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Abstract

A classic theorem of Veblen states that a connected graph G has a cycle
decomposition if and only if G is Eulerian. The number of odd cycles
in a cycle decomposition of an Eulerian graph G is therefore even if and
only if G has even size. It is conjectured that if the minimum number of
odd cycles in a cycle decomposition of an Eulerian graph G with m edges
is a and the maximum number of odd cycles in a cycle decomposition is
c, then for every integer b such that a ≤ b ≤ c and b and m are of the
same parity, then there is a cycle decomposition of G with exactly b odd
cycles. This conjecture is verified for small powers of cycles and Eulerian
complete tripartite graphs.
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1 A Circuit Decomposition Problem

It is well-known that if G is a connected graph containing 2k odd vertices for some
positive integer k, then G can be decomposed into k open trails but no fewer. In
1973, the following [8] was proved.

Theorem 1.1 If G is a connected graph containing 2k odd vertices for some positive
integer k, then G can be decomposed into k open trails, at most one of which has odd
length.

A generalization of Theorem 1.1 was established in [4].

Theorem 1.2 Let G be a connected graph of size m containing 2k odd vertices
(k ≥ 1). Among all decompositions of G into k open trails, let s be the maximum
number of such trails of odd length.

(a) If m is even, then s is even and for every even integer a such that 0 ≤ a ≤ s,
there exists a decomposition of G into k open trails, exactly a of which have
odd length.

(b) If m is odd, then s is odd and for every odd integer b such that 1 ≤ b ≤ s,
there exists a decomposition of G into k open trails, exactly b of which have
odd length.

The distance between two subgraphs F and H in a connected graph G is

d(F, H) = min{d(u, v) : u ∈ V (F ), v ∈ V (H)}.

Theorem 1.3 For an Eulerian graph G of size m, let s be the maximum number
of circuits of odd length in a circuit decomposition of G.

(a) If m is even, then s is even and for every even integer a such that 0 ≤ a ≤ s,
there exists a circuit decomposition of G, exactly a of which have odd length.

(b) If m is odd, then s is odd and for every odd integer b such that 1 ≤ b ≤ s, there
exists a circuit decomposition of G, exactly b of which have odd length.

Proof. We only verify (a) because the proof of (b) is similar. Since the size of G
is even, s is even. If s = 0, then the result is true trivially. Thus we may assume
that s ≥ 2. It suffices to show that there exists a circuit decomposition of G, exactly
s − 2 of which have odd length. Among all circuit decompositions of G, consider
those circuit decompositions containing exactly s circuits of odd length; and, among
those, consider one, say D = {C1, C2, . . . , Ck} for some positive integer k, where the
distance between some pair Ci, Cj of circuits of odd length is minimum. We claim
that this minimum distance is 0. Assume that this is not the case. Suppose that P
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is a path of minimum length connecting a vertex wi in Ci and a vertex wj in Cj , and
let wix be the edge of P incident with wi (where it is possible that x = wj). Then
wix belongs to a circuit Cp among C1, C2, . . . , Ck. Necessarily, Cp has even length,
for otherwise, the distance between Ci and Cp is 0, producing a contradiction. Since
Ci and Cp have the vertex wi in common, Ci and Cp may be replaced by the circuit
C ′ consisting of Ci and Cp (that is, E(C ′) = E(Ci)∪E(Cp)) and C ′ has odd length.
However then, the circuit decomposition D′ = ({C1, C2, . . . , Ck} − {Ci, Cp}) ∪ {C ′}
has exactly s circuits of odd length and the distance between Cj and C ′ in D′ is
smaller than the distance between Ci and Cj in D, which contradicts the defining
property of D. Thus, as claimed, the distance between Ci and Cj is 0 and so Ci and
Cj have a vertex in common. Hence the circuit C∗ consisting of Ci and Cj has even
length. Then ({C1, C2, . . . , Ck} − {Ci, Cj}) ∪ {C∗} is a circuit decomposition of G,
exactly s − 2 of which have odd length.

2 The Eulerian Cycle Decomposition Conjecture

The earliest and a major influential book on topology was written by Veblen [17]
in 1922 and titled Analysis Situs, with a second edition in 1931. The first chapter
of this book was titled Linear Graphs and dealt with graph theory. In fact, both
editions preceded the first book entirely devoted to graph theory, written by König
[14] in 1936. In 1736 Euler [9] wrote a paper containing a solution of the famous
Königsberg Bridge Problem. This paper essentially contained a characterization of
Eulerian graphs as well, although the proof was only completed in 1873 in a paper by
Hierholzer [12]. In 1912 Veblen [16] himself obtained a characterization of Eulerian
graphs.

