ≤ k, i.e., Giϕi
j
(pi(x)) = Giϕi

j
(pi(y)). Thus, this mapping is well defined. Moreover, by

the projection properties of a Cartesian product into its factors, this mapping is surjective.
Now, suppose Giϕi

j
(pi(x)) = Giϕi

j
(pi(y)), i.e., there exists a path Ppi(x),pi(y) := (e1, . . . , ek)

from pi(x) to pi(y) in Gi such that el /∈ ϕi
j for 1 ≤ l ≤ k. Let w ∈ V (G) s.t. pi(w) = pi(y)

and pr(w) = pr(x) for all r ∈ I, r 
= i. Hence, w ∈ V (Gx
i ). Thus, there exists a path

P ′
x,w = (e′1, . . . , e

′
k) in G with pi(e

′
l) = el which implies e′l /∈ ψi

j for 1 ≤ l ≤ k and thus
G

ψi
j
(x) = G

ψi
j
(w). Furthermore, by the properties of the Cartesian product, there exists

a path P ′′
w,y = (e′′1, . . . , e

′′
s) from w to y in G such that |pi(e′′l )| = 1 for 1 ≤ l ≤ s, which

implies Ie′′l 
= {i} and consequently e′′l /∈ ψi
j for 1 ≤ l ≤ k. Thus, G

ψi
j
(y) = G

ψi
j
(w) =

G
ψi
j
(x), that is, this mapping is injective and therefore bijective. It remains to show

that [G
ψi
j
(x), G

ψi
j
(y)] is an edge in Gψi

j
/PR

ψi
j

if and only if [Giϕi
j
(pi(x)), Giϕi

j
(pi(y))] is an

edge in Giϕi
j
/PRi

ϕi
j

. By definition, [G
ψi
j
(x), G

ψi
j
(y)] is an edge in Gψi

j
/PR

ψi
j

if and only if

there exists x′ ∈ V (G
ψi
j
(x)), y′ ∈ V (G

ψi
j
(x)) s.t. [x′, y′] ∈ ψi

j, which, by the preceding

and by construction, is equivalent to pi(x
′) ∈ V (Giϕi

j
(pi(x))), pi(y

′) ∈ V (Giϕi
j
(pi(y))) and

[pi(x
′), pi(y′)] ∈ ϕi

j, from what the assertion follows.

(�) To prove the assertion, we have to show that the spanning subgraph Gϕ is connected
for all ϕ � R. For each ϕ � R we have Ie = If for all e, f ∈ ϕ. We set Iϕ := Ie for some
e ∈ ϕ. Moreover, define Φ := {ψ � R | Iψ = Iϕ} Then for α :=

⋃
ψ∈Φ ψ, Gα is a spanning

subgraph of Gϕ. Therefore, it suffices to show that Gα is connected. To be more precise,
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we have to show that for all x, y ∈ V (G), there exists a walk Wx,y from x to y in G such
that for all e ∈ E(Wx,y) we have Ie 
= Iϕ.

First, assume |Iϕ| > 1. Since �i∈IGi is a connected spanning subgraph of �i∈IGi, there
exists a walk Wx,y from x to y in �i∈IGi. Then for all e ∈ E(Wx,y) we have |Ie| = 1 and
thus, Ie 
= Iϕ.

Now, let |Iϕ| = 1, i.e., Iϕ = {j} for some j ∈ I. If pj(x) = pj(y), then y ∈ V ((�i∈I\{j}Gi)
x).

In this case, there exists a walk Wx,y from x to y in (�i∈I\{j}Gi)
x that has the desired

properties. If pj(x) 
= pj(y), let y
′ ∈ V (G) such that pi(y

′) = pi(x) for all i 
= j and
pj(y) = pj(y

′). Then, as in the previous case, there exists a walk Wy,y′ from y to y′ in
(�i∈I\{j}Gi)

y and hence Ie 
= {j} for all e ∈ E(Wy,y′). By choice of y′, it follows that
y′ ∈ V (Gx

j ). Let Px,y′ := (x = x0, x1, . . . , xk = y′) be a walk from x to y′ that is entirely
contained in Gx

i . Moreover, for arbitrary i ∈ I with i 
= j let z ∈ V (Gx
i ) such that

[pi(x), pi(z)] ∈ E(Gi) and let w ∈ V (Gz
j) such that pj(w) = pj(z). Then there exists a

walk Pz,w := (z = z0, z1, . . . , zk = w) from z to w in Gz
j such that pj(xr) = pj(zr) for all

0 ≤ r ≤ k. By definition of �, Wx,y′ := (x0, z1, x1, z2, x2, z3, . . . , xk−1, zk = w, xk = y′) is
a walk from x to y′ in G and for the edges e ∈ E(Wx,y′) we have Ie = {i, j} 
= {j} = Iϕ
if e is of the form [xi, zi+1], 0 ≤ i ≤ k − 1 and Ie = {i} 
= {j} = Iϕ if e is of the form
[xi, zi], 0 ≤ i ≤ k. Hence, Wx,y = Wx,y′ ∪Wy′,y is a walk from x to y that has the desired
properties. �
In contrast to the Cartesian and strong products, no general statement can be obtained

for the direct product G = ×i∈IGi of graphs Gi since the structure of direct products
strongly depends on additional properties such as bipartiteness.

5 RSP-Relations on Complete and Complete Bipartite Graphs

Since complete graphs and complete bipartite graphs contain large numbers of superim-
posed K2,3 subgraphs they are responsible for much of the difficulties in finding finest
RSP-relations. We therefore study their RSP-relations in some detail.

Lemma 5.1. Let V (Km) = {0, . . . , m− 1}. For i = 1, . . . , l := �m
2
� define the set

ϕi := {[x, (x+ i)modm] | x ∈ {0, . . .m− 1}} ⊆ E(Km).

Then the sets ϕ1, . . . , ϕl define an RSP-relation R on E(Km) with equivalence classes
ϕ1, . . . , ϕl. If m 
= 4, then R is a finest RSP-relation.

