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Abstract

In this paper we define a family of polynomials closely related to the
modified R-polynomials of the symmetric group and begin work toward a
classification of the polynomials by using a combinatorial interpretation
involving subwords of the maximal element in the Bruhat order. The
problem of determining the precise conditions which make one of these
polynomials zero motivates our work. We state several properties of these
polynomials and symmetries which they satisfy that were discovered while
pursuing a resolution to this problem.

1 Introduction

The Iwahori-Hecke algebra, Hn(q), is a single parameter deformation of the group
algebra C[Sn], where Sn is the symmetric group. In particular, Hn(q) specializes
to C[Sn] when q = 1. While working on representations of Hn(q), Kazhdan and
Lusztig [12] introduced a family of polynomials which are now known as Kazhdan-
Lusztig polynomials. These polynomials were used to construct a basis and irre-
ducible modules for Hn(q). In order to define their polynomials, Kazhdan and
Lusztig introduced a set of polynomials in Z[q] known as the R-polynomials. Due
to the recursive way in which all of these polynomials are defined, they are difficult
to work with. An alternative way of working with them is to make use of modi-
fied R-polynomials in N[q]. The coefficients of the modified R-polynomials and their
combinatorial interpretations have been studied by Brenti [2–6], Deodhar [7], and
Dyer [9].

The construction of representations of Hn(q) was the underlying reason for the
introduction of the Kazhdan-Lusztig and R-polynomials. In the same manner study
of the representation theory of quantum groups by Lusztig [14] and Kashiwara [11]
eventually lead to interest in the quantum matrix bialgebra A(n; q), a single pa-
rameter deformation of the commutative polynomial ring C[x1,1, . . . , xn,n]. In order
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to construct transition matrices between special bases in A(n; q), a set of polyno-
mials appear which satisfy recursive relations very similar to those of the modified
R-polynomials. In Lambright’s dissertation [13], a family of polynomials was de-
fined combinatorially and shown not only to be the polynomials appearing in the
transition matrices, but also containing the modified R-polynomials as a subfamily.

In [13], several features of these polynomials were identified, including several
symmetries they satisfy. In this paper we will define these polynomials recursively
in an analogous manner to Kazhdan and Lusztig’s definition. Following this we
interpret the polynomials combinatorially and take advantage of facts from [13] to
identify more features and properties which they satisfy. Next we will state results
that we have found in pursuing a classification of these polynomials.

2 Relevant Background Information and Notation

The symmetric group Sn has a standard presentation given by the generators s1, . . . ,
sn−1 and the relations

s2i = 1, for i = 1, . . . , n− 1,

sisjsi = sjsisj , if |i− j| = 1,

sisj = sjsi, if |i− j| ≥ 2.

(2.1)

Let [n] denote the set {1, . . . , n}. Let Sn act on rearrangements of the letters [n] by

si ◦ v1 · · · vn = v1 · · · vi−1vi+1vivi+2 · · · vn. (2.2)

For each permutation w = si1 · · · si� ∈ Sn we define the one-line notation of w to be
the word

w1 · · ·wn = si1 ◦ (· · · (si� ◦ 1 · · ·n)) · · · ). (2.3)

The one-line notation does not depend on the expression si1 · · · si� for w. When an
expression for w is as short as possible, we say that expression is reduced. Further-
more, we call the number of generators in a reduced expression for w the length of
w and denote it by �(w).

The Bruhat order on Sn is defined by v ≤ w if some (equivalently every) reduced
expression for w contains a reduced expression for v as a subword (See [1] for more
information). A generator is called a left ascent for v if sv > v, and a left descent
otherwise. Right ascents and descents are defined analogously. The unique maximal
element in the Bruhat order will be denoted by w0. This permutation has one line
notation n(n− 1) · · ·2 1.