Theorem 2.1 (Veblen’s Theorem) A nontrivial connected graph G is Eulerian
if and only if G has a decomposition into cycles.

When it comes to cycle decompositions, the Eulerian graphs that have received
the most attention are the complete graphs of odd order and, to a lesser degree, the
complete graphs of even order in which (the edges of) a 1-factor has been removed.
In 1847, Kirkman [13] proved that the complete graph Kn, where n ≥ 3 is odd,
can be decomposed into 3-cycles if and only if 3 | (

n
2

)
. At the other extreme, in

1890 Walecki (see [2]) proved that the complete graph Kn, where n ≥ 3 is odd, can
always be decomposed into n-cycles. Consequently, when n ≥ 3 is an odd integer,
the complete graph Kn can be decomposed into m-cycles for m = 3 or m = n if
and only if m | (

n
2

)
. In 2001 Alspach and Gavlas [3] proved for every odd integer

n ≥ 3 and odd integer m with 3 < m < n that Kn can be decomposed into m-cycles
if and only if m | (

n
2

)
. In addition, they proved that for every even integer n ≥ 4

and even integer m with 3 < m < n and for a 1-factor I of Kn, the graph Kn − I
can be decomposed into m-cycles if and only if m | (n2 − 2n)/2. In 2002, Šajna [15]
proved the remaining cases for m-cycle decompositions of Kn and Kn − I, namely
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the cases when m and n are of opposite parity. These results verify special cases of
a conjecture made by Alspach [1] in 1981.

Alspach’s Conjecture Suppose that n ≥ 3 is an odd integer and that m1, m2, . . . , mt

are integers such that 3 ≤ mi ≤ n for each i (1 ≤ i ≤ t) and m1+m2+· · ·+mt =
(

n
2

)
.

Then Kn can be decomposed into the cycles Cm1 , Cm2, . . . , Cmt. Furthermore, for
every even integer m ≥ 4 and integers m1, m2, . . . , mt such that 3 ≤ mi ≤ n for each
i (1 ≤ i ≤ t) with m1 + m2 + · · · + mt = (n2 − 2n)/2, there is a decomposition of
Kn − I for a 1-factor I of Kn into the cycles Cm1 , Cm2, . . . , Cmt.

Following many years of attempting to establish Alspach’s Conjecture by many
mathematicians, the conjecture was verified in its entirety by Bryant, Horsley and
Pettersson [6] in 2012. We now state another conjecture involving cycle decomposi-
tions of Eulerian graphs.

The Eulerian Cycle Decomposition Conjecture (ECDC) Let G be an Eu-
lerian graph of size m, where a is the minimum number of odd cycles in a cycle
decomposition of G and c is the maximum number of odd cycles in a cycle decompo-
sition of G. For every integer b such that a ≤ b ≤ c and b and m are of the same
parity, there exists a cycle decomposition of G containing exactly b odd cycles.

In the case of the complete graphs of odd order or complete graphs of even order
in which a 1-factor has been removed, the maximum number of odd cycles in a
cycle decomposition of each such graph is given below. This follows from results of
Kirkman [13], Guy [10] and Heinrich, Horák and Rosa [11].

Corollary 2.2 (a) For an odd integer n ≥ 3, the maximum number s of odd cycles
in a cycle decomposition of Kn is

s =

{
n(n−1)

6
if n ≡ 1, 3 (mod 6)

n(n−1)−8
6

if n ≡ 5 (mod 6).

(b) For an even integer n ≥ 4 and a 1-factor I of Kn, the maximum number s of
odd cycles in a cycle decomposition of Kn − I is

s =

{
n(n−2)

6
if n ≡ 0, 2 (mod 6)

n(n−2)−8
6

if n ≡ 4 (mod 6).

For complete graphs Kn of odd order n ≥ 3 and graphs Kn−I where n ≥ 4 is even
and I is a 1-factor of Kn, the ECDC is then a special case of Alspach’s Conjecture
and therefore is satisfied for these two classes of graphs.