Proof: At first we prove that R is an equivalence relation. That is, we have to show that
ϕi ∩ ϕj = ∅ for all i 
= j and E(Km) =

⋃l
i=1 ϕi. For contraposition suppose, ϕi ∩ ϕj 
= ∅

for some i 
= j. That is, there exists x, y ∈ V (Km) = {0 . . . , m − 1} such that [x, (x +
i)modm] = [y, (y + j)modm]. Notice, x+ i < 2m as well as y + j < 2m. Thus, we have
x + i = p ·m + (x+ i)modm and y + j = q ·m+ (y + j)modm with p, q ∈ {0, 1}. First
assume x = y. Hence, (x + i)modm = (x + j)modm and we obtain |i− j| = |p− q| ·m
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with |q − p| ∈ {0, 1}. If |p− q| = 0 it follows i = j. Therefore suppose, |p− q| = 1. This
implies |i− j| = m ≥ 2l and moreover, |i− j| < l since i, j ∈ {1, . . . , l}, a contradiction.

Now, assume x 
= y. Then it must hold x = (y + j)modm and y = (x + i)modm if
[x, (x + i)modm] = [y, (y + j)modm]. Hence, with our considerations above, we get
i+ j = (p+ q) ·m with p+ q ∈ {0, 1, 2}. From i, j ∈ {1, . . . , l}, we conclude 0 < i+ j ≤ 2l
which implies in particular p+ q > 0. It follows 2l ≤ m ≤ i+ j ≤ 2l, hence i = j = l which
contradicts the choice of i, j. Thus, ϕi ∩ ϕj = ∅ for all i, j ∈ {1, . . . , l} with i 
= j.

Next, we show |⋃l
i=1 ϕi| = |E(Km)|. Since ϕi ⊆ E(Km) for all i ∈ {1, . . . , l}, we then can

conclude
⋃l

i=1 ϕi = E(Km). First, let i <
m
2
. Assume, there exists x ∈ {0, . . . , m−1} such

that x = (x+ i)modm. From previous considerations, it follows i = p ·m with p ∈ {0, 1},
which contradicts 0 < 1 ≤ i ≤ l < m. Now suppose, there are x, y ∈ {0, . . . , m − 1} such
that [x, (x + i)modm] = [y, (y + i)modm]. If x 
= y, it follows x = (y + i)modm and
y = (x + i)modm. As before, we conclude 2i = (p + q) · m with p + q ∈ {0, 1, 2} and
since i > 0, we have p + q > 0. Thus, m ≤ 2i < m, which is a contradiction. Hence,
|ϕi| = |{0, . . . , m − 1}| = m for all i < m

2
. If i = m

2
, and thus, m is even, we have

|ϕm
2
| = m

2
, since for all x < m

2
it follows that [x, x + m

2
] = [x + m

2
, (x + m

2
+ m

2
)modm].

It follows |⋃l
i=1 ϕi| =

∑l
i=1 |ϕi| = l ·m = (m−1)·m

2
= |E(Km)| if m is odd and |⋃l

i=1 ϕi| =∑l−1
i=1 |ϕi| + |ϕm

2
| = (l − 1) ·m + m

2
= (m−1)·m

2
= |E(Km)| if m is even. Therefore, R is an

equivalence relation on E(Km).

It remains to show that R has the relaxed square property and there is no refinement of
R with this property. Therefore, let e = [x, y] ∈ ϕi and f = [x, z] ∈ ϕj , i 
= j. We have to
show, that there exists a vertex w ∈ V (Km) such that [y, w] ∈ ϕj and [z, w] ∈ ϕi. [x, y] ∈ ϕi

implies y = (x+ i)modm or x = (y + i)modm and [x, z] ∈ ϕj implies z = (x+ j)modm
or x = (z + j)modm. If y = (x + i)modm and z = (x + j)modm, we choose w =
(y + j)modm. It is clear, that w 
= x, y, z. By definition, we have [y, w] ∈ ϕj . Moreover,
by simple calculation we get w = (z+ i)modm and hence [z, w] ∈ ϕi. If y = (x+ i)modm
and x = (z + j)modm, we choose w = (z + i)modm, then w 
= x, y, z. Hence, [w, z] ∈ ϕi.
In this case we get y = (w + j)modm that is [y, w] ∈ ϕj . If x = (y + i)modm and
z = (x + j)modm, we choose w = (y + j)modm. Again w 
= x, y, z, and by definition
[y, w] ∈ ϕj . Here, we obtain z = (w+ i)modm and hence [z, w] ∈ ϕi. If x = (y+ i)modm
and x = (z + j)modm, we choose w such that z = (w + i)modm, that is [z, w] ∈ ϕi.
In this case we have w 
= x, y, z and moreover, y = (w + j)modm and hence [y, w] ∈ ϕj .
That is, R has the relaxed square property.

We show now, that no equivalence class ϕ of R can be split into two classes ϕi = ψi1 ∪ψi2 ,
such that the equivalence relation S, that has classes ϕ1, . . . , ϕi−1, ψi1 , ψi2 , ϕi+1, . . . , ϕl is
an RSP-relation. Therefore, notice that each vertex x ∈ V (Km) is incident to exactly two
ϕi edges for all i < m

2
, namely [x, (x + i)modm] and [x, (x − i)modm], thus the layers

are all cycles for i < m
2
. Moreover, each vertex x ∈ V (Km) is incident to exactly one ϕm

2
-

edge. Recalling Lemma 3.2, ϕm
2
cannot be split. For k < m

2
let C the ϕk-layer containing

vertex 0. It has edges [0, k], [k, 2k], [2k, 3kmodm], . . . , [(q − 1) · k, 0] with q · kmodm = 0.
By Lemma 3.3, any edge in C must be contained in a square, hence C itself must be
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a square and thus has edges [0, k], [k, 2k], [2k, 3k], [3k, 0] with 4k = m, since k < m
2
and