It is known that left or right multiplication by w0 induces an antiautomorphism
of the Bruhat order. Thus if u < v, then we have

w0v < w0u, and vw0 < uw0. (2.4)

We also have that
�(w0v) = �(vw0) = �(w0)− �(v), (2.5)
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for all v ∈ Sn.
We also consider the reflections of Sn, a set defined by

T = {wsw−1|w ∈ Sn, s a generator of Sn}. (2.6)

The Bruhat graph of Sn is the directed graph with vertex set Sn and edge con-
necting u to v if and only if v = ut with t ∈ T and �(u) < �(v).

The absolute length of u, denoted by a�(u) is the minimum number of reflections
used to express u. Following [10], the absolute length of the pair (u, v), denoted
a�(u, v), is the (oriented) distance between u and v in the Bruhat graph of Sn.

We wish to have a way to indicate particular subwords that are related to u, v,
and w ∈ Sn. We fix a reduced expression for the word w = w1w2 · · ·wk of length
k. Following the notation and terminology of [8] a mask σ associated to w is a
binary word σ1σ2 · · ·σk. Every mask corresponds to a subexpression of w, denoted
wσ = wσ1

1 wσ2
2 · · ·wσk

k where

wσi
i =

{
wi if σi = 1,

e if σi = 0.
(2.7)

We consider a sequence of masks related to σ where σ[j] = σ1σ2 · · ·σj . These
masks in turn define a sequence of subwords of w where wσ[j] = wσ1

1 wσ2
2 · · ·wσj

j . Thus,

for example, wσ[1] = wσ1
1 , wσ[2] = wσ1

1 wσ2
2 , and wσ[k] = wσ.

We will say that the mask σ is appropriate for the elements u, v, w ∈ Sn if and
only if

1. u−1v = wσ.

2. If uwσ[j−1]wj > uwσ[j−1] then σj = 1.

For further notation, we will let Su,v,w be the set of all masks that are appropriate
for the triple u, v, w and σ−1 denote the reverse ordering of σ. For example, 10011−1 =
11001. We also define the function z : Su,v,w → N where z(σ) is the number of zeros
in the mask σ.

3 The Polynomials of Interest

In [12] Kazhdan and Lusztig defined a family of polynomials with integer coefficients
associated to a Coxeter group, of which Sn is one. They also defined a second family
of polynomials which came to be known as the R-polynomials. These led to the
definition of the modified R-polynomials, which are polynomials with non-negative
integer coefficients. For a nice introduction to these polynomials see Chapter 5
of [1]. The modified R-polynomials are the unique family {R̃v,w(q) | v, w ∈ Sn} of
polynomials in N[q] satisfying

1. R̃v,w(q) = 0 if v �≤ w.

2. R̃w,w(q) = 1 for all w.
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3. For each left ascent s of v

R̃v,w(q) =

{
R̃sv,sw(q) if sw > w,

R̃sv,sw(q) + qR̃sv,w(q) otherwise.
(3.1)

The polynomials which are the focus of this paper were initially defined using
conditions that resemble those satisfied by the modified R-polynomials.

Definiton 3.1. For u, v, w ∈ Sn define the polynomial pu,v,w(q) ∈ N[q] by

1. pu,v,w(q) = 0 if u−1v �≤ w.

2. pu,v,u−1v(q) = 1.

3. For each right descent s of u,

pu,v,w(q) =

{
pus,v,sw(q) if sw > w

pus,v,sw(q) + qpus,v,w(q) otherwise.
(3.2)

In what follows we will refer to these polynomials as the p-polynomials. These
polynomials appear in [13] in a different guise, as they were defined combinatorially
by counting certain paths in the diagram of the Bruhat order associated with Sn.
We will use the following alternative combinatorial definition for what we will initally
refer to as the p̃-polynomials.