3 The ECDC and Small Powers of Cycles

In a cycle decomposition of an Eulerian graph G, the number of odd cycles in the
decomposition and the size of G are of the same parity. One class of Eulerian graphs
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consists of the squares C2
n of cycles Cn where n ≥ 5, and more generally the kth power

Ck
n of Cn for k ≤ �n/2	, which is a special class of circulant graphs. For each integer

n ≥ 3 and integers n1, n2, . . . , nk (k ≥ 1) such that 1 ≤ n1 < n2 < . . . < nk ≤ �n/2	,
the circulant graph 〈{n1, n2, . . . , nk}〉n is that graph with n vertices v1, v2, . . . , vn

such that vi is adjacent to vi±nj (mod n) for each j with 1 ≤ j ≤ k. The integers
ni (1 ≤ i ≤ k) are called the jump sizes of the circulant. The circulant graph
〈{1, 2, . . . , k}〉n is the kth power of Cn and is denoted by Ck

n and in particular, if
k = 1, then 〈{1}〉n = Cn. The circulant 〈{n1, n2, . . . , nk}〉n is 2k-regular if nk < n/2
and (2k − 1)-regular if nk = n/2 where then n is even. Thus circulant graphs are
symmetric classes of regular graphs.

Let G be an Eulerian graph of order n and size m. For a sequence m1, m2, . . . , mt

of positive integers, an (m1, m2, . . . , mt)-cycle decomposition of G is a decomposition
{G1, G2, . . . , Gt} where Gi is an mi-cycle for i = 1, 2, . . . , t. Obviously, necessary
conditions for the existence of an (m1, m2, . . . , mt)-cycle decomposition of G are that
3 ≤ mi ≤ n for i = 1, 2, . . . , t and m1 +m2 + · · ·+mt = m. In [7] Bryant and Martin
proved the following results for cycle decompositions of C2

n and C3
n.

Theorem 3.1 Let n ≥ 5 be an integer and let m1, m2, . . . , mt be a sequence of
integers with mi ≥ 3 for i = 1, 2, . . . , t. Then C2

n = 〈{1, 2}〉n has an (m1, m2, . . . , mt)-
cycle decomposition if and only if each of the following conditions hold:

(1) mi ≤ n for i = 1, 2, . . . , t;

(2) m1 + m2 + · · · + mt = 2n; and

(3) either

(i) t = 3 and n
2
≤ m1, m2, m3 ≤ n or

(ii) there exists a k ∈ {1, 2, . . . , t} such that mk ≥ n − t + 1.

Theorem 3.2 Let n ≥ 7 be an integer and let m1, m2, . . . , mt be any sequence of
integers with 3 ≤ mi ≤ 5 for i = 1, 2, . . . , t with m1 + m2 + · · · + mt = 3n. Then
C3

n = 〈{1, 2, 3}〉n has an (m1, m2, . . . , mt)-cycle decomposition.

For k = 2, 3, 4, we now determine the maximum number of odd cycles in a cycle
decomposition of Ck

n for n ≥ 2k + 1 and show that the ECDC holds in each case. In
a (m1, m2, . . . , mt)-cycle decomposition of a graph G, if mi = mi+1 = · · · = mk, we
will write mk−i+1

i for mi, mi+1, . . . , mk in (m1, m2, . . . , mt).

Theorem 3.3 For every integer n ≥ 5, the graph C2
n satisfies the ECDC.

Proof. Let n ≥ 5 be an integer. By Theorem 3.1, the following cycle decomposi-
tions of C2

n exist:

• an (n
2
, n

2
, n)-cycle decomposition if n ≡ 0 (mod 4);
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• a (4(n+3)/4, n − 3)-cycle decomposition if n ≡ 1 (mod 4);

• an (n
2

+ 1, n
2

+ 1, n − 2)-cycle decomposition if n ≡ 2 (mod 4);

• a (4(n+1)/4, n − 1)-cycle decomposition if n ≡ 3 (mod 4).

Next, let s(n) be the maximum number of odd cycles in a cycle decomposition of
C2

n. Since C2
n has 2n edges, it follows that s(n) must be even. By Theorem 3.1, the

following cycle decompositions of C2
n with exactly 2�n+2

4
	 odd cycles exist:

• a (3n/2, n
2
)-cycle decomposition if n is even;

• a (3(n−1)/2, n+3
2

)-cycle decomposition if n is odd.