k > 1 since m 
= 4. Because S is an RSP-relation, ([0, k], [2k, 3k]), ([k, 2k], [3k, 0]) ∈ S
and ([0, k], [k, 2k]), ([2k, 3k], [3k, 0]) /∈ S by Lemma 3.2. Consider the edges [0, k] ∈ ϕk and
[0, 1] ∈ ϕ1 
= ϕk, hence they are in different S-classes. Vertex k ∈ V (Km) is incident to
exactly two ϕ1-edges, namely [k, k + 1] and [k, k − 1]. Since [1, k − 1] ∈ ϕk−2 
= ϕk, the
only possible square spanned by [0, k] and [0, 1] with opposite edges in the same S-class
is 0 − 1 − (k + 1) − k with [0, k], [k, k + 1] ∈ S. Now, consider edges [k, 2k] ∈ ϕk and
[1, k] ∈ ϕk−1. Vertex 2k ∈ V (Km) is incident to exactly two ϕk−1-edges, namely [2k, k+1]
and [2k, 3k − 1]. Since [1, 3k − 1] ∈ ϕk+2 
= ϕk, the only possible square spanned by
[k, 2k] and [1, k] with opposite edges in the same S-class is 1 − k − 2k − (k + 1) with
([1, k + 1], [k, 2k]) ∈ S. Thus, ([0, k], [k, 2k]) ∈ S, a contradiction. Hence, R is finest
RSP-relation on Km for all m 
= 4. �

Corollary 1. For all m > 3 there exists a nontrivial RSP-relation on E(Km).

Lemma 5.1 implies that the maximum number of classes of a finest RSP-relation is at
least �m

2
�. From Lemma 3.2, we infer that the maximum number of classes of a finest

RSP-relation on Km is at most m− 1, the minimum degree of Km. In the case of m = 2q,
this bound is sharp with the construction in Definition 4.1 and since K2q = �q

i=1K2.

To show the large variety of possible finest RSP-relations on complete graphs we give a
further example.

Example 3. For n ≥ 5 and graph Kn, let G1 be the induced subgraph on vertices {0, 1}
and G2 the induced subgraph on {2, . . . , n − 1}. We claim that relation R with two
equivalence classes ϕ = E(G1) ∪ E(G2) and ϕ is a finest RSP relation. It is easy to check
that it is an RSP-relation. Equivalence class ϕ cannot be split into two equivalence classes
since vertex 0 is incident with only one edge of ϕ. On the other hand, every vertex in
{2, . . . , n − 1} is incident with exactly two edges in ϕ, therefore if ϕ can be split into
two equivalence classes edges [0, 2] and [1, 2] must be in different equivalence classes. The
definition of RSP-relations implies that [0, 2] and [2, 3] must lie on a common square with
opposite edges in the same equivalence class. The only possible candidate is the square
0 − 2 − 3 − 1, thus [0, 2] and [1, 3] must be in the same class. Similarly, [1, 3] and [3, 4]
must lie on a common square with opposite edges in the same equivalence class. The only
possible candidate is the square 1 − 3 − 4 − 0, thus [1, 3] and [0, 4] must be in the same
class. Now, we use the same arguments for edges [0, 4] and [4, 2] to find out that [0, 4] and
[1, 2] are in the same class. Since the relation is transitive [0, 2] and [1, 2] must be in the
same class, a contradiction with the assumption that ϕ can split.

Example 4. Consider the complete graph K9 = K3 � K3. Then the construction given
in Lemma 5.1 and in Lemma 4.2 define two different RSP-relations R 
� S, for which
K9/PR � K9/PS � LK1, by Lemma 4.4. Note, R and S have no RSP-relation as common
refinement.

Let us now turn to complete bipartite graphs Km,n. W.l.o.g. we may assume that m ≤ n.
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Lemma 5.2. For m = n let the vertex set of Km,m be given by V (Km,m) = V (K2)×V (Km)
and E(Km,m) = {[x, y] | x, y ∈ V (Km,m) s.t. p1(x) 
= p1(y)}. Furthermore, let S be an
RSP-relation on E(Km). We define an equivalence relation R on E(Km,m) as follows:
(e, f) ∈ R if and only if

(1) |p2(e)| = |p2(f)| = 1, or

(2) |p2(e)| = |p2(f)| = 2 and (p2(e), p2(f)) ∈ S.
Then R has the relaxed square property. Moreover, R is a finest RSP-relation on E(Km,m)
if and only if S is finest RSP-relation on E(Km).

Proof: Notice, that with our notation we have E(Km,m) = E(K2 � Km) \ (E(Kx
m) ∪

E(Ky
m)) with x, y ∈ V (K2)×V (Km) s.t. p1(x) 
= p1(y). With Lemma 4.2 and Lemma 3.3,

it follows that R is an RSP-relation on E(Km,m). It is clear that any refinement of S
leads to a refinement of R. Thus we just have to show the converse, i.e., that R is a finest
RSP-relation if S is finest RSP-relation. Let ϕ denote the equivalence class defined by
condition (1), i.e., ϕ = {e ∈ E(Km,m) | |p2(e)| = 1}. By construction, each vertex is
adjacent to exactly one ϕ-edge, therefore, ϕ cannot be split by Lemma 3.2. Moreover, two
adjacent edges e, f with e ∈ ϕ and f ∈ ψ 
= ϕ � R span exactly one square with opposite
edges in the same equivalence classes, namely the square with p2(f) = p2(f

′), where f ′

is opposite edge of f . Therefore, p2(e) = p2(e
′) implies (e, e′) ∈ Q for any refinement Q

of R with relaxed square property. Furthermore, with our notations, any refinement Q
of R leads also to a refinement Q|E(K2×Km) of R|E(K2×Km), the restrictions of Q and R to
E(K2 × Km) ⊆ E(Km,m), respectively. If the refinement Q is proper and satisfies the
relaxed square property on E(Km,m), the same is true for Q|E(K2×Km) on E(K2 ×Km) by
Lemma 3.3 and our previous considerations. Moreover, we can conclude that Q determines
an equivalence relation p2(Q) on Km via (p2(e), p2(f)) ∈ p2(Q) if and only if (e, f) ∈ Q.
It holds p2(C4) ∼= C4 for any square in K2 × Km. Furthermore, p2(e) = p2(e

′) implies
(e, e′) ∈ Q if Q has the relaxed square property. Therefore, it follows, p2(Q) is a proper
refinement of S with the relaxed square property if Q is a proper refinement of R with the
relaxed square property. This completes the proof. �
Lemma 5.3. For m < n let the vertex set of Km,n be given by {x1, . . . , xm, y1, . . . , yn} such
that E(Km,n) = {[xi, yj] | 1 ≤ i ≤ m, 1 ≤ j ≤ m}. Furthermore, let S be an equivalence
relation on the edge set of the induced subgraph 〈{x1, . . . , xm, y1, . . . ym}〉 ∼= Km,m of Km,n.
We extend S to an equivalence relation R on E(Km,n) as follows: For each equivalence
class ϕ′ � S we extend ϕ′ to an equivalence class ϕ � R, i.e., we set ϕ′ ⊆ ϕ and moreover
[xj , ym+i] is an edge in equivalence class ϕ if and only if [xj , yki] is an edge in ϕ′ for fixed
ki ∈ {1, . . . , m} for all i ∈ {1, . . . , n−m}. Then R has the relaxed square property.

