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Abstract

A 2-rainbow dominating function of a graph G is a function g that assigns
to each vertex a set of colors chosen from the set {1, 2} so that for each
vertex with g(v) = ∅ we have

⋃
u∈N(v) g(u) = {1, 2}. The minimum of

g(V (G)) =
∑

v∈V (G) |g(v)| over all such functions is called the 2-rainbow

domination number γ2r(G). A Roman dominating function on a graph
G is a function f : V (G) → {0, 1, 2} satisfying the condition that every
vertex u with f(u) = 0 is adjacent to at least one vertex v of G for
which f(v) = 2. The minimum of f(V (G)) =

∑
u∈V (G) f(u) over all such

functions is called the Roman domination number γR(G). We first prove
that γR(G)/γr2(G) ≤ 3/2 for every graph G and we improve this ratio
for all trees. Then we present some bounds for the 2-rainbow domination
number in graphs. In particular, we give an upper bound on the 2-
rainbow domination number for every tree of order at least three in terms
of the number of vertices, stems and leaves of the tree.
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1 Introduction

We consider finite, undirected, and simple graphs G with vertex set V = V (G) and
edge set E = E(G). The number of vertices |V (G)| of a graph G is called the order

of G and is denoted by n = n(G). The open neighborhood of a vertex v ∈ V is
N(v) = NG(v) = {u ∈ V | uv ∈ E} and the degree of v, denoted by dG(v), is the
cardinality of its open neighborhood. A vertex of degree one is called a leaf, and its
neighbor is called a stem. If v is a stem of G, then Lv will denote the set of the leaves
attached at v.

A set D ⊆ V (G) is a dominating set if every vertex of V (G) − D has a neighbor
in D. The domination number γ(G) is the minimum cardinality of a dominating set
of G. The concept of domination in graphs and its many variations are now well
studied in graph theory (see for example [7]). Here we will focus on two variants called
2-rainbow domination and Roman domination introduced in [1] and [5], respectively.

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G if
every vertex u of G for which f(u) = 0 is adjacent to at least one vertex v of G for
which f(v) = 2. The weight of an RDF is the value f(V (G)) =

∑
u∈V (G) f(u). The

Roman domination number γR(G) is the minimum weight of an RDF on G.

Let f be a function that assigns to each vertex a set of colors chosen from the
set {1, 2}; that is f : V (G) → P({1, 2}). If for each vertex v ∈ V (G) such that

f(v) = ∅, we have
⋃

u∈N(v)

f(u) = {1, 2}, then f is called a 2-rainbow dominating

function (2RDF) of G. The weight of a 2RDF f is defined as w(f) =
∑

v∈V (G)

|f(v)|.

The minimum weight of a 2-rainbow dominating function is called the 2-rainbow

domination number of G, denoted by γr2(G). We say that a function f is a γr2(G)-
function if it is a 2RDF and w(f) = γr2(G). Some papers on rainbow domination
can be found, for example, in [2, 4, 8] and elsewhere.

In this paper, we determine a sharp upper bound on the ratio of the Roman
domination and 2-rainbow domination numbers for every graph and we improve it
for the class of trees. Then we present some bounds for the 2-rainbow domination
number in graphs.

2 Main Results

We know from [10] that γr2(G)/γR(G) ≤ 1 for every graph G. We can wonder
whether there exists an upper bound for the ratio γR(G)/γr2(G) for every graph G.
The answer is positive as shown by the following result.

Theorem 1 For any graph G,
γR(G)
γr2(G)

≤ 3
2
.

Proof. Let f be a γr2(G)-function, and let Ai be the set of all vertices u for which
i ∈ f(u), for i = 1, 2. Clearly if a vertex of G is assigned the set {1, 2}, then A1∩A2 6=
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∅. Also γr2(G) = |A1| + |A2| . Assume, without loss of generality, that |A1| ≤ |A2|.