Hence, s(n) ≥ 2�n+2
4
	. It remains to show that s(n) ≤ 2�n+2

4
	. First note that if

C2
n has an (m1, m2, . . . , mt)-cycle decomposition, then, by Theorem 3.1,

3(t − 1) + n − t + 1 ≤ m1 + m2 + · · · + mt = 2n

so that t ≤ n
2

+ 1, or in fact, t ≤ �n
2

+ 1	. Thus, s(n) ≤ �n
2

+ 1	. Note that
2�n+2

4
	 = �n

2
+ 1	 if n ≡ 2, 3 (mod 4), and hence s(n) = 2�n+2

4
	 for n ≡ 2, 3

(mod 4). If n ≡ 0, 1 (mod 4), then �n
2

+ 1	 is odd and thus, since s(n) must be
even, it follows that s(n) ≤ �n

2
+ 1	 − 1 = 2�n+2

4
	. Hence, s(n) ≤ 2�n+2

4
	 if n ≡ 0, 1

(mod 4) and therefore s(n) = 2�n+2
4
	 for n ≡ 0, 1 (mod 4) as well.

It remains to find cycle decompositions of C2
n with exactly r odd cycles for each

even integer r with 2 ≤ r ≤ 2�n+2
4
	 − 2. Let r = 2a for some positive integer a,

where then 1 ≤ a ≤ n−2
4

and n ≥ 4a + 2.

First, let n = 4a + 2 for some positive integer a. By Theorem 3.1, there is a
(32a, 2a+4)-cycle decomposition of C2

n since 2a+4 ≥ n−(2a+1)+1 = n−2a = 2a+2.
Next, assume that 4a + 3 ≤ n ≤ 6a + 4. Then 2n − 6a − 4 ≥ n − (2a + 2) + 1 and
2n − 6a − 4 ≤ n. Thus, by Theorem 3.1, there is a (32a, 4, 2n − 6a − 4)-cycle
decomposition of C2

n.

Finally, assume that n ≥ 6a + 5. Let n = 6a + � for some integer � ≥ 5 and let
b = ��/2
. Then n ≤ 6a + 2b and so 2n − 6a − 2b ≤ n. It follows by Theorem 3.1
that there is a (32a, 2b, 2n − 6a − 2b)-cycle decomposition of C2

n.

Theorem 3.4 For every integer n ≥ 7, the graph C3
n satisfies the ECDC.

Proof. Let n ≥ 7 be an integer. By Theorem 3.2, C3
n has a (3n)-cycle decomposition

and so the maximum number of odd cycles in a cycle decomposition of C3
n is n. It

remains to show that for each integer r with 0 ≤ r ≤ n such that r and 3n are of the
same parity, there is a cycle decomposition of C3

n having exactly r odd cycles.

First suppose that n is even. Then n = 2� for some integer � ≥ 4. Let r = 2a
for some nonnegative integer a for which a ≤ �. First, suppose that � − a is even,
say � − a = 2p for some nonnegative integer p. Then by Theorem 3.2, C3

n has an
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(32a, 43p)-cycle decomposition since 3(2a) + 4(3p) = 3n. Next, suppose that � − a is
odd, say � − a = 2p + 1 for some nonnegative integer p. Then by Theorem 3.2, C3

n

has an (32a−1, 43p+1, 5)-cycle decomposition since 3(2a − 1) + 4(3p + 1) + 5 = 3n.

Next suppose that n is odd. Then n = 2�+1 for some integer � ≥ 3. Let r = 2a+1
for some nonnegative integer a where a ≤ �. First, if � − a is even, say � − a = 2p
for some nonnegative integer p, then by Theorem 3.2, C3

n has an (32a+1, 43p)-cycle
decomposition since 3(2a + 1) + 4(3p) = 3n. Next, if �− a is odd, say �− a = 2p + 1
for some nonnegative integer p, then by Theorem 3.2, C3

n has an (32a, 43p+1, 5)-cycle
decomposition since 3(2a) + 4(3p + 1) + 5 = 3n.

Thus, the ECDC holds for C2
n when n ≥ 5 and for C3

n when n ≥ 7. We conclude
this section by showing that the ECDC holds as well for C4

n for n ≥ 9. For simplicity,
we express a cycle (u1, u2, . . . , uk, u1), k ≥ 3, as (u1, u2, . . . , uk) in the proof of the
following theorem.

Theorem 3.5 For every integer n ≥ 9, the graph C4
n satisfies the ECDC.