Definiton 3.2. For u, v, w ∈ Sn define the polynomial p̃u,v,w(q) ∈ N[q]:

p̃u,v,w(q) =
∑

σ∈Su,v,w

qz(σ). (3.3)

This definition of the masks Su,v,w depends upon the reduced expression chosen
for w, however, as we will see that p̃u,v,w(q) = pu,v,w(q), the p̃-polynomials are well
defined. In order to justify the identification between the p-polynomials and the p̃-
polynomials there are a few straightfoward implications that follow from Definition
3.2.

Proposition 3.3. If u−1v �≤ w then p̃u,v,w(q) = 0.

Proof. If u−1v �≤ w then there is no appropriate mask for the triple u, v, w, hence
p̃u,v,w(q) = 0.

Proposition 3.4. p̃u,v,w(q) = 1 if and only if u−1v = w.

Proof. This follows from the fact that u−1v = w if and only if the only appropriate
mask for u, v, w is that containing all ones and no zeros.

Proposition 3.5. For all u, v, w ∈ Sn with s a right descent of u

p̃u,v,w(q) =

{
p̃us,v,sw(q) if sw > w,

p̃us,v,sw(q) + qp̃us,v,w(q) otherwise.
(3.4)
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Proof. Let s be a right descent of u. If σ ∈ Su,v,w then u−1v = wσ and su−1v = swσ.
First suppose that sw > w. We will show that τ = 1σ ∈ Sus,v,sw. It is clear

that su−1v = (sw)τ . Because (us)s > us it follows that all appropriate masks for
us, v, sw must begin with 1. Since z(σ) = z(τ), p̃u,v,w(q) = p̃us,v,sw(q).

Now suppose that sw < w. We may express w = sw′. There are two cases to
consider.

If σ1 = 1 then a modification of the above argument shows that σ ∈ Sus,v,sw.
If σ1 = 0 then su−1v = s(sw′)σ = (sw′)1σ2···σk = wκ. Here κ ∈ Sus,v,w and we

note that z(κ) = z(σ)− 1. Hence p̃u,v,w(q) = p̃us,v,sw(q) + qp̃us,v,w(q).

Now we provide a connection between these two families of polynomials. Due to
the identification in Theorem 3.6, in all that follows we refer to the p̃-polynomials as
p-polynomials.

Theorem 3.6. For all u, v, w ∈ Sn, p̃u,v,w(q) = pu,v,w(q).

Proof. The identity follows by induction on the length of u by 3.2, Proposition 3.3,
Proposition 3.4, and Proposition 3.5.

In [13] the p-polynomials are shown to satisfy the following symmetry relations,

pu,v,w(q) = pu−1,w,v(q) = pv,u,w−1(q) = pv−1,w−1,u(q) = pw,u−1,v−1(q) = pw−1,v−1,u−1(q).
(3.5)

This string of symmetries is a combination of two symmetries: pu,v,w(q) =
pu−1,w,v(q) and pu,v,w(q) = pv,u,w−1. In [13] the first is established through a combina-
torial proof, however the proof of the second is rooted in the algebraic properties of
the Hecke algebra. Here we will show that both of these symmetries can be proved
using the combinatorial setting of Definition 3.2.

Proposition 3.7. For all u, v, w ∈ Sn, pu,v,w(q) = pv,u,w−1(q).

Proof. Let σ be an appropriate mask of u, v, w ∈ Sn. Since u−1v = wσ if and only
if v−1u = (w−1)σ

−1
and z(σ) = z(σ−1), we need only show that σ−1 ∈ Sv,u,w−1.

For simplicity of notation, let y = w−1 and τ = σ−1. For w of length k we have
that yj = wk+1−j.