Proof: It is clear, that R is an equivalence relation. Thus, it remains to show that R has
the relaxed square property. Therefore, let e, f ∈ E(Km,n) such that (e, f) /∈ R. Notice,
by construction, ψ′ 
= ϕ′ if and only if ψ 
= ϕ for all ψ′, ϕ′ � S and ψ, ϕ � R with ψ′ ⊆ ψ
and ϕ′ ⊆ ϕ.

First, suppose that e and f are both incident to some vertex yr ∈ V (Km,n), r ∈ {1, . . . , n}.
That is, e = [xj , yr] and f = [xl, yr] for some j, l ∈ {1, . . . , m}, j 
= l. If r ≤ m then by
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construction e, f ∈ E(Km,m) and (e, f) /∈ S, and hence they span a square with opposite
edges in the same equivalence classes of S, which is also retained in Km,n with the same
properties. If r > m, then r = m+ i for some i ∈ {1, . . . , n−m}. By construction, there
exists ki ∈ {1, . . . , m} such that ([xj , yki], [xj , ym+i]) ∈ R and ([xl, yki], [xl, ym+i]) ∈ R,
which implies ([xj , yki], [xl, yki]) /∈ R and hence, by construction, ([xj , yki], [xl, yki]) /∈ S.
Since S has the relaxed square property, there exists w ∈ V (Km,m) ⊂ V (Km,n) such that
[xj , yki] and [xl, yki] span a square xj − yki − xl − w, such that ([xl, w], [xj, yki]) ∈ S ⊂ R
and ([xj , w], [xl, yki]) ∈ S ⊂ R. Then xj − ym+i − xl − w is a square spanned by e and f
with opposite edges in the same equivalence class.

Now assume e and f are both incident to some vertex xj ∈ V (Km,n), j ∈ {1, . . . , m}.
That is, e = [xj , yr] and f = [xj , ys] for some r, s ∈ {1, . . . , n}, r 
= s. If r, s ≤ m,
then by construction e, f ∈ E(Km,m) and (e, f) /∈ S, and hence they span a square with
opposite edges in the same equivalence classes of S, which is also retained in Km,n with
the same properties. If r, s > m, then r = m + i, s = m + l for some i, l ∈ {1, . . . , n −
m}. By construction, there exists ki, kl ∈ {1, . . . , m} such that ([xj , ym+i], [xj , yki]) ∈
R as well as ([xj , ym+l], [xj , ykl]) ∈ R, from which we can conclude ([xj , yki], [xj , ykl]) /∈
R. By construction we have ([xj , yki], [xj , ykl]) /∈ S, and since S has the relaxed square
property, there exists w ∈ V (Km,m) ⊂ V (Km,n) such that [xj , yki] and [xj , ykl] span a
square (xj , yki, w, ykl), such that ([w, ykl], [xj , yki]) ∈ S ⊂ R and ([w, yki], [xj , ykl]) ∈ S ⊂ R.
Moreover, by construction, we have ([w, ym+i], [w, yki]) ∈ R as well as ([w, ym+l], [w, ykl]) ∈
R. Thus xj − ym+i − w − ym+l is a square spanned by e and f with opposite edges in
the same equivalence class. If r > m, s ≤ m, then r = m + i for some i ∈ {1, . . . , n −
m}. By construction, there exists ki ∈ {1, . . . , m} such that ([xj , ym+i], [xj, yki]) ∈ R and
thus, ([xj , yki], [xj , yl]) /∈ R, hence, ([xj , yki], [xj , ykl]) /∈ S. Since S has the relaxed square
property, there exists w ∈ V (Km,m) ⊂ V (Km,n) such that [xj , yki] and [xj , yl] span a
square xj − yki−w− yl, such that ([w, yl], [xj , yki]) ∈ S ⊂ R and ([w, yki], [xj , yl]) ∈ S ⊂ R.
Moreover, by construction, we have ([w, ym+i], [w, yki]) ∈ R. Hence, xj − ym+i−w− yl is a
square spanned by e and f with opposite edges in the same equivalence class. Analogously,
one shows that e and f span a square with opposite edges in the same equivalence class if
r ≤ m and s > m, which completes the proof. �
Obviously, any finer RSP-relation S ′ ⊂ S on E(Km,m) leads to a finer RSP-relation

R′ ⊂ R on E(Km,n), constructed from S ′ as in Lemma 5.3. It is not known yet, if the
converse is also true.

Corollary 2. For all m,n ≥ 2 there exists a nontrivial RSP-relation on E(Km,n).

The constructions in Lemma 5.2 and Lemma 5.3 together with Lemma 5.1 imply that the
maximum number of classes of a finest RSP-relation is at least �m

2
�+1. From Lemma 3.2,

we infer that the maximum number of classes of a finest RSP-relation on Km,n is at most
m, the minimum degree of Km,n. In the case of m = 2q, this bound is sharp with our
considerations for complete graphsK2q and the constructions in Lemma 5.2 and Lemma 5.3.
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6 RSP-relations and Covering Graphs

We are now in the position, to establish the close connection of covering graphs and (well-
behaved) RSP-relations.

Definition 6.1. For a graph G = (V,E), an RSP-relation R on E and ϕ � R, let Gx
ϕ and

Gy
ϕ be two distinct adjacent ϕ-layers. We define the graph CGx

ϕ,G
y
ϕ
in the following way:

1. Vertices V (CGx
ϕ,G

y
ϕ
) = {[a, b] ∈ E | a ∈ V (Gx

ϕ), b ∈ V (Gy
ϕ)} are precisely the edges of

G connecting Gx
ϕ and Gy

ϕ.