Proof. Let n ≥ 9 be an integer and recall that C4
n = 〈{1, 2, 3, 4}〉n with vertex set

{v1, v2, . . . , vn}. Consider the set C of 4-cycles defined by

C = {(vi, vi+1, vi−1, vi+3) | i = 0, 1, . . . , n − 1}

where all arithmetic is done modulo n. Since C is a decomposition of C4
n into 4-cycles,

there exists a cycle decomposition of C4
n with no odd cycles. Note also that in any

cycle decomposition of C4
n, the number of odd cycles must be even since C4

n has an
even number of edges.

Next, for an integer j with 0 ≤ j ≤ n − 3, consider the subgraph Hj of C4
n

consisting of three consecutive 4-cycles from C, starting at j, that is,

Hj = {(vi, vi+1, vi−1, vi+3) | i = j, j + 1, j + 2}.

Note that Hj can also be decomposed into four 3-cycles, as given by the collection

{(vj, vj+1, vj+4), (vj+1, vj+2, vj+5), (vj, vj+2, vj+3), (vj+1, vj+3, vj−1)},

or decomposed into two 3-cycles and a 6-cycle, as given by the collection

{(vj, vj+1, vj+2), (vj+1, vj−1, vj+3), (vj, vj+4, vj+1, vj+5, vj+2, vj+3)}.

We now consider two cases, according to whether n is congruent to 0, 1 modulo 3
or to 2 modulo 3.

Case 1. Let n ≡ 0, 1 (mod 3). Assume first that n ≡ 0 (mod 3), say n = 3k
for some positive integer k. Then, since C4

n has 4n edges and 3 | n, the maximum
possible number of odd cycles in a cycle decomposition of C4

n is 4n/3 = 4k. If
n ≡ 1 (mod 3), then n = 3k + 1 for some positive integer k. In this case, C4

n has



G. CHARTRAND ET AL. /AUSTRALAS. J. COMBIN. 58 (1) (2014), 48–59 55

4n = 12k + 4 edges and since a cycle must have at least 3 edges, it follows that the
maximum possible number of odd cycles in a cycle decomposition of C4

n is also 4k.
Now, let r be an even integer with 0 ≤ r ≤ 4k. We show that there exists a cycle
decomposition of C4

n having exactly r odd cycles. Since the case r = 0 has already
been handled, we may assume that r > 0.

First, suppose that r ≡ 0 (mod 4). Then r = 4� for some integer � with 0 <
r ≤ k. For integer j and i, let Aj = (vj , vj+1, vj+4), Bj = (vj , vj+2, vj+3), Dj =
(vj+1, vj+3, vj−1) and Fi = (vi, vi+1, vi−1, vi+3). Then,

{Aj, Aj+1, Bj, Dj : j = 0, 3, 6, . . . , 3(� − 1)} ∪ {Fi : i = 3�, 3� + 1, . . . , n − 1}
is an (34�, 4n−3�)-cycle decomposition of C4

n.

Next, suppose that r ≡ 2 (mod 4). Then r = 4� + 2 for some integer � with
0 < � ≤ k. Then,

{(v0, v1, v2), (v1, vn−1, v3), (v0, v4, v1, v5, v2, v3)} ∪
{Aj, Aj+1, Bj, Dj : j = 3, 6, 9, . . . , 3�} ∪ {Fi : i = 3� + 3, 3� + 4, . . . , n − 1}

where the second set is empty if � = 0, is an (34�+2, 4n−(3�+3), 6)-cycle decomposition
of C4

n.

Case 2. Let n ≡ 2 (mod 3). Then n = 3k + 2 for some positive integer k.
Since C4

n has 4n = 12k + 8 edges, C4
n could possibly be decomposed into 4k + 1

3-cycles and one 5-cycle. Hence, the maximum possible number of odd cycles in a
cycle decomposition of C4

n is 4k + 2 = 4�n/3	 + 1. We show that there exists a
cycle decomposition of C4

n with exactly r odd cycles for every even integer r with
0 < r ≤ 4k + 2 (as the case r = 0 has already been settled). As in the previous case,
if r ≡ 0 (mod 4), say r = 4� for some positive integer �, then

{Aj, Aj+1, Bj, Dj : j = 0, 3, 6, . . . , 3(� − 1)} ∪ {Fi : i = 3�, 3� + 1, . . . , n − 1}
is an (34�, 4n−3�)-cycle decomposition of C4

n.