Then |A1| ≤
|A1|+|A2|

2
= γr2(G)

2
. Let g : V (G) −→ {0, 1, 2} be defined by g(x) = 0 if

f(x) = ∅, g(x) = 1 if f(x) = {2}, and g(x) = 2 if 1 ∈ f(x). Since f is a 2RDF for
G, we obtain that g is an RDF for G, implying that γR(G) ≤ w(g) = 2|A1| + |A2|.
Consequently,

γR(G) ≤ 2|A1| + |A2| = |A1| + |A1| + |A2| ≤
3

2
γr2(G).

To see the sharpness of the ratio in Theorem 1, we form the graph Gk from (k−1)
vertices x1, x2, ..., xk−1 and k disjoint copies of a cycle C8 (where yi is a vertex of the
ith copy of C8) by adding edges xiyi and xiyi+1 for every i with 1 ≤ i ≤ k − 1.

Clearly, γR(Gk) = 6k, γr2(Gk) = 4k, and thus γR(C8)
γr2(C8)

= 3
2
.

Before providing an improvement of the ratio γR/γr2 for the class of trees, we give
a result that will be useful for the next. If a tree T is a subdivision of a nontrivial tree
T ′, then we say that T is a subdivided tree, and the n(T ′) − 1 new vertices resulting
from the subdivision of the edges of T ′ are called subdivision vertices. Note that a
subdivided tree has an odd order at least three and at least one subdivision vertex.
We also note that every stem in a subdivided tree is a subdivision vertex and has
degree two. The corona graph of a graph G is the graph constructed from a copy of
G, where for each vertex v ∈ V (G), a new vertex v′ and the edge vv′ are added.

Lemma 2 If T is a subdivided tree, then γR(T ) ≤ 2(|V (T )|+1)
3

.

Proof. We use an induction on the order n of T. Clearly n ≥ 3 and the result holds
if n = 3. Let n ≥ 5 and assume that every subdivided tree T ′ of order n′ with n′ < n
satisfies γR(T ′) ≤ 2(n′+1)

3
. Let T be a subdivided tree of order n. Note that T has an

even diameter at least four.

Now consider a diametrical path u0-u1-u2-...-udiam(T ) chosen to maximize the de-
gree of u2. Note that ui is a subdivision vertex for every i odd, and so for such a
vertex dT (ui) = 2.

Let us first assume that dT (u2) ≥ 3. If diam(T ) = 4, then T is the subdivision

tree of a star K1,t (t ≥ 3). In that case T has order 2t+1 and γR(T ) = 2+ t ≤ 2(2t+2)
3

.
Therefore the result is valid. Thus we can assume that diam(T ) ≥ 6. Consider the
subtrees Tu3

and Tu4
obtained from T by deleting the edge u3u4, where u3 ∈ V (Tu3

).
Clearly Tu3

is a corona of a star, where n(Tu3
) = 2dT (u2) and γR(Tu3

) = 1 + dT (u2).
Also since Tu4

is a subdivided tree of order n(Tu4
) ≥ 3, by induction on Tu4

we have

γR(Tu4
) ≤

2(|V (Tu4
)|+1)

3
. Now it is evident that γR(T ) ≤ γR(Tu4

) + γR(Tu3
), and by a

simple calculation we obtain γR(T ) ≤ 2(|V (T )|+1)
3

.

Assume now that dT (u2) = 2, and let Tu5
and Tu6

be the subtrees obtained from T
by deleting the edge u5u6, where u5 ∈ V (Tu5

). Since dT (u2) = 2, by our choice of the
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diametral path, every vertex of Tu5
except possibly u4 has degree one or two. Also

every leaf in Tu5
except u5 is at distance two or four from u4. So let k and r be the

number of leaves in Tu5
at distance four and two from u4, respectively. Then Tu5

has
order 4k+2r+2, where k ≥ 1 and r ≥ 0; and so γR(Tu5

) = 2k+2+r. Now if diam(T ) =

6, then Tu6
is a tree of order |{u6}| . Hence γR(T ) = 2k + 2 + r + 1 ≤ 2(|V (T )|+1)

3
, and

the result is valid. So we may assume that diam(T ) ≥ 8, that is Tu6
is a subdivided

tree of order n(Tu3
) ≥ 3. By induction on Tu6

we have γR(Tu6
) ≤

2(|V (Tu6
)|+1)

3
. Clearly,

γR(T ) ≤ γR(Tu5
)+γR(Tu6

) and by a simple calculation we obtain γR(T ) ≤ 2(|V (T )|+1)
3

.