2. Two vertices [a1, b1], [a2, b2] ∈ V (CGx
ϕ,G

y
ϕ
) are adjacent if they are opposite edges of a

square a1 − b1 − b2 − a2 in G with [a1, a2] ∈ E(Gx
ϕ) and [b1, b2] ∈ E(Gy

ϕ).

Lemma 6.2. Let G be a graph, R an RSP-relation on E(G), and Gx
ϕ and Gy

ϕ two distinct
adjacent ϕ-layers for some ϕ � R. Then CGx

ϕ,G
y
ϕ
is a quasi-cover of Gx

ϕ and Gy
ϕ. Moreover,

if R is well-behaved, then CGx
ϕ,G

y
ϕ
is a cover of Gx

ϕ and Gy
ϕ.

Proof: We define the map f1 : V (CGx
ϕ,G

y
ϕ
) → V (Gx

ϕ) by f1([a, b]) = a where a ∈ V (Gx
ϕ)

and b ∈ V (Gy
ϕ) and show first that f1 is a homomorphism, i.e., it maps neighbors in CGx

ϕ,G
y
ϕ

into neighbors inGx
ϕ. Let [a1, b1], [a2, b2] ∈ V (CGx

ϕ,G
y
ϕ
) be adjacent. By construction of edges

in CGx
ϕ,G

y
ϕ
, there is a square a1 − b1 − b2 − a2 in G with opposite edges [a1, b1] and [a2, b2].

Hence, a1 and a2 are adjacent in Gx
ϕ. Now, let a = f1([a, b]) and c ∈ NGx

ϕ
(a). Since [a, c]

and [a, b] are adjacent edges of different equivalence classes, they span some square with
opposite edges in relation R. Thus there exists a vertex d ∈ V (Gy

ϕ), such that [a, b] and
[c, d] are adjacent in CGx

ϕ,G
y
ϕ
and f1([c, d]) = c. This proves that f1 is locally surjective and

therefore, that CGx
ϕ,G

y
ϕ
is a quasi-cover of Gx

ϕ.

Let f1 be defined as above and assume that none of the subgraphs of G that are iso-
morphic to K2,3 have a forbidden coloring. If f1([c1, d1]) = f1([c2, d2]), it holds that for
[c1, d1], [c2, d2] ∈ NC

Gx
ϕ,G

y
ϕ
([a, b]) we have c1 = c2 by construction of f1. If d1 
= d2, then

there is a subgraph of G isomorphic to K2,3 with bipartition {b, c1}∪· {a, d1, d2}. Moreover,
since [a, c1], [b, d1], [b, d2] ∈ ϕ and the other edges are, by construction, in ϕ we conclude
that this subgraph has a forbidden coloring, a contradiction. Thus, d1 = d2, i.e., the locally
surjective map f1 is also locally injective. Hence, CGx

ϕ,G
y
ϕ
is a cover of Gx

ϕ.

Arguing analogously for the map f2 : V (CGx
ϕ,G

y
ϕ
)→ V (Gy

ϕ) with f2([a, b]) = b, a ∈ V (Gx
ϕ),

b ∈ V (Gy
ϕ), one obtains the desired results for CGx

ϕ,G
y
ϕ
and Gy

ϕ. �
To illustrate Lemma 6.2 consider the following example: Let G1 = C6 and G2 = C9

with vertex sets Z6 and Z9 and the canonical edge set definitions. To obtain G add the
edges [k, kmod 6] and [k, k + 3mod 6] for 0 ≤ k ≤ 8 connecting G1 with G2. Construct
an equivalence relation R with two classes ϕ = E(G1) ∪ E(G2), and ϕ comprising the
connecting edges. R is a well-behaved RSP-relation on G. It is not hard to verify that
CG1,G2 is a cover graph of C6 and C9 and is isomorphic to C18.

For a similar result for the case when Gx
ϕ and Gy

ϕ are not distinct, that is Gx
ϕ = Gy

ϕ, but
there are edges not in ϕ connecting its vertices, we have to be a bit more careful.
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Definition 6.3. For a graph G = (V,E), an RSP-relation R on E, and ϕ � R, let Gx
ϕ be

some ϕ-layer. We define the graph CGx
ϕ,G

x
ϕ
in the following way:

1. Vertices V (CGx
ϕ,G

x
ϕ
) = {(a, b) | [a, b] ∈ E, a, b ∈ V (Gx

ϕ), [a, b] ∈ ϕ} are edges in E(G)
with superimposed orientation (a, b) from a to b, that are not contained in class ϕ,
but that connect vertices of Gx

ϕ.

2. Two directed edges (a1, b1) and (a2, b2) in V (CGx
ϕ,G

x
ϕ
) are adjacent if [a1, b1], [a2, b2]

are opposite edges of a square a1 − b1 − b2 − a2 in G with [a1, a2], [b1, b2] ∈ E(Gx
ϕ).

Remark 1. Since [a, b] = [b, a], it holds that for all edges [a, b] ∈ E, we get two vertices in
V (CGx

ϕ,G
x
ϕ
) per edge [a, b] ∈ E \ ϕ, namely (a, b) and (b, a).

Lemma 6.4. For a graph G = (V,E), an RSP-relation R on E, and ϕ � R, let Gx
ϕ be some

ϕ-layer and assume that there are edges [a, b] ∈ E \ϕ with a, b ∈ V (Gx
ϕ). Then CGx

ϕ,G
x
ϕ
is a

quasi-cover of Gx
ϕ with two different locally surjective homomorphisms f1 and f2 such that

f1(h) 
= f2(h) for every h ∈ CGx
ϕ,G

x
ϕ
. Moreover, if R is well-behaved, then CGx

ϕ,G
x
ϕ
is twice

a cover of Gx
ϕ, i.e., there are at least two different covering maps.