Now suppose that r ≡ 2 (mod 4), say r = 4� + 2 for some nonnegative integer �.
Then

{(v0, v1, v2), (v0, v4, v1, vn−1, v3)} ∪ {Aj, Aj+1, Bj, Dj : j = 2, 5, 8, . . . , 3� − 1} ∪
{Fi : i = 3� + 2, 3� + 3, . . . , n − 1},

where the second set is empty if � = 0, is an (34�+1, 4n−(3�+2), 5)-cycle decomposition
of C4

n.

For an odd integer n = 2d + 1 ≥ 3, we have Cd
n = Kn. Therefore, the maximum

number of odd cycles in a cycle decomposition of Ck
n, 1 ≤ k ≤ d, is known for

k ∈ {1, 2, 3, 4, d}. For an even integer n = 2d ≥ 4, we have Cd−1
n = Kn − I, where

I is a 1-factor in Kn. Therefore, the maximum number of odd cycles in a cycle
decomposition of Ck

n, 1 ≤ k ≤ d−1, is known for k ∈ {1, 2, 3, 4, d−1}. Furthermore,
we have shown that the ECDC is true for each of these graphs.
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4 The ECDC and Complete Tripartite Graphs

We now turn to a class of Eulerian graphs that are not necessarily regular. The
complete tripartite graph Kr,s,t, where 1 ≤ r ≤ s ≤ t, is Eulerian if and only if
r, s, t are all even or all odd. Billington [5] investigated cycle decompositions of
these graphs in which every cycle has length 3 or 4. In particular, she obtained the
following theorem.

Theorem 4.1 The complete tripartite graph Kr,s,t with r ≤ s ≤ t can be decomposed
into α cycles of length 3 and β cycles of length 4 if and only if

(i) r, s, t are all even or all odd;

(ii) if either r is even or if r is odd and s − r ≡ 0 (mod 4), then α ≤ rs;

(iii) if r is odd and s − r ≡ 2 (mod 4), then α ≤ rs − 2;

(iv) 3α + 4β = rs + rt + st.

Note that Theorem 4.1 does not show that the complete tripartite graph Kr,s,t

satisfies the ECDC. Nevertheless the ECDC does hold for this class of graphs.

Theorem 4.2 The complete tripartite graph Kr,s,t where r, s, t are all even or all
odd satisfies the ECDC.

Proof. Let G = Kr,s,t where r ≤ s ≤ t and r, s, t are either all even or all odd.
Since every odd cycle in G must contain at least one vertex from each partite set of
G, the maximum number of odd cycles in any cycle decomposition of G is at most rs.

Let the partite sets of G be denoted by U , V and W , where U = {u1, u2, . . . , ur},
V = {v1, v2, . . . , vs} and W = {w1, w2, . . . , wt}. Consider a cycle decomposition of
G that contains the rs 3-cycles

Ci,j = (ui, vj, wj+i−1) , 1 ≤ i ≤ r, 1 ≤ j ≤ s,

where j + i − 1 ∈ {1, 2, . . . , s} and all arithmetic is performed modulo s.

These rs 3-cycles use all edges incident with the vertices in U . Since the only
edges of G not used in these 3-cycles are s2 − rs edges in Ks,s and those edges in
Kr,t−s and Ks,t−s, where each of the subgraphs induced by these edges is Eulerian
and bipartite, this results in a cycle decomposition of G containing exactly rs odd
cycles. Therefore, the maximum number of odd cycles in any cycle decomposition of
G is rs.

This also says that if Kr,s,s has a cycle decomposition with exactly k odd cycles,
then so does Kr,s,t for every integer t > s (for which s and t have the same parity).
Thus, in what follows, we may assume s = t.
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Suppose now that r and s are even, say r = 2a, and s = 2b, where a ≤ b. Let
Ui = {u2i−1, u2i} for 1 ≤ i ≤ a, and Vi = {v2i−1, v2i} and Wi = {w2i−1, w2i} for 1 ≤
i ≤ b. For 1 ≤ i ≤ a and 1 ≤ j ≤ b, let Gi,j be the induced subgraph of G isomorphic
to K2,2,2 and having partite sets Ui, Vj , Wj+(i−1), where j + i − 1 ∈ {1, 2, . . . , s} and
all arithmetic is performed modulo s.

Since the graph K2,2,2 has a (4, 4, 4)-, a (3, 3, 6)-, and a (3, 3, 3, 3)-cycle decompo-
sition, it follows that K2,2,2 has a cycle decomposition into 0, 2 or 4 odd cycles.