Notice that the bound of Lemma 2 is sharp for a path P5.

Theorem 3 For every tree T, γR(T )
γr2(T )

≤ 4
3
.

Proof. We use an induction on the order n of T. Clearly if n ∈ {1, 2, 3}, then

γR(T ) = γr2(T ). Hence γR(T )
γr2(T )

≤ 4
3
, establishing the base cases.

Let n ≥ 4 and assume that every tree T ′ of order n′ with n′ < n satisfies γR(T ′)
γr2(T ′)

≤
4
3
. Let T be a tree of order n. Among all γr2(T )-functions, let f be one for which no

leaf is assigned {1, 2}. One can easily see that such a γr2(T )-function exists. Let V2

be the set of vertices u such that f(u) = {1, 2}, V0 the set of vertices u such that
f(u) = ∅, and V1 = V (T ) − (V2 ∪ V0).

Let a and b be any two adjacent vertices of T such that either f(a) = f(b) = ∅ or
f(a) 6= ∅ and f(b) 6= ∅. Let Ta and Tb be the subtrees obtained from T by removing
the edge ab. Then the restriction of f on V (Ta), denoted by f |V (Ta) is a 2RDF on
Ta and likewise f |V (Tb) for Tb. Hence γr2(Ta) + γr2(Tb) ≤ w(f |V (Ta)) + w(f |V (Tb)) =
γr2(T ). On the other hand, it is evident that γR(T ) ≤ γR(Ta) + γR(Tb). Since each
of Ta and Tb has order less than n, by induction we have 3γR(Ta) ≤ 4γr2(Ta) and
3γR(Tb) ≤ 4γr2(Tb). Combining all these inequalities we obtain:

3γR(T ) ≤ 3γR(Ta) + 3γR(Tb)

≤ 4γr2(Ta) + 4γr2(Tb) ≤ 4γr2(T ).

For the next, we can assume that the set of vertices assigned empty sets (respectively,
non-empty sets) are independent. Now let a be a vertex of V0 such that either
dT (a) ≥ 3 or dT (a) = 2 but having a neighbor in V2. In this case, let b be a neighbor

of a such that
⋃

u∈N(a)

f(u) = {1, 2} in the tree T − ab. It is clear that such a vertex b

exists. Using the same argument to that used above for the tree T − ab we obtain
that 3γR(T ) ≤ 4γr2(T ). Hence every vertex x ∈ V0 has degree at most two. More
precisely, either x is a leaf adjacent to a vertex of V2 or x has degree two and has its
two neighbors in V1.

Suppose now that V2 6= ∅ and let x ∈ V2. According to what it proceeds, all
neighbors of x are leaves and since each Vi, for i = 0, 1, 2 is an independent set, we
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conclude that T is a star of center x. In that case the result holds. Hence we may
assume that V2 = ∅ and so all leaves of T belong to V1, each vertex of V0 has degree
two, V0 and V1 are independent sets. Note that since V2 = ∅, we have γr2(T ) =
|V1|. Thus V0 can be seen as the set of the subdivision vertices resulting from the
subdivision of the edges of some tree T ′ of order n(T ′) = |V1|. Therefore T is a
subdivided tree, where |V0| = n−1

2
and |V1| = n+1

2
= γr2(T ). Now by Lemma 2,

γR(T ) ≤ 2(n+1)
3

and hence γR(T )
γr2(T )

≤ 4
3
.

To see the sharpness of the ratio in Theorem 3, consider the path P5.

We will now turn our attention to the 2-rainbow domination number. Our aim is
to provide an upper bound on the 2-rainbow domination number for the class of trees
improving the one given by Wu and Jafari Rad [9]. Let us first recall the following
two upper bounds that can be found in [9] and [3], respectively.