Suppose that vyτ [j−1]yj > vyτ [j−1]. Since uwσ = v we have

(uwσ)(yτ [j−1]yj) > (uwσ)(yτ [j−1]). (3.6)

By the fact that wσ(w−1)σ
−1[j−1] = wσ[k+1−j] we see that

uwσ[k−j]w
σk+1−j

k+1−j wk+1−j > uwσ[k−j]w
σk+1−j

k+1−j . (3.7)

Suppose by way of contradiction that τj = 0. Thus σk+1−j = 0 and (3.7) states

uwσ[k−j]wk+1−j > uwσ[k−j]. (3.8)

Since u, v, w ∈ Su,v,w it follows that σk+1−j = 1, which is a contradiction. Hence
σ−1 ∈ Sv,u,w−1.
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The other equality used to generate the symmetries in (3.5) is given by the fol-
lowing.

Proposition 3.8. For all u, v, w ∈ Sn, pu,v,w(q) = pv−1,w−1,u(q).

Proof. The strategy of proof is similar to the above identification of p̃-polynomials
with the p-polynomials. We demonstrate that p̃v−1,w−1,u(q) satisfies the three condi-
tions of the p-polynomials in Defintion 3.1.

1. If u−1v �≤ w and we suppose that there is a mask σ ∈ Sv−1,w−1,u then vw−1 =
uσ. This relation implies that u−1v can be compared to w in the Bruhat
order, and thus u−1v > w. However, by condition 2 of appropriate masks, if
v−1uσ[j−1]uj > v−1uσ[j−1] then σj = 1, there can be no such mask σ. This
implies that p̃v−1,w−1,u(q) = 0.

2. If u−1v = w then it is straightforward to show that p̃v−1,w−1,u(q) = 1.

3. An argument similar to Proposition 3.5 shows that p̃v−1,w−1,u(q) satisfies the
recursive condition. Let s be a right descent of v−1. If σ ∈ Sv−1,w−1,u then
vw−1 = uσ and svw−1 = suσ. First suppose that su > u. We will show that
τ = 1σ ∈ Sv−1s,w−1,su. It is clear that svw−1 = (su)τ . Because (v−1s)s > v−1s
it follows that all appropriate masks for v−1s, w, su must begin with 1. Since
z(σ) = z(τ), p̃v−1,w−1,u(q) = p̃v−1s,w−1,su(q).

Now suppose that su < u. We may express u = su′. There are two cases to
consider.

If σ1 = 1 then a modification of the above argument shows that σ ∈ Sv−1s,w−1,su.

If σ1 = 0 then svw−1 = s(su′)σ = (su′)1σ2···σk = u1σ2···σk . Here 1σ2 · · ·σk ∈
Sv−1s,w−1,u and we note that z(1σ2 · · ·σk) = z(σ) − 1. Hence p̃v−1,w−1,u(q) =
p̃v−1s,w−1,su(q) + qp̃v−1s,w−1,u(q).

The identification of p̃v−1,w−1,u(q) = pu,v,w(q) follows by the above and induction
on the length of u.

The modified R-polynomials are in fact special cases of the p-polynomials. For
v, w ∈ Sn,

R̃v,w(q) = pw0,w0v,w(q). (3.9)

Using the symmetries in (3.5) we can see that for the polynomials in (3.9) the re-
cursive definitions for the p-polynomials and modified R-polynomials are in fact
equivalent.

Many facts about the modified R-polynomials are known due to work of Brenti,
Deodhar, and others. We are interested in seeing what of these facts extend to the
p-polynomials, or whether we can state any analogous properties which specialize to
those known about the modified R-polynomials. For example, it is known that

R̃v,w(q) = R̃w0w,w0v(q) = R̃ww0,vw0(q). (3.10)

The first equality in (3.10) can be explained using (3.9) and (3.5). The following
proposition, will allow us to explain the second equality in (3.10).
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Proposition 3.9. For any u, v, w ∈ Sn,

pu,v,w(q) = pw0uw0,w0vw0,w0ww0(q). (3.11)

Proof. This theorem is a consequence of the fact that conjugation of a word by w0

is an automorphism of the Bruhat order. Let σ ∈ Su,v,w. Since in Sn we have
w0siw0 = sn−1 we calculate all conjugations by w0 by mapping the word w1w2 · · ·wk

to (w0w1w0)(w0w2w0) · · · (w0wkw0). If u
−1v = wσ then w0u

−1vw0 = (w0ww0)
σ

Suppose that (w0uw0)(w0ww0)
σ[j−1](w0wjw0) > (w0uw0)(w0ww0)

σ[j−1]. For all
generators, we switch si to sn−i and see that since uwσ[j−1]wj > uwσ[j−1] we have
σj = 1. Therefore σ ∈ Sw0uw0,w0vw0,w0ww0.