Now Kr,s,s can be decomposed into the subgraphs Gi,j if r = s or into the sub-
graphs Gi,j together with an Eulerian subgraph of Ks,s of size s2 − rs if s > r. Since
Ks,s is bipartite, the only odd cycles in the decomposition are those obtained from
the subgraphs Gi,j. Since each Gi,j can be decomposed into 0, 2 or 4 odd cycles, Kr,s,s

can be decomposed into any even number k of odd cycles, where 0 ≤ k ≤ 4(ab) = rs.

Suppose now that r and s are odd, say r = 2a+1 and s = 2b+1 for nonnegative
integers a and b with a ≤ b. In this case, Kr,s,s has an odd number of edges and thus
in any cycle decomposition of Kr,s,s, the number of odd cycles must be odd. Now let
the partite sets of Kr,s,s be denoted by U , V and W , where U = {u0, u1, . . . , u2a},
V = {v0, v1, . . . , v2b} and W = {w0, w1, . . . , w2b}.

As before, let Ui = {u2i−1, u2i} for 1 ≤ i ≤ a, and Vi = {v2i−1, v2i} and
Wi = {w2i−1, w2i} for 1 ≤ i ≤ b. Also, for 1 ≤ i ≤ a and 1 ≤ j ≤ b, let
Gi,j be the induced subgraph of Kr,s,s isomorphic to K2,2,2 and having partite sets
Ui, Vj, Wj+(i−1), where all arithmetic is performed modulo s. Let Hi,j be the in-
duced subgraph of Kr,s,s having partite sets Vj and Wj+(i−1) and note that Hi,j is
a 4-cycle. Now each Gi,j decomposes into 0, 2 or 4 odd cycles. Note also that
{(u0, v2j−1, w0, v2j), (u0, w2j−1, v0, w2j) | 1 ≤ j ≤ b} and {Hi,j | a + 1 ≤ i ≤ b, 1 ≤
j ≤ b} is a collection of 4-cycles that together with {Gi,j | 1 ≤ i ≤ a, 1 ≤ j ≤ b} and
the 3-cycle (u0, v0, w0) is a decomposition of Kr,s,s. Decomposing each Gi,j into the
required number of odd cycles will yield a cycle decomposition of Kr,s,s with exactly
k odd cycles for each odd integer k with 1 ≤ k ≤ 4ab + 1 = (r − 1)(s − 1) + 1.

It remains to show that for every odd integer k with (r − 1)(s− 1) + 1 < k < rs,
there exists a cycle decomposition of Kr,s,s with exactly k odd cycles. First, observe
that the induced subgraph of Kr,s,s with vertex set V ∪W is isomorphic to Ks,s and
has a 1-factorization given by {Fj | 0 ≤ j ≤ s − 1} where Fj = {{vm, wm+j} | 0 ≤
m ≤ s − 1}.

Note that (r − 1)(s − 1) + 1 = (r − 2)s + (s − r + 2) and so k > (r − 2)s. For
fixed integers i and j with 0 ≤ i ≤ r − 1 and 0 ≤ j ≤ s − 1, the graph Si,j formed
by joining ui to the vertices of Fj can be decomposed into s 3-cycles. Thus, the set
{Si,i | 2 ≤ i ≤ r − 1} will give rise to (r − 2)s 3-cycles. Let � = k − (r − 2)s and
note that � ≥ 2 is even, say � = 2t for some positive integer t. Consider the graph H
formed by S0,0 ∪ S1,1, which is the join of two isolated vertices {u0, u1} to the cycle
(w0, v0, w1, v1, . . . , ws−1, vs−1) of length 2s. The cycle decomposition of H given by
the collection of � − 1 3-cycles

{(u0, wi, vi), (u1, vi, wi+1) | 0 ≤ i ≤ t − 2} ∪ {(u0, wt−1, vt−1)},
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the (2s − � + 1)-cycle

(u1, vt−1, wt, vt, wt+1, vt+1, . . . , ws, vs, w0, u1),

and the collection of 4-cycles

{(u0, wi, u1, vi) | t ≤ i ≤ s)}

is a cycle decomposition of H with � odd cycles. Since the remaining s− r 1-factors
{Fi | r ≤ i ≤ s − 1} when taken two at a time form 2-factors of a bipartite graph
and hence must consist of even cycles, we have a cycle decomposition of Kr,s,s with
exactly k odd cycles for each odd integer k with (r − 1)(s − 1) + 1 < k < rs.
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