Theorem 4 (Wu and Jafari Rad [9]) If G is a connected graph of order n ≥ 3,
then γr2(G) ≤ 3n/4.

Theorem 5 (Chambers et al. [3]) If G is a graph of order n ≥ 3, then γR(G) ≤
4n/5.

We also give the following useful observation.

Observation 6 Let v be a stem of degree two in a graph G and u its leaf. Then

there is a γr2(G)-function f such that |f(u)| = 1 and f(v) = ∅.

Proof. Let w be the second neighbor of v in G and let f be a γr2(G)-function.
Clearly if f(u) = ∅, then f(v) = {1, 2}. Hence we can define a γr2(G)-function h on
G such that h(x) = f(x) if x /∈ {u, v, w}, h(v) = ∅, and h(u) and h(w) are assigned
sets so that f(u) ∪ f(w) = {1, 2} with |f(u)| = |f(w)| = 1. Now suppose that
f(u) 6= ∅. Then depending on f(v) and f(w) we can define as previously a γr2(G)-
function h on G such that h(x) = f(x) if x /∈ {u, v, w}, h(v) = ∅, and h(u) and h(w)
are assigned sets so that f(u) ∪ f(w) = {1, 2} and |f(u)| = |f(w)| = 1.

Now we are ready to establish our next result.

Theorem 7 If T is a tree of order n ≥ 3 with ℓ leaves and s stems, then γr2(T ) ≤
(2n + ℓ + s)/4.

Proof. We use an induction on the order n of T. If n = 3, then γr2(T ) = 2 <
(2n + ℓ + s)/4 = 9/4, establishing the base case.

Let n ≥ 4, and assume that every tree T ′ of order n′, where 3 ≤ n′ < n with ℓ′

leaves and s′ stems satisfies γr2(T
′) ≤ (2n′ + ℓ′ + s′)/4. Let T be a tree of order n.
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Since for stars K1,p, we have γr2(T ) = 2 < (2n+ ℓ+ s)/4, we may assume that T has
diameter at least three. Suppose now that T contains two adjacent vertices u, v,
where each of u and v has degree at least three. Let T (u) and T (v) denote the subtrees
of T containing u and v respectively, obtained by removing the edge uv. Let n1, ℓ1, s1

be the order, the number of leaves and stems of T (u), respectively, and likewise let
n2, ℓ2, s2 for T (v). Clearly n1 + n2 = n, and since n1 and n2 ≥ 3, we have ℓ1 + ℓ2 = ℓ,
and s1 + s2 = s. Applying the inductive hypothesis to T (u) and T (v), we have
γr2(T (u)) ≤ (2n1+ℓ1+s1)/4 and γr2(T (v)) ≤ (2n2+ℓ2+s2)/4. Let f1 be a γr2(T (u))-
function and likewise let f2 be a γr2(T (v))-function. We define a 2RDF f on V (T )
by letting f(x) = f1(x) if x ∈ V (T (u)) and f(x) = f2(x) if x ∈ V (T (v)). Clearly f is
a 2RDF of T and so γr2(T ) ≤ w(f1)+w(f2) ≤ (2n1 + ℓ1 + s1)/4+(2n2 + ℓ2 + s2)/4 =
(2n + ℓ + s)/4. Thus from now on we may assume that all neighbors of every vertex
of degree at least three have degree at most two.

Now consider a diametrical path P : u0-u1-u2-...-udiam(T ). Clearly u1 is a stem.
Also we note that if diam(T ) = 3, then 3 ≤ γr2(T ) ≤ 4 and it can be checked easily
that γr2(T ) ≤ (2n + ℓ + s)/4. Hence we can assume that diam(T ) ≥ 4. Consider
the following cases.