Now, we can justify the second equality in (3.10) using the first equality in (3.10),
the identity (3.9), and Proposition 3.9 to say,

R̃v,w(q) = R̃w0w,w0v(q) = pw0,w,w0v(q) = pw0,w0ww0,vw0(q) = R̃ww0,vw0(q). (3.12)

4 Work toward a classification of p-polynomials

The p-polynomials are a generalization of the modified R-polynomials. Some of the
features of the modified R-polynomials generalize to the p-polynomials, while other
facts seems to be specific to the modified R-polynomials. A classification of the
p-polynomials would help us to understand this phenomenon.

Computation of examples of p-polynomials quickly becomes tedious and tiresome.
Although Proposition 3.5 provides a means to calculate any p-polynomial recursively,
this strategy leaves a lot to be desired. With only a few sample calculations patterns
begin to emerge. There appears to be a specific structure to the p-polynomials, and
they are quite rigid. For a specific instance of this, despite there being (3!)3 = 216
ordered triples of permutations in S3 there are only five distinct p-polynomials that
arise from these elements.

Several questions surface. How many unique polynomials exist for Sn? Which
polynomials are p-polynomials for some u, v, w ∈ Sn for some n? The next two
sections contain results working toward answering questions of this nature.

Proposition 3.4 provides a necessary and sufficient condition for when a p-poly-
nomial is 1. So we turn our attention to classifying exactly when pu,v,w(q) = 0.
In this case, the converse of the statement in the definition is not true, since the
polynomial ps2,s2s1,s1s2(q) = 0, and u−1v < w. However, if we use the symmetries in
(3.5) along with Proposition 3.3 we can explain why this specific example is zero.

Corollary 4.1. If one of the following conditions holds: u−1v �≤ w, uw �≤ v, or
vw−1 �≤ u, then pu,v,w(q) = 0.

While Corollary 4.1 allows us to conclude ps2,s2s1,s1s2(q) = 0, since uw �≤ v, it turns
out that once n > 3 for Sn we begin to see p-polynomials that are zero, but where
none of the conditions in this corollary hold. For example, ps1s2s3s2s1,s1s2s3s2s1,s1s2s3(q)
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= 0 even though u−1v < w, uw < v, and vw−1 < u all are satified. These mystery
zeros show that Corollary 4.1 is not the whole story. A necessary and sufficient
condition for when the p-polynomial pu,v,w(q) vanishes is that the triple u, v, w has
no appropriate mask. We see from Definition 3.2 that the triple u, v, w fails to have
an appropriate mask if there is no σ such that u−1v = wσ, or if for every σ such that
u−1v = wσ, there is a position j such that uwσ[j−1]wj > uwσ[j−1] and σj = 0.

Also of interest is the degree of a p-polynomial.

Proposition 4.2. The degree of the p-polynomial pu,v,w(q) is bounded above by
min{�(w)− �(u−1v), �(v)− �(uw), �(u)− �(vw−1)}.
Proof. The degree of the p-polynomial pu,v,w(q) is the maximal number of zeros in
a mask σ such that u−1v = wσ. Thus deg pu,v,w(q) ≤ �(w)− �(u−1v). By (3.5), the
degree of pu,v,w(q) is also bounded above by �(v)− �(uw) and �(u)− �(vw−1), from
which the statement of the theorem follows.