Proof: Proof is the same as for Lemma 6.2 by defining f1((a, b)) = a and f2((a, b)) = b.
�

If every vertex of Gx
ϕ is incident with exactly one edge that is not in ϕ but connects

two vertices of Gx
ϕ, then G

x
ϕ
∼= CGx

ϕ,G
x
ϕ
and the edges in ϕ induce an automorphism of Gx

ϕ

without fixed vertices by setting f(a) = b whenever [a, b] ∈ ϕ.
As an example consider the graph G with V (G) = Z6 and E(G) = ϕ ∪· ϕ such that

ϕ = {[k, k+1mod6] | 0 ≤ k ≤ 5}, i.e., Gϕ
∼= C6 and ϕ = {[1, 4], [2, 5], [3, 6]}. We then have

V (CGx
ϕ,G

x
ϕ
) = {(0, 3), (1, 4), (2, 5), (3, 0), (4, 1), (5, 2)} and CGx

ϕ,G
x
ϕ
has edges E(CGx

ϕ,G
x
ϕ
) =

{[(0, 3), (1, 4)], [(1, 4), (2, 5)], [(2, 5), (3, 0)], [(3, 0), (4, 1)], [(4, 1), (5, 2)], [(5, 2), (0, 2)]}, that is
CGx

ϕ,G
x
ϕ
∼= C6

∼= Gϕ. The induced automorphism is given by f(k) = k + 3mod 6, k =
0, . . . , 5.

Lemma 6.2 and Lemma 6.4 together highlight a connection between graph bundles and
graphs with relaxed square property. For an RSP-relation R onG we see that the connected
components Gϕ correspond to fibers, while the graph Gϕ/PR

ϕ has the role of the base
graph. Such decomposition is a graph bundle if and only if edges connecting Gx

ϕ and
Gy

ϕ for arbitrary x, y induce an isomorphism. In our language, this is equivalent to the
condition CGx

ϕ,G
y
ϕ
∼= Gx

ϕ
∼= Gy

ϕ for arbitrary x, y, provided that Gx
ϕ and Gy

ϕ are connected
by an edge. Graphs with a nontrivial RSP-relation are therefore a natural generalization
of graph bundles.

Corollary 3. For a graph G and a well-behaved RSP-relation R on E(G), let Gx
ϕ and Gy

ϕ

be two (not necessarily distinct) ϕ-layers. Then

|NGϕ
(x) ∩ V (Gy

ϕ)| = |NGϕ
(u) ∩ V (Gy

ϕ)| (6.1)

is fulfilled for every u ∈ V (Gx
ϕ).
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Proof: If there is no edge in Gϕ connecting Gx
ϕ and Gy

ϕ the assertion is clearly true.
Therefore assume now that they are connected by an edge. By Lemmas 6.2 and 6.4,
CGx

ϕ,G
y
ϕ
is a cover of Gx

ϕ with covering map f1 as defined in Lemmas 6.2 resp. 6.4. By

definition of f1, |f−1
1 (u)| = |NGϕ

(u) ∩ V (Gy
ϕ)|, which is the same for all u ∈ V (Gx

ϕ). �
Corollary 3 indicates another property of well-behaved RSP-relations. It was shown

in [20] that for a so-called USP-relation R on E(G) the vertex partitions PR
ϕ and PR

induced by equivalence classes ϕ � R are equitable partitions for the graphs Gϕ and G,
respectively. The key argument leading to this result was an analogue of Equation (6.1).
Together with Lemma 3.3, the fact that if R is well-behaved on G then R\ϕ is well-behaved
on (V (G), E(G)\ϕ), and since |⋃· ψNψ(x)| =

∑
ψ |Nψ(x)| for any set of pairwisely distinct

equivalence classes ψ of R, we can use the same arguments as in [20] to obtain

Theorem 6.5. Let R be (a coarsening of) a well-behaved RSP-relation on the edge set
E(G) of a connected graph G. Then:

(1) PR
ϕ =

{
V (Gx

ϕ) | x ∈ V (G)
}
is an equitable partition of the graph Gϕ for every equiv-

alence class ϕ of R.

(2) PR =
{⋂

ϕ�R V (Gϕ(x)) | x ∈ V (G)
}

is an equitable partition of G.

As mentioned previously, while an RSP-relation R on E(G) might be well-behaved and
thus, has no forbidden K2,3-coloring, this is no longer true for coarsenings of R in general.
However, since the number of edges incident to a vertex is additive over equivalence classes
of R, the latter theorem remains also true for coarsenings of relations without forbidden
K2,3-colorings.

Another interesting question is how two graphsG1 andG2 can be connected by additional
edges so that ϕ = E(G1) ∪ E(G2) and ϕ comprises the connecting edges and R = {ϕ, ϕ}
is an RSP-relation.

Lemma 6.6. Let G1, G2, and G be graphs and f1 : G → G1, f2 : G → G2 be locally
surjective homomorphisms. Then there exists a graph H = (V,E) and an RSP-relation R
on E with equivalence classes ϕ, ϕ such that

V = V (G1) ∪ V (G2) and ϕ = E(G1) ∪ E(G2).

Note, it is allowed to have G1 = G2. In this case, H might have loops and double edges.

Proof: For given graphs G1, G2, G and locally surjective homomorphisms fi : G → Gi,
i = 1, 2 construct the graph H as follows: For x ∈ V (G1) and y ∈ V (G2) add an edge [x, y]
if and only if there exists g ∈ V (G) such that f1(g) = x and f2(g) = y. We set [x, y] ∈ ϕ.
It is clear, that R is an equivalence relation. We have to show, that R is an RSP-relation.
Let [x1, x2] ∈ E(G1) and [x1, y1] be an added edge. Then there exists g1 ∈ V (G), such that
f1(g1) = x1 and f2(g1) = y1. Since f1 is a locally surjective homomorphism, there exists
a vertex g2 as a neighbor of g1, such that f1(g2) = x2. Let y2 = f2(g2). Then y2 and x2
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are connected by an added edge and y1, y2 are adjacent since f2 is a homomorphism. Thus
[x1, x2] and [x1, y1] lie on a square with opposite edges in relation R.

If G1 = G2, then just identify vertices of two copies of G1. �
Lemma 6.7. Let G and G′ be two graphs. Then there exists a graph H = (V,E) and a
well-behaved RSP-relation R with two equivalence classes ϕ, ϕ such that

V = V (G) ∪ V (G′) and ϕ = E(G) ∪ E(G′),

and each vertex of V (G) is incident to exactly one ϕ-edge if and only if G is a cover of G′.