Case 1. dT (u1) ≥ 3. Then as assumed previously, dT (u2) = 2. Let T ′ be the tree
resulting from T by removing u1, u2 and all leaves of u1. If n′ = 2, then n ≥ 6, ℓ′ ≥ 3
and s′ = 2, and so γr2(T ) = 4 < (2n + ℓ + s)/4. Thus let n′ ≥ 3. It follows that
n′ = n − 2 − |Lu1

| , ℓ′ ≤ ℓ − 1 and s′ ≤ s. If f ′ is any γr2(T
′)-function, then define a

2RDF f on V (T ) by letting f(x) = f ′(x) if x ∈ V (T ′), f(u1) = {1, 2} and f(x) = ∅
if x ∈ Lu1

∪ {u2}. It follows that γr2(T ) = w(f) ≤ w(f ′) + 2. Using the induction on
T ′, we obtain γr2(T ) ≤ (2n′ + ℓ′ + s′)/4 + 2 < (2n + ℓ + s)/4.

Case 2. dT (u1) = 2. We first assume that dT (u2) ≥ 3. Suppose there are
two vertices u′

1, u
′
0 so that u′

0-u
′
1-u2-...-udiam(T ) is also a diametrical path. According

to Case 1, we can assume that dT (u′
1) = 2. Let T ′ be the tree resulting from T by

removing u1 and u0. Then n′ = n−2 ≥ 3, ℓ′ = ℓ−1 and s′ = s−1. By Observation 6,
there is a γr2(T

′)-function f ′ such that f ′(u′
0) 6= ∅, f ′(u2) 6= ∅ and f ′(u′

1) = ∅, where
f ′(u′

0) ∪ f ′(u2) = {1, 2} and | f ′(u′
0)| = |f ′(u2)| = 1. We define a 2RDF f on V (T )

by letting f(x) = f ′(x) if x ∈ V (T ′), f(u1) = ∅, and f(u0) = {1} or {2} depending
on f(u2) so that f(u0) ∪ f(u2) = {1, 2}. It follows that γr2(T ) ≤ w(f) = w(f ′) + 1.
Using the induction on T ′, we obtain γr2(T ) ≤ (2n′ + ℓ′ + s′)/4 + 2 = (2n + ℓ + s)/4.
Thus we can assume now that P is the unique diametrical path containing u2. Since
dT (u2) ≥ 3, u2 is a stem and dT (u3) = 2. Thus the subtree induced by u1, u2 and their
neighbors is a double star, say S, of order at least 5. Note that γr2(S) = 3. Let T ′ be
the tree obtained from T by removing all vertices of S. Clearly, n′ = n−4−|Lu2

| ≥ 1
since diam(T ) ≥ 4. If n′ = 1 or 2, then γr2(T ) = 4 or 5, respectively, and the
result is valid. So assume that n′ ≥ 3. Clearly, ℓ′ ≤ ℓ − |Lu2

| and s′ ≤ s − 1.
Also γr2(T ) ≤ γr2(T

′) + γr2(S). Applying the inductive hypothesis to T ′, we obtain
γr2(T ) ≤ (2n′ + ℓ′ + s′)/4 + 3 ≤ (2n + ℓ + s)/4.

Finally assume that that dT (u2) = 2. If dT (u3) ≥ 3, then let T ′ be the subtree
obtained from T by removing u0,u1 and u2. Then n′ = n − 3 ≥ 3, ℓ′ = ℓ − 1 and
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s′ = s − 1. We also have γr2(T ) ≤ γr2(T
′) + 2. Applying the inductive hypothesis to

T ′, we obtain the desired result. If dT (u3) = 2, then let T ′ be the obtained tree from
T by removing u0 and u1. Then n′ = n − 2 ≥ 3. If n′ = 3, then T is a path P5 and
the result is valid. So assume that n′ ≥ 4. Then ℓ′ = ℓ and s′ = s. Now let f ′ be a
γr2(T

′)-function satisfying Observation 6. We define a 2RDF f on V (T ) by letting
f(x) = f ′(x) if x ∈ V (T ′), f(u1) = ∅, and f(u0) = {1} or {2} depending on f ′(u2)
so that f(u0) ∪ f(u2) = {1, 2}. It follows that γr2(T ) ≤ γr2(T

′) + 1. Now, applying
the inductive hypothesis to T ′, we obtain the desired result.