While not as sharp an upper bound, the following corollary is helpful in deter-
mining degree as it does not require any composition of symmetric group elements.

Corollary 4.3. The degree of the p-polynomial pu,v,w(q) is bounded above by
min{�(w)− |�(u)− �(v)|, �(v)− |�(u)− �(w)|, �(u)− |�(v)− �(w)|}.
Proof. This follows from the fact that |�(u)− �(v)| ≤ �(u−1v) ≤ �(u) + �(v).

Proposition 4.4. For the p-polynomial pu,v,w(q) �= 0 the minimal power of q with a
nonzero coefficient is bounded below by max {a�(u−1v, w), a�(uw, v), a�(vw−1, u)}.
Proof. Denote the minimal power of q with a nonzero coefficient by a. The proof is
by induction on the length of u. If �(u) = 0 then in order for pu,v,w(q) �= 0 we must
have v = w. Thus pe,v,v(q) = 1 and a�(ev, v) = 0.

Now suppose by induction that the statement of the proposition holds for �(u) <
m. Let u be such that �(u) = m. By Proposition 3.5 if there is a generator s with
us < u and sw > w, pu,v,w(q) = pus,v,sw(q). Thus a ≥ a�((us)(sw), v) = a�(uw, v).

Otherwise, for all s with us < u we have sw < w. Thus pu,v,w(q) = pus,v,sw(q) +
qpus,v,w(q). Thus a ≥ min {a�((us)(sw), v), a�(usw, v)+1}. Since a�((us)(sw), v) ≤
a�(usw, v) we have a ≥ a�((us)(sw), v) = a�(uw, v).

By (3.5) a ≥ a�(u−1v, w) and a ≥ a�(vw−1, u), hence the statement of the propo-
sition follows.

On many occasions the degree of a p-polynomials equals the upper bound from
Proposition 4.2, however there are examples where this is not true. In S4, the
polynomial ps2w0,s2w0,s2w0(q) = 2q3 + q. Here the upper bound from Proposition 4.2
is 5 while the degree is only 3. Although we may not be able to determine the degree
of an arbitrary p-polynomial, we can determine its parity.

Proposition 4.5. If pu,v,w(q) �= 0, then all terms with nonzero coefficents have
exponents with the same parity as �(u) + �(v) + �(w).
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Proof. Suppose by way of contradiction that there exists a p-polynomial pu,v,w(q)
with terms q2m+1 and q2n, with m,n ∈ N, that have nonzero coefficients. This
implies that there are masks σ, τ ∈ Su,v,w with z(σ) = 2m+ 1 and z(τ) = 2n. This
means that u−1v = wσ = wτ . Thus e = wσ(w−1)τ

−1
.

We have obtained an unreduced expression for e that has length �(w) − (2m +
1) + �(w) − 2n = 2�(w) − 2m − 2n − 1. However, since this is an odd number, we
have a contradiction.

If pu,v,w(q) �= 0 then there is at least one appropriate mask σ ∈ Su,v,w.

z(σ) ≡ �(w)− �(u−1v) mod 2

≡ �(w)− |�(u−1)− �(v)| mod 2

≡ �(w) + �(u) + �(v) mod 2.

(4.1)

Corollary 4.6. If pu,v,w(q) �= 0, then the degree of pu,v,w(q) has the same parity as
�(u) + �(v) + �(w).

5 Classification for Low Degrees

Further classification is possible for p-polynomials of low degree. In this section we
make use of the notation [qi](p(q)), indicating the coefficient of the term qi in the
polynomial p(q).

Proposition 5.1. For any p-polynomial with pu,v,w(q) �= 1, it has constant term of
zero.