Proof: Let H = (V,E) be a graph with well-behaved RSP-relation R on E as claimed.
Then, we can consider G,G′ as ϕ-layers. By Lemma 6.2, CG′,G is a cover of G′ and G.
Since each vertex in V (G) is incident with exactly one ϕ-edge, we see that for covering
map f1 : CG′,G → G holds |f−1

1 (u)| = 1 for all u ∈ H which implies f1 is also injective,
thus an isomorphism.

For the converse, assume G is a cover of G′. Then G is a cover of G and G′ and thus G
and G′ can be connected as in the prove of Lemma 6.6. Since clearly G ∼= G and thus the
covering map p : G→ G is in particular injective, each vertex is, by construction, incident
to exactly one ϕ-edge. This in turn implies, H contains no square w − x − y − z such
that z ∈ V (G) and [w, z], [y, z] ∈ ϕ. On the other hand, there is no square w − x− y − z
contained in H with [w, x], [x, y] ∈ E(G) ⊆ ϕ and [w, z], [y, z] ∈ ϕ, i.e., z ∈ V (G′), since
otherwise the restriction of the covering map p′ : G → G′ to NG(x) (w.l.o.g. we can
assume p to be the identity mapping) would not be injective, a contradiction. Hence, we
can conclude that R is well-behaved. �
Notice that checking if H is a cover graph of G is in general NP-hard [1]. Therefore, also

connecting two graphs as described in Lemma 6.7 is NP-hard. On the other hand, one can
connect two arbitrary graphs G1, G2 such that all vertices of G1 are linked to all vertices
of G2. Then, the relation defined by the classes ϕ = E(G1)∪E(G2) and ϕ that consists of
all added edges between G1 and G2 is an RSP-relation. This implies that any two graphs
have a common finite quasi-cover. However, this is not true for covers, just take K2 and
K3 as an example.

For a given graph G and an RSP-relation R, one can consider the subgraph Gϕ, ϕ � R
as one layer and all other edges of G not contained in Gϕ as connecting edges. Notice,
connectivity is not explicitly needed in Definition 6.3 and Lemma 6.4, and thus, they can
be extended to CGϕ,Gϕ . Moreover, any spanning subgraph H of a graph G induces an
equivalence relation R with two equivalence classes E(H) and E(G) \E(H). Hence, CH,H

is well defined and thus, Lemma 6.4 and 6.6 imply the following result.

Theorem 6.8. A graph G has an RSP-relation with two equivalence classes if and only if
there exists a (possibly disconnected) spanning subgraph H � G and CH,H is a quasi-cover
of H.

On the set of graphs G we consider the relation G1 ∼ G2 if G1 and G2 have a common
finite cover.
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Theorem 6.9. The relation ∼ on G is an equivalence relation.

Proof: Relation ∼ is clearly reflexive and symmetric. By assumption, the graphs G1 and
G2 have a common cover H12 and G2 and G3 have a common cover H23. By Lemma 6.7,
H12, G2 and H23, G2 can be connected without forbidden colorings of K2,3. Let E be the
set of all edges connecting G2 and H12 and E ′ edges connecting G2 and H23. Since every
cover of H12 and H23 is a cover of G1, G2 and G3, it is sufficient to find a cover of H12

and H23. Therefore, it suffices to connect H12 and H23 without forbidden colorings of K2,3.
Define edges connecting H12 and H23 by connecting h ∈ V (H12) and h

′ ∈ V (H23) if there
exists a vertex v ∈ V (G2) such that [h, v] ∈ E and [v, h′] ∈ E ′.

First we check thatE(H12)∪E(H23) and connecting edges form two equivalence classes of an
RSP relation. Without loss of generality assume [h1, h2] ∈ E(H12) and [h1, h

′
1], h

′
1 ∈ V (H23)

is a connecting edge. Then there exists v1 ∈ V (G2) such that [h1, v1] ∈ E and [v1, h
′
1] ∈ E ′.

Since edges E are defined by a local bijection between H12 and G2, there exist v2 ∈ V (G2),
a neighbor of v1, such that [h2, v2] ∈ E. Similarly, since E ′ is defined by a local bijection
between H23 and G2, there exists h′2 ∈ V (H23), a neighbor of h′1, such that [v2, h

′
2] ∈ E ′.

Therefore there exists a square h1 − h′1 − h′2 − h2 with [h1, h2], [h
′
1, h

′
2] ∈ E(H12) ∪ E(H23)

and [h1, h2], [h
′
1, h

′
2] being connecting edges. This proves that relation R, with equivalence

classes E(H12) ∪ E(H23) and the set of connecting edges is an RSP relation.

It remains to prove that R is well-behaved. By symmetry, it is enough to prove that there
exists no vertices h1, h2, h3 ∈ V (H12) and h

′
1, h

′
2 ∈ V (H2,3) with [h1, h2], [h1, h3] ∈ E(H12),

[h′1, h
′
2] ∈ E(H23) and added edges [h1, h

′
1], [h2, h

′
2] and [h3, h

′
2]. For the sake of contradic-

tion, assume such vertices exist. By the construction of the added edges, there exist vertices
v1, v2, v3 ∈ V (G2) such that [h1, v1], [h2, v2], [h3, v3] ∈ E and [v1, h

′
1], [v2, h

′
2], [v3, h

′
2] ∈ E ′.

Since edges in E are obtained from a covering map of H12 to G2 we see that v1, v2 and v3
are distinct vertices. But also the edges in E ′ are obtained from a covering map of H23 to
G2 therefore [v2, h

′
2] = [v3, h

′
2] and thus v2 = v3, a contradiction. �

We have proven Theorem 6.9 here by elementary means to keep this presentation self-
contained. It also follows from a deep result of Leighton [19], who proved the following: A
pair of finite connected graphs G1 and G2 has a common finite cover if and only if they
have the same (possibly infinite) cover graph isomorphic to a tree. Such a cover is unique
for every graph G and covers any other covering graph of G; it is therefore called the
universal cover of G. On the other hand, a minimal common cover of two graphs need not
be unique, as Imrich and Pisanski have shown [15].