Note that since for trees of order n ≥ 3, ℓ + s ≤ n, the upper bound of Theorem
7 improves the upper bound of Theorem 4 for trees.

According to Theorems 3 and 7 we obtain the following upper bound on the
Roman domination in trees that improves in some sense the bound in Theorem 5 for
all trees T with ℓ + s ≤ 2n/5.

Corollary 8 If T is a tree of order n ≥ 3 with ℓ leaves and s stems, then γR(T ) ≤
(2n + ℓ + s)/3.

Proof. By Theorem 3, 3
4
γR(T ) ≤ γr2(T ), and so by Theorem 7 we obtain 3

4
γR(T ) ≤

γr2(T ) ≤ (2n + ℓ + s)/4. Hence γR(T ) ≤ (2n + ℓ + s)/3.

The following result established in [10] relates the 2-rainbow domination number
of a graph G to the domination number and the order of G.

Proposition 9 For any connected graph G of order n ≥ 3, then γr2(G) + γ(G)
2

≤ n.

Recall that a set R ⊆ V (G) is a packing set of G if N [x]∩N [y] = ∅ holds for any
two distinct vertices x, y ∈ R. The packing number ρ(G) is the maximum cardinality
of a packing in G. Let δ denote the minimum degree of the graph G.

Proposition 10 If G is a connected graph of order n, then γr2(G)+(δ−1)ρ(G) ≤ n.

Proof. Obviously, the result holds if n ∈ {1, 2}. So assume that n ≥ 3. Let R
be a maximum packing set of G, A = N(R) and B = V (G) − (A ∪ R) . Clearly
|A| ≥ δ |R| and |B| = n− |A ∪ R| ≤ n− (δ + 1) |R| . Now define a 2RDF f on V (G)
by letting f(x) = {1, 2} if x ∈ R; f(x) = ∅ if x ∈ A and f(x) = {1} or {2} if x ∈ B.
It follows that γr2(G) ≤ w(f) = 2 |R|+ |B| . Using the previous inequality we obtain
the desired result.

A hole in a graph is an induced subgraph that is a cycle of length at least 4. A
chordal graph is a graph with no hole. A graph is strongly chordal if it is chordal
and every even cycle of length at least 6 has a strong chord, meaning a chord joining
vertices whose distance along the cycle is odd. Farber [6] proved that the domination
number and packing number are equal for any strongly chordal graph. Thus we have
the following corollary to Proposition 10.
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Corollary 11 For any connected strongly chordal graph G, we have γr2(G) +
(δ − 1)γ(G) ≤ n.

It is remarkable that since for any graph G, γ(G) ≤ γR(G), one may study a
similar bound as Proposition 9 replacing γ(G) by γR(G). However, it is not the case

that for any graph G, γr2(G) + γR(G)
2

≤ n, as the path P4 does not satisfy it. In the

following we show that the difference γr2(G) + γR(G)
2

− |V (G)| in a graph G can be
arbitrarily large.

Proposition 12 The difference γr2(G) + γR(G)
2

− n in a graph G of order n can be

arbitrarily large.

Proof. Let k ≥ 1 be a positive integer, and let m = 2(k + 1). Let P14, P24, ..., Pm4

be m copies of a path P4. For 1 ≤ i ≤ m, let xi be a stem of Pi4. Let T be a
tree obtained from P14, P24, ..., Pm4 by adding a vertex o and joining o to every xi

for i = 1, 2, ..., m. It is straightforward to see that γR(T ) = γr2(T ) = 3m. Now

γr2(T ) + γR(T )
2

− |V (T )| = k.

However, Theorems 4 and 5 imply that for any connected graph G of order n ≥ 3,
γr2(G) + γR(G)

2
≤ n + 3n

20
. We close the paper with the following problem.

Problem 13 Find a sharp upper bound for γr2(G) + γR(G)
2

in a connected graph G
of order n ≥ 3.
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