Proof. The constant term of the polynomial pu,v,w(q) comes from appropriate masks
σ ∈ Su,v,w with no zeros. The only mask of this type is that containing all ones. If
σ = 111 · · ·1 ∈ Su,v,w then u−1v = wσ = w, and pu,v,w(q) = 1. Thus if u−1v �= w
then the mask σ = 111 · · ·1 �∈ Su,v,w and the constant term of pu,v,w(q) is zero.

Corollary 5.2. If deg pu,v,w(q) = 0, then pu,v,w(q) = 1.

Proposition 5.3. For any p-polynomial pu,v,w(q), [q](pu,v,w(q)) ∈ {0, 1}.
Proof. Suppose by way of contradiction that the coefficient of q is greater than 1.
Thus there are two distinct masks σ, τ ∈ Su,v,w such that z(σ) = z(τ) = 1. Let σi = 0
and τj = 0. By supposition i �= j. Write a reduced word for w as w = w′wiw

′′wjw
′′′

where w′, w′′, w′′′ are reduced words. Since wσ = wτ we see

wσ = w′w′′wjw
′′′ = w′wiw

′′w′′′ = wτ .

It follows that w′′wj = wiw
′′, hence w = w′wi(w

′′wj)w
′′′ = w′wi(wiw

′′)w′′′ =
w′w′′w′′′ a word with length shorter than an already reduced word. This contradiction
implies that there can be at most one mask σ ∈ Su,v,w such that z(σ) = 1.

Corollary 5.4. If deg pu,v,w(q) = 1, then pu,v,w(q) = q.
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Statements similar to Proposition 5.3 and Corollary 5.4 are true for p-polynomials
of degree 2.

Proposition 5.5. For any p-polynomial pu,v,w(q), [q
2](pu,v,w(q)) ∈ {0, 1}.

Proof. The proof is by induction on the length of u. If �(u) < 2 then [q2](pu,v,w(q)) =
0. We consider �(u) = 2 and suppose [q2](pu,v,w(q)) �= 0.

Let u = sisj. Since there is an acceptable mask σ such that vw−1 = uσ with
z(σ) = 2 we have vw−1 = e and thus v = w. Furthermore since the p-polynomial
is nonzero, u−1v < w and so sjsiv < v, implying that siv < v. Similarly because
uw < v we know that sisjv < v and thus sjv < v. We use Proposition 3.5 to
calculate psisj ,v,v(q):

psisj ,v,v(q) = psi,v,sjv(q) +qpsi,v,v(q)

= qpe,v,siv(q) +q2pe,v,v(q)

= q2.

(5.1)

Now suppose by induction that the statement is true for all p-polynomials with
�(u) < m. Let �(u) = m. If there is a s such that us < u and sw > w then
pu,v,w(q) = pus,v,sw(q), and by the inductive hypothesis we are done.

If for all s such that us < u, sw < w then by Proposition 3.5 we have pu,v,w(q) =
pus,v,sw(q) + qpus,v,w(q). By the inductive hypothesis, we need only show that the
possibility that [q2](pus,v,sw(q)) = 1 and [q](pus,v,w(q)) = 1 does not occur. If this
is the case then a�(su−1v, sw) = 2 and a�(su−1v, w) = 1. Since a�(su−1v, sw) ≤
a�(su−1v, this is a contradiction and the statement of the proposition follows.

Corollary 5.6. If deg pu,v,w(q) = 2, then pu,v,w(q) = q2.

Thus far these propositions concerning classification reveal nothing new from
what occurs for modified R-polynomials as q and q2 are the only modified R-poly-
nomials of degree 1 and 2, respectively. The p-polynomials of degree 3 are more
interesting, and diverge from the modified R-polynomials in a significant way. The
polynomials q3 and q3 + q are the only modified R-polynomials of degree 3. These
are also p-polynomials, as are aq3 + q in Sn where a < n.

Proposition 5.7. Let um = s1s2 · · · sm−1smsm−1 · · · s2s1 ∈ Sn, where m < n. The
p-polynomial pum,um,um(q) = (m− 1)q3 + q.