Corollary 4. Let G be a connected graph and let R be a well-behaved RSP-relation on
E(G). Then there exists a common covering graph for all ϕ-layers Gxi

ϕ .

Proof: This result is an immediate consequence of the connectedness of G, Lemma 6.2
and Theorem 6.9. �
In terms of Leighton’s theorem, the corollary could be read in the following way: For a
graph G with a well-behaved RSP-relation on E(G) and some fixed equivalence class ϕ all
the graphs {Gxi

ϕ } have the same universal cover.
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Under certain conditions it is possible to refine a given RSP-relation.

Lemma 6.10. Let G = (V,E) be a connected graph and R a well-behaved RSP-relation
on E. Assume that for one equivalence class ϕ � R the graph Gϕ has two connected
components Gx

ϕ and Gy
ϕ. The next two statements are equivalent:

1. There is a well-behaved refined RSP-relation R′ � R such that ϕ = χ1 ∪ χ2 with
χ1, χ2

� R′

2. CGx
ϕ,G

y
ϕ
has a non-trivial RSP-relation Q such that (e, f) ∈ Q if and only if (e′, f ′) ∈

R′ for all e, f ∈ p−1
1 (e′)∪p−1

1 (f ′)∪p−1
2 (e′)∪p−1

2 (f ′) and for all e, f ∈ E(Gx
ϕ)∪E(Gy

ϕ),
where p1 : CGx

ϕ,G
y
ϕ
→ Gx

ϕ, resp., p2 : CGx
ϕ,G

y
ϕ
→ Gy

ϕ.

In other words, R can be refined to R′ if and only if edges of Gx
ϕ, resp., G

y
ϕ that map on

the same edges via the covering projection are in the same class w.r.t. Q.

Proof: If there is a finer RSP-relation R′, every square a1−b1−b2−a2 with a1, a2 ∈ V (Gx
ϕ)

and b1, b2 ∈ V (Gy
ϕ) has edges [a1, a2] and [b1, b2] in the same class by the relaxed square

property and since R is well-behaved. Thus, an equivalence relation on E(Gx
ϕ) and E(G

y
ϕ)

can be lifted to an equivalence relation on E(CGx
ϕ,G

y
ϕ
) in a natural way. One can check

that it has the relaxed square property by using that the respective relations on E(Gx
ϕ)

and E(Gy
ϕ) have the relaxed square property.

Conversely, we define a finer RSP-relation on E(Gx
ϕ) and E(G

x
ϕ) from the RSP-relation on

E(CGx
ϕ,G

y
ϕ
) by setting (e′, f ′) ∈ R′ if and only if (e, f) ∈ Q for some e ∈ p−1

1 (e′), f ∈ p−1
1 (e′).

�
Let R be a well-behaved RSP-relation on G, e.g., R = δ0, and suppose there is a finer

RSP-relation R′ in which an equivalence class ϕ is split into two equivalence classes ϕ1 and
ϕ2. Let {Gxi

ϕ } be the connected components of Gϕ. Then ϕ1 and ϕ2 induce an RSP-relation
on each Gxi

ϕ . Consider two components Gx1
ϕ and Gx2

ϕ that are connected by some edges (in
other classes). From the proof of Lemma 6.10 we observe that an RSP-relation on E(Gx1

ϕ )
already defines an RSP-relation on CG

x1
ϕ ,G

x2
ϕ
, which in turn defines an RSP-relation on Gx2

ϕ

and thus on all ϕ-layers Gxi
ϕ . If multiple splits of ϕ exist, they are fixed by choosing one

on any Gxi
ϕ .

Now consider the graph G consisting of two copies of K2,3 and all edges connecting them
and the equivalence relation whose two classes are the edges of the two copies of K2,3 and
the connected edges, respectively. The discussion above implies that we can split the first
class independently on the two copies of K2,3. Thus, we cannot generalize the result above
to RSP-relations with forbidden colorings.

7 Outlook and Open Questions

We discussed in this contribution in detail RSP-relations, the most relaxed type of rela-
tions fulfilling the square property. As it turned out, such relations are hard to handle
in graphs that contain K2,3-subgraphs. On the other hand, it is possible to determine
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finest RSP-relations in polynomial time in K2,3-free graphs. Moreover, we showed how
to determine (finest) RSP-relations in certain graph products, as well as in complete and
complete-bipartite graphs. We finally established the close connection of (well-behaved)
RSP-relations to graph covers and equitable partitions. Intriguingly, non-trivial RSP-
relations can be characterized by means of the existence of spanning subgraphs that yield
quasi-covers of the graph under investigation.

Still, many interesting problems remain open topics for further research. From the
computational point of view, it would be worth to determine the complexity of the problem
of determining a finest (well-behaved) RSP-relation. Since there is a close connection to
graph covers, we suppose that the latter problem is NP-hard. If so, then fast heuristics
need to be designed. It is also of interest to investigate, for which graph classes (that are
more general than K2,3-free graphs) the proposed algorithm determines well-behaved or
finest RSP-relations.

From the mathematical point of view, one might ask, under which circumstances is it
possible to guarantee that there is a non-trivial finest RSP-relation that is in addition
well-behaved. Note, the graph G = K2,3 has no such relation. However, there might be
interesting graph classes that have one. In addition, it might be of particular importance
(also for computational aspects) to distinguish RSP-relations. Let us say that two RSP-
relations R and S on E are equivalent, R � S, if there is an automorphism f : V → V
such that ([x, y], [a, b]) ∈ R if and only if ([f(x), f(y)], [f(a), f(b)]) ∈ S. Note, if G = K2,3

then all finest RSP-relation consist of two equivalence classes and all such relations are
equivalent.

Clearly, if R � S, then G/PR � G/PS. However, the converse is not true, i.e., G/PR �
G/PS does not imply R � S, see Example 4. This suggests to consider under which
conditions finest RSP-relations are unique or for which graphs the equivalence of RSP-
relations can be expressed in terms of isomorphism of quotient graphs.
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[16] W. Imrich, T. Pisanski and J. Žerovnik, Recognizing Cartesian graph bundles, Discrete
Math. 167 (1997), 393–403.

[17] W. Imrich and J. Žerovnik, Factoring Cartesian-product graphs, J. Graph Theory 18
(1994), 557–567.
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