Proof. The proof is by induction on m. We note that

• ps1,s1,s1(q) = 0q3 + q.

• ps1s2s1,s1s2s1,s1s2s1(q) = q3 + q.

• For u3 = s1s2s3s2s1, the polynomial pu3,u3,u3(q) = 2q3 + q.

Suppose by induction that for all k < m we have puk,uk,uk
(q) = (k− 1)q3+ q. Let

k = m



J. LAMBRIGHT AND C.K. TAYLOR /AUSTRALAS. J. COMBIN. 62 (3) (2015), 228–239 238

We note that sm is both a left and right descent of um. Furthermore um =
smum−1sm = um−1smum−1. For simplicity of notation, in the following proof we will
let s = sm and u = um−1.

pum,um,um(q) = psus,sus,sus(q)

= psu,sus,us(q) + qpsu,sus,sus(q)

= pus,us,sus(q) + qpus,sus,sus(q)

= pu,us,us(q) + qpu,us,sus(q) + qpu,sus,us(q) + q2pu,sus,sus(q)

= pus,u,su(q) + 2qpu,us,sus(q) + q2psus,u,sus(q)

= pus,u,su(q) + q2psus,u,sus(q)

= pu,u,u(q) + pu,u,su(q) + q2psu,u,us(q) + q3psu,u,sus

= pu,u,u(q) + q3psu,u,sus

= pu,u,u(q) + q3.

(5.2)

By (5.2) and the inductive hypothesis,

pum,um,um(q) = pum−1,um−1,um−1(q) + q3 = (m− 2)q3 + q + q3 = (m− 1)q3 + q.

References

[1] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in
Mathmatics Vol. 231, Springer, New York, 2005.

[2] F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials, Invent.
Math. 118(2) (1994), 371–394.

[3] F. Brenti, Combinatorial expansions of Kazhdan-Lusztig polynomials, J. Lon-
don Math. Soc. 55(2) (1997), 448–472.

[4] F. Brenti, Combinatorial properties of the Kazhdan-Lusztig R-polynomials for
Sn, Adv. Math. 126(1) (1997), 21–51.

[5] F. Brenti, Kazhdan-Lusztig and R-polynomials from a combinatorial point of
view, Discrete Math. 193(1-3) (1998), 93–116. (Selected papers in honor of
Adriano Garsia, Taormina, 1994.)

[6] F. Brenti, Kazhdan-Lusztig and R-polynomials, Young’s lattice, and Dyck par-
titions, Pacific J. Math. 207(2) (2002), 257–286.

[7] Vinay V. Deodhar, On some geometric aspects of Bruhat orderings I, A finer
decomposition of Bruhat cells, Invent. Math. 79(3) (1985), 499–511.



J. LAMBRIGHT AND C.K. TAYLOR /AUSTRALAS. J. COMBIN. 62 (3) (2015), 228–239 239

[8] V.V. Deodhar, A combinatorial setting for questions in Kazhdan-Lusztig theory,
Geom. Dedicata 36(1) (1990), 95–119.

[9] M. J. Dyer, Hecke algebras and shellings of Bruhat intervals, Compositio Math.
89 (1993), 91–115.

[10] F. Incitti, Permutation diagrams, fixed points and Kazhdan-Lusztig R-
polynomials, Ann. Comb. 10 (2006), 369–387.

[11] M. Kashiwara, On crystal bases of theQ-analog of universal enveloping algebras,
Duke Math. J. 63 (1991), 465–516.

[12] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke
algebras, Invent. Math. 53 (1979), 165–184.

[13] J. Lambright, A generalization of Kazhdan and Lusztig’s R-polynomials, Ph.D.
Thesis, Lehigh University, 2011.

[14] G. Lusztig, Canonical bases arising from quantized enveloping algebras, J.
Amer. Math. Soc. 3 (1990), 47–498.

(Received 2 Sep 2